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Abstract

In this paper, we study parameter-efficient fine-
tuning methods for large pre-trained models.
Specifically, we improve LoRA approaches to
alleviate the performance loss from the con-
strained adapter by introducing a non-linear
transformation (call it LoRAN). For a better
adaptation, we also design a new non-linear
function to appropriately fit the accumulated
weight updates. We test our method in multiple
advanced large language models. Experimental
results show that our LoRAN significantly out-
performs a strong baseline on SAMSum and
20 Newsgroups tasks. Moreover, when a lower
rank is applied, our approach even yields a 1.95-
point improvement in the classification task.

1 Introduction

Recently, large language models (LLMs) have
shown great improvements on a wide range of
NLP tasks. Methods of this kind make it possible
to learn universal representations from large cor-
pora and adapt pre-trained models to downstream
tasks through fine-tuning (Zhao et al., 2023). Early
fine-tuning methods optimize models within the en-
tire parameter space (Brown et al., 2020), whereas
parameter-efficient fine-tuning (PEFT) have suc-
cessfully trained downstream models with fewer
parameters (Hu et al., 2022; Liu et al., 2021a;
Lester et al., 2021). As an instance of the latter, the
low-rank adaptation (LoRA) introduces lightweight
trainable matrices to fit the accumulated weight up-
dates while most LLM parameters are frozen. This
leads to an efficient training process with a smaller
memory footprint than full fine-tuning.

Like recent adapter-based methods, LoRA adds
a small number of extra parameters to adapt models
to downstream data. Under the low-intrinsic-rank
hypothesis (Aghajanyan et al., 2021), the multipli-
cation of two low-dimension matrices is introduced
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Figure 1: Comparison of weight update fitting in fine-
tuning with LoRA and LoRAN.

to fit every weight update matrix during fine-tuning
(see Figure 1(a)), and then the downstream model
can be easily obtained by merging back all the
multiplications with the frozen parameters. This
low-rank decomposition dramatically reduces the
number of trainable parameters, even making it
possible to equip multiple portable LoRA models
for different tasks onto one shared foundation.

However, the effectiveness of LoRA heavily re-
lies on the match between the adapter capacity and
the downstream task. If the adapters are too small,
there will be a significant gap between adapter out-
puts and optimal weight updates, leading to a per-
formance loss in task transfer. Previous efforts on
this issue have focused on budgeting adapter pa-
rameters (Zhang et al., 2023b; Valipour et al., 2023)
and upgrading matrix decomposition (Hyeon-Woo
et al., 2022; Yeh et al., 2023). These methods are
able to narrow the gap by sufficient parameters and
effective computations, but cannot thoroughly plug
the gap to the same fitting precision with full fine-
tuning efficiently due to low-rank multiplications.
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In this work, we enhance the adapter capacity
without additional parameters, enabling the adapter
to fit weight updates more delicately. We present
an improvement of LoRA, introducing a non-linear
transformation after matrix decomposition (call it
Low-Rank Adaptation with Non-Linear Transfor-
mation, or LoRAN for short). It leads to an adapter
that even matches the full-rank model capacity (see
Figure 1(b)). In addition to the new framework,
we also develop a novel non-linear function for Lo-
RAN, that ensures a reasonable practice based on
the matrix features of weight updates.

Our LoRAN is simple to implement and straight-
forwardly applicable to various LoRA variants. We
experiment with it in Flan-T5, Falcon, and Llama 2
systems. Experimental results on SAMSum and 20
Newsgroups tasks show significant improvement
to the baseline. When the rank is limited lower, our
system even yields a more considerable improve-
ment of +1.95 point accuracy in the 20 Newsgroups
task. More interestingly, in the classification task,
LoRAN presents greater sensitivity to distinguish-
ing minor differences between similar classes. This
corresponds to our motivation for addressing the
rough weight update fitting in low-rank adapters
and indicates a promising line of research on apply-
ing LoRAN to complicated tasks, such as extremely
low-resource fine-tuning.

2 The Method

In this work, we use LoRA for description1. Taking
a downstream model as an example, numerous fully
connected layers are equipped. A fine-tuned weight
matrix WD

i can be defined as WD
i = WF

i +∆Wi

where WF
i is the corresponding weights of the

foundation model and ∆Wi refers to the accumu-
lated weight updates in fine-tuning.

