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Abstract

We introduce a dataset comprising commercial
machine translations, gathered weekly over six
years across 12 translation directions. Since hu-
man A/B testing is commonly used, we assume
commercial systems improve over time, which
enables us to evaluate machine translation (MT)
metrics based on their preference for more re-
cent translations. Our study not only confirms
several prior findings, such as the advantage of
neural metrics over non-neural ones, but also
explores the debated issue of how MT qual-
ity affects metric reliability—an investigation
that smaller datasets in previous research could
not sufficiently explore. Overall, our research
demonstrates the dataset’s value as a testbed
for metric evaluation. We release our code.1

1 Introduction

Automatic metrics for machine translation (MT)
are typically assessed by measuring their correla-
tion with or accuracy with respect to human judg-
ments (Macháček and Bojar, 2013; Mathur et al.,
2020b; Kocmi et al., 2021). However, human eval-
uation is resource-intensive and time-consuming,
and the number of translation systems included in a
meta-evaluation tends to be relatively small. In this
study, we explore the use of commercial machine
translations, collected weekly over a period of 6
years for 12 translation directions, for the evalu-
ation of MT metrics. Given the common use of
human A/B testing (Tang et al., 2010; Caswell and
Liang, 2020), our base assumption is that commer-
cial systems show real improvements over time and
that we can assess metrics as to whether they prefer
more recent MT outputs. Using our dataset, we
revisit a number of recent findings in MT metrics
research, and find that our dataset supports these.

Trained metrics, developed to directly learn hu-
man judgments (Rei et al., 2020; Sellam et al.,

1https://github.com/gjwubyron/Evo

2020), showed notable advancements in correlat-
ing with human judgments compared to non-neural
metrics like BLEU (Papineni et al., 2002; Freitag
et al., 2021). Recent studies (Freitag et al., 2022,
2023) also revealed that neural metrics achieved
significantly better correlation with human judg-
ments than non-neural ones and were able to gen-
eralize to new domains and challenging test sets.
In our experiments, we analyze metric scores over
time and evaluate metrics’ ability to accurately rank
MT systems. Our findings demonstrate that neural
metrics show a more consistent upward trend, and
achieve higher accuracy than non-neural metrics.

Ma et al. (2019) argued that the correlation
between metrics and human judgments signifi-
cantly decreased when considering only the top-
performing systems. To be specific, they assessed
the stability of metrics across top-N MT systems,
and noticed that the correlation between metric and
human scores diminished as N decreased. Mathur
et al. (2020a) highlighted the instability of correla-
tions with small N, and instead employed