2.1 Low-Rank Adapter

In low-rank adapters, the object is to fit the optimal
∆Wi with fewer parameters to save memory foot-
print. For a specific neural position, the foundation
matrix WF

i is frozen during fine-tuning, while the
adapter parameters are updated to learn the weight
changes ∆Wi. In LoRA, a low-rank decomposition
is applied to represent ∆Wi ∈ Rd×k, like this

∆Wi = Bi ·Ai (1)

1Note that although we restrict ourselves to LoRA here,
the methodology can be easily applied to other LoRA variants.

where Bi ∈ Rd×r and Ai ∈ Rr×k are used to
reduce the dimension of the trainable parameters
from d to r and then increase it back to k. Due
to the setting of r ≪ min{d, k} in the common
practice, the number of parameters in fitting ∆Wi

is far less than that in a full fine-tuning.

2.2 Adapter with Non-Linear Transformation
However, due to the decomposition, the rank of
∆Wi is also limited equal or less than r, indi-
cates a poor model capacity (Zhang et al., 2023b;
Valipour et al., 2023). To verify this, we evalu-
ate the change in information quantities after fine-
tuning with and without LoRA. A significant in-
formation loss is observed when low-rank adapter
is applied (see Appendix A.3). This encourage
us to study on adapters with higher capacity for
fine-grained weight update fitting.

In this work, we introduce a simple non-linear
mapping for the adapter to model more delicately,
rather than forcefully fitting the high-rank ∆Wi

with the low-rank result. We call it Low-Rank
Adaptation with a Non-Linear Transformation (Lo-
RAN). Here, we re-formalize the Eq. (1) as:

∆Wi = f(Bi ·Ai) (2)

where f(·) refers to the non-linear function without
extra parameters. This enables adapter outputs to
align with optimal weight updates with the identical
rank, indicating a promising model capacity for
downstream tasks (See Figure 1(b)).

2.3 Scaled Sine Interference
Our model is flexible. For the non-linear transfor-
mation, we can directly apply existing activation
functions with reasonable derivatives and ranges.
However, we found that choices without careful
consideration will not bring maximum performance
gains. Some cause too weak or too strong impacts
in the weight space, even creating blind spots and
unfair mappings in the transformation. This ne-
cessitates the non-linear function that consistently
returns the approximated value of its argument. A
simple manner is to add a constrained interference
on the decomposition. Here, we design a non-linear
function named Scaled Sine Interference (Sinter):

f(x) = A · sin(ω · x)⊙ x+ x (3)

where sin(·) refers to the sine function. A and ω
are the amplitude and frequency to control the inter-
ference degree and phase velocity. It is noteworthy
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Foundation
Model

ROUGE-1 ROUGE-2 ROUGE-L
PEFT Method

∆
PEFT Method

∆
PEFT Method

∆
QLoRA LoRAN QLoRA LoRAN QLoRA LoRAN

Flan-T5-Large 48.69 49.04 +0.35 22.91 22.97 +0.06 39.47 39.42 -0.05
Falcon-7b 50.16 50.67 +0.51 25.47 25.85 +0.38 41.74 42.50 +0.76
Llama-2-7b 52.72 53.27 +0.55 27.92 28.54 +0.62 44.10 44.70 +0.60
Llama-2-13b 52.86 53.14 +0.28 28.46 28.82 +0.36 44.66 44.85 +0.19

Table 1: Comparison of QLoRA and LoRAN methods on the SAMSum task with large language models.
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Figure 2: The Sinter activation function.

that a Hadamard product is used to offer appropri-
ate scales on the sine wave based on the inputs.
Figure 2 shows the graph of our Sinter.

3 Experiments

3.1 Experimental Setup

For the supervised fine-tuning, we test our ap-
proach on the SAMSum summarization task(Gliwa
et al., 2019) and 20 Newsgroups classification task
(Lang, 1995). To ensure reliable experimental re-
sults, we implement with Flan-T5 (Chung et al.,
2022), Falcon (Penedo et al., 2023), and Llama 2
(Touvron et al., 2023). Models with various pa-
rameter scales (0.7B, 7B, and 13B) are also experi-
mented to evaluate the universality of our LoRAN.

We fine-tuned downstream models using low-
rank methods. Both the baseline and our LoRAN
were constructed on QLoRA, which was a 4-bit
quantized LoRA with superior efficiency and com-
parable performance (Dettmers et al., 2023). In the
adapter, we set r to 64, α to 16, and applied Sinter
in LoRAN with A = 5e-5 and ω = 1e4. Our fine-
tuning system ran for 5 epochs with a batch size
of 16. We froze LLM parameters and optimized
adapter parameters using AdamW with a learning
rate of 2e-4, β1 = 0.9 and β1 = 0.999. Dropout (rate
= 0.2) and gradient clipping (maximum gradient
norm = 0.3) were also adopted for regularization
and stabilizing the training process.

Foundation
Model

Accuracy
PEFT Method

∆
QLoRA LoRAN

Flan-T5-Large 75.45 75.80 +0.35
Falcon-7b 68.33 68.80 +0.47
Llama-2-7b 73.39 74.61 +1.22
Llama-2-13b 75.99 76.68 +0.69

Table 2: Comparison of QLoRA and LoRAN methods
on the 20 Newsgroups task with large language models.

3.2 Results

3.2.1 Performance Improvements
Here, we report the performance of fine-tuned mod-
els with QLoRA and LoRAN in Table 1 and Table 2.
First of all, our LoRAN enhances the performance
across different combinations of foundation models
and tasks significantly. In LLMs (≥ 7B), without
introducing any parameters, the fine-tuned models
with LoRAN outperform QLoRA by 0.47 ROUGE
and 0.79 accuracy scores on average. Llama 2
(7B) even yields a +1.22 accuracy improvement in
the 20 Newsgroups task. Additionally, for founda-
tions with fewer parameters, such as Flan-T5-Large
(0.7B), LoRAN also surpasses slightly than the
vanilla low-rank method. One possible reason of
the limitation is that a small adapter is sufficient for
transferring a weak foundation to downstream tasks
due to its original low confidence scores. Therefore,
appending a powerful non-linear transformation
does not bring an expected significant improvement
under a generous setting of r = 64.

Additionally, we test LoRAN with a stricter rank.
The model performance is reported in Table 3 when
the r is limited to 8. Our LoRAN outperforms the
baseline in both summarization and text classifica-
tion. It even achieves a more substantial improve-
ment than the setting of r = 64. For example,
in the 20 Newsgroups task, LoRAN yields a 1.95-
point improvement, which is more noticeable than
the improvement in Table 2. This is because there
is a wider gap between the capacity of a smaller

3136



Task Metric
PEFT Method

∆
QLoRA LoRAN

SS†
ROUGE-1 52.38 53.00 +0.62
ROUGE-2 27.78 28.19 +0.41
ROUGE-L 44.06 44.59 +0.53

NG‡ Accuracy 71.62 73.57 +1.95

Table 3: Comparison of QLoRA and LoRAN methods
with lower rank (r = 8). The foundation model is
Llama-2-7b. †SS=SAMSum. ‡NG=20 Newsgroups.

Precision Metric
PEFT Method

∆
Base† Our‡

4-bit
ROUGE-1 48.69 49.04 +0.35
ROUGE-2 22.91 22.97 +0.06
ROUGE-L 39.47 39.42 -0.05

32-bit
ROUGE-1 48.88 49.97 +1.09
ROUGE-2 22.86 23.63 +0.77
ROUGE-L 39.71 39.94 +0.23

Table 4: Comparison of (Q)LoRA and LoRAN
methods with/without quantization on the SAM-
Sum task. The foundation model is Flan-T5-Large.
†Base=LoRA/QLoRA. ‡Our=LoRAN.

adapter and weight updates. Non-linear transfor-
mations benefit more in these tricky situations.

Moreover, we also evaluate our LoRAN with-
out quantization. Table 4 presents the SAMSum
results based on Flan-T5-Large. Compared to the
quantized results, our LoRAN shows a surprisingly
greater improvement in the non-quantized setting
(32-bit training). The results indicate a promis-
ing performance of LoRAN in parameter-efficient
fine-tuning other larger language models.

3.2.2 Ablation Study

To verify the contributions of the LoRAN frame-
work and Sinter, we compare different activation
functions used in our method. We use Identity,
Swish-1 and Swish-25 (Ramachandran et al., 2018)
for comparison with Sinter. Identity serves as the
baseline, because it simplifies LoRAN back to
QLoRA, and two Swish functions are chosen due
to their compatible derivatives and ranges. In Table
5, performance improvements are observed with all
the non-linear ways, with Sinter yielding the best.
The relatively smaller improvement of Swish might
be due to the contraction mapping in the weight
space, which requires more training steps to fit the
weight updates, posing challenges for LoRAN.

Function ROUGE-1 ROUGE-2 ROUGE-L
Identity 52.72 27.92 44.10
Swish-1† 52.61 27.95 44.45
Swish-25‡ 52.66 28.04 44.46
Sinter 53.27 28.54 44.70

Table 5: Comparison of activation functions in the
LoRAN method on the SAMSum task. The foundation
model is Llama-2-7b. †‡Swish-1 and Swish-25 refer to
apply β = 1 and β = 25 in the Swish function.
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Figure 3: The difference in classification accuracy with
QLoRA and LoRAN vs. the topic number. The founda-
tion model is Llama-2-7b.

3.2.3 Contribution Analysis
To figure out the advantages of LoRAN, we de-
tail the model contribution on each class in the 20
Newsgroups task. According to the manual, every
class corresponds to a specific topic within narrow
categories. Meanwhile, 20 classes are grouped into
5 broad categories based on their similarities2. Fig-
ure 3 shows the improvement on every class3. For
the narrow categories (red), it only scores when the
prediction exactly matches the gold label. While
for the broad categories (blue), it scores if the pre-
diction belongs to the correct broad category. The
results show that the main improvements are in
the narrow task. The most significant stride (#19)
comes from the broad category with the least com-
mon samples on average. The non-linear transfor-
mation helps the adapter enhance its sensitivity to
the differences of remarkably similar topics, espe-
cially in low-resource data. This aligns with our
premise that the non-linear transformation aids in
reconstructing weight updates more delicately.

4 Related Work

PEFT has been proposed to improve computing
and memory efficiency for applying LLMs to down-
stream tasks (Liu et al., 2021a; Lester et al., 2021;
Liu et al., 2021b). One classic method, LoRA,

2Appendix A.2 shows the detailed official categories.
3We also discuss the LoRAN contribution with a more

limited rank value in Appendix A.5.
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Foundation
Model

Training Cost (GPU hours)
QLoRA LoRAN ∆

Llama-2-7b 2.9 3.1 +0.2
Llama-2-13b 4.9 5.4 +0.5

Table 6: Comparison of the time consumption between
QLoRA and LoRAN with Llama 2. The downstream
task is 20 Newsgroups.

uses adapters to save a substantial number of train-
able parameters, making it popular to produce task-
specific models on resource-limited devices (Hu
et al., 2022). However, its matrix decomposition
restricts weight updates to the low-rank space, con-
straining the model’s expressiveness.

A strand of addressing this issue is to budget
adapter parameters, adding suitably sized adapters
at critical neural positions (Zhang et al., 2023b;
Valipour et al., 2023), and the other typical line
is to upgrade the decomposition way for higher
performance (Hyeon-Woo et al., 2022; Yeh et al.,
2023). Nevertheless, both approaches either fail
to thoroughly bridge the gap between the adapter
capacity and weight updates, or require additional
parameters. No discussion exists on a method that
can achieve low-rank training comparable to full
fine-tuning under the same number of parameters.

5 Conclusions

We have presented an improved low-rank adap-
tation with non-linear transformation for a more
delicate weight update fitting in fine-tuning. Mean-
while, for more reliable progress, a brand-new non-
linear function is proposed. Experiments on SAM-
Sum and 20 Newsgroups tasks both show signif-
icant improvements over the baseline. When a
lower rank is used, it even achieves a 1.95-point
improvement in the classification task.

6 Limitations

Due to the non-linear transformation, some extra
computational time is required even though no ad-
ditional parameters are introduced. However, it
is worth noting that the additional time consump-
tion is low. For example, in Llama 2 (both 7B
and 13B) experiments, the increased time costs
are limited below 0.5 GPU hours (See Table 6).
Moreover, when techniques like kernel fusion are
applied, the added time of LoRAN with Sinter can
be further compressed. Another limitation that
we plan to address in the future work is experi-

menting with our method in more LoRA variants,
particularly adapters with rank value optimization
like AdaLoRA (Zhang et al., 2023b), DyLoRA
(Valipour et al., 2023), etc. This will allow LoRAN
to maximize the benefit of delicate fitting with a
reliable parameter guarantee.
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A Appendix

We organize the Appendix in 5 parts:

• Codes and fine-tuned adapter models of our
LoRAN (Appendix A.1).

• Broad and narrow categories of the 20 News-
groups dataset according to the official task
manual (Appendix A.2).

• Information quantity analysis when using
LoRA and full fine-tuning (Appendix A.3).

• Discussion of the relation between the adapter
capacity and accumulated weight updates (Ap-
pendix A.4).

• Contribution analysis of LoRAN with a set-
ting of r = 8 in the 20 Newsgroups task (Ap-
pendix A.5).

A.1 Codes and Models

For a convenient use of our approach, we open-
source the LoRAN here. It is developed based on
the widely-used PEFT package from Huggingface,
that allows researchers to upgrade their projects for
LoRAN more easily. Moreover, we also provide
the fine-tuned QLoRA and LoRAN models from
our experiments so that everyone can reproduce
our results directly. These models are fine-tuned
with open-sourced LLM-Finetuning-Toolkit on a
single NVIDIA A100 (40GB).

Moreover, due to the use of non-linear transfor-
mation, our LoRAN requires a small amount of
additional time during fine-tuning. Taking Llama
2 models (7B and 13B) as examples, we present
the time consumption of our experiments in Table
6. It is observed that LoRAN claims < 30 extra
GPU minutes compared to the baseline in perform-
ing non-linear transformations. This part can be
further compressed when kernel fusion is applied
in a real-world implementation.

A.2 Categories of 20 Newsgroups

We present the official classes of the 20 newsgroups
task according to its website in Table 7. 20 classes
refer to 20 news topics in narrow categories, while
they are clustered into 5 broad categories based on
their similarities. Table 7 also presents the number
of samples in every class.

Categories Sample
NumberBroad Narrow

A

comp.graphics (#1) 550
comp.os.ms-windows.misc (#2) 554
comp.sys.ibm.pc.hardware (#3) 561

comp.sys.mac.hardware (#4) 536
comp.windows.x (#5) 575

B

rec.autos (#6) 538
rec.motorcycles (#7) 550

rec.sport.baseball (#8) 546
rec.sport.hockey (#9) 558

C

sci.crypt (#10) 567
sci.electronics (#11) 562

sci.med (#12) 571
sci.space (#13) 563

D misc.forsale (#14) 564

E
talk.politics.misc (#15) 437
talk.politics.guns (#16) 525

talk.politics.mideast (#17) 520

F
talk.religion.misc (#18) 338

alt.atheism (#19) 448
soc.religion.christian (#20) 581

Table 7: Broad and narrow categories in the 20 news-
groups task. Each narrow category corresponds to a
specific topic, while closely related topics are clus-
tered in a broad category. The partition is defined in
http://qwone.com/ jason/20Newsgroups.

A.3 Information Quantity Analysis

The limited rank in LoRA constrains the model
performance. To detail the impact, we evaluate the
change in information quantities after fine-tuning
with and without LoRA at the beginning of this
work. More particularly, we compute the SVD on
the real weight updates and observe their singu-
lar values. Figure 5 presents the distribution of
dimensions with various singular values, where a
dimension with a higher singular value indicates
an accommodation with more information. For the
low-rank adapter, almost all the dimensions fall
within low-information ranges. In contrast, full
fine-tuning handles complex downstream informa-
tion more manageable with richer information. All
these show the possibility of enhancing the fine-
tuned model by plugging the gap and motivate us
to study our LoRAN.

A.4 Discussion of the Adapter Capacity and
Accumulated Weight Updates

In this section, we discuss the role of adapters in
modern fine-tuning and compare various effects
of low-rank implementations (different parameter
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Figure 4: The process of fine-tuning with different types of adapter implementations. In an adapter, the parameters
are fundamental, and we use various fitting methods to utilize them to perform the adaptation. Three kinds of
adapter implementations exist: (a) When the parameters are insufficient, even if the fitting method is reasonable, the
adapter cannot work well; (b) If enough parameters are used, the adapter capacity is also limited when the fitting
approach is not powerful; (c) Both the number of parameters and the fitting way meet the requirement, the adapter
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Figure 5: The change of information quantities in fine-
tuning the RoBERTa-Large model with/without LoRA.
The information quantities are defined by singular val-
ues, and the numbers of dimensions across various sin-
gular value ranges are presented. The query projection
matrix in the bottom sub-layer serves as the observation
target.

settings and fitting methods). This part describes
the position and target of our LoRAN in more detail
and may provide insights for future related work.

In the LLM framework, the downstream mod-
els are trained using powerful foundation models.
Assuming an ideal downstream model exists, the
parameter difference between it and the foundation
model needs to be modeled for adaptation. In the-
ory, these required weight updates can be exactly
learned with full fine-tuning, but a huge amount of
computing resources are necessary for this process.
To address the efficiency issue, the low-rank adap-
tation is proposed. Methods of this kind consider a
low “intrinsic rank” inside the weight update matrix
and employ a small adapter for fitting (see Figure
4). In practice, this procedure is a performance-

Pe
rf
or
m
an
ce

Adapter capacity

Delicate
FittingRough

Fitting

“Intrinsic rank”

Figure 6: The relation between the downstream perfor-
mance and adapter capacity.

efficiency-balance that estimates a suitable adapter
capacity for the current task and foundation model,
like the illustration in Figure 6. The low-rank adap-
tation is able to guarantee a rough fitting but with
a performance limitation. The disadvantage be-
comes even more pronounced in complex down-
stream tasks that demand a larger capacity. More
formally, the fitting process can be described as

∆Wi = FM(P0, P1, ...) (4)

The process is composed of two parts, the
fitting method FM(·) and the parameter set
{P0, P1, . . .}. The number of parameters defines
the upper bound of the adapter performance. In
contrast, the fitting approach is used for parameter
organizations, determining the parameter efficiency
and the fitting precision. Two factors influence
the adapter capacity together, just like the quan-
tity of material and the shape define the volume
of a bucket in Figure 4. Concentrating on only
one aspect cannot achieve the optimum. Similar
results appear in studies of deep learning. For ex-
ample, in Automated Machine Learning (AutoML),
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designing neural networks applies both Neural Ar-
chitecture Search (NAS) and Hyper-Parameter Op-
timization (HPO) for the best results in a specific
task (He et al., 2021; Baratchi et al., 2024; Barbudo
et al., 2023).

Back to the adaptation of LLMs, the number
of parameters and fitting methods are also two
core lines of improving LoRA. The former focuses
on allocating appropriate numbers of parameters
for different neural positions (Zhang et al., 2023b;
Valipour et al., 2023; Zhou et al., 2024), while
the latter seeks to maximize parameter efficiency
(Yeh et al., 2023; Kopiczko et al., 2024; Zhang
et al., 2023a). This work mainly targets the latter.
The current fitting methods are not perfect in real-
world implementation. Many extra parameters are
needed to achieve a delicate fitting comparable to
full fine-tuning. For instance, LoHa enhances the
rank of LoRA outputs from r to r2/4, making it
possible for the adapter capacity to approach the
requirement of weight updates with some parame-
ter increases (Hyeon-Woo et al., 2022). Our work
further researches this problem, aiming to improve
the adapter capacity to the full-rank level without
introducing any additional parameters.

A.5 Contribution Analysis of LoRAN
To analyze the contribution of our LoRAN, we
show the performance change of every class in the
20 Newsgroups task (see Figure 7). Different from
the experiment in Section 3.2.3, the results here are
with a setting of lower rank (r = 8).

Interestingly, we observe that the improvements
in Figure 7 show a different phenomenon, which
is the similar improvement trends between narrow
and broad categories. This indicates the improve-
ments primarily come from the broad categories,
which seems inconsistent with the experimental re-
sults of setting the rank to 64 (see Figure 3). This
is because predicting broad categories is generally
easier than predicting narrow categories. In the 20
Newsgroups task, using a rank of 64 allows LoRA
to accurately predict most of the broad categories
while struggling with the narrow ones. Our Lo-
RAN address this issue by fitting weight updates
more delicately with the non-linear transformation,
helping the system to distinguish minor differences
between similar narrow classes. However, when
the rank is further reduced to 8, adapters struggle
even with broad category prediction due to insuffi-
cient parameters (as mentioned in Appendix A.4,
the number of parameters and the fitting method

1 6 11 16
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Figure 7: The difference in classification accuracy with
QLoRA and LoRAN vs. the topic number. The foun-
dation model is Llama-2-7b. Both narrow and broad
categories are observed. The figure follows a setting of
r = 8.

determine the capacity together). The non-linear
transformation then prioritizes optimizing the ba-
sic task - broad category prediction. That explains
why most improvements are from the broad cate-
gories in Table 7. Additionally, this also suggests
a promising line of research on applying this work
to AdaLoRA (Zhang et al., 2023b) or other vari-
ants with rank value optimization. By doing so,
necessary adapter parameters are allocated to the
suitable position, and the non-linear function sup-
ports finely fitting the weight updates.
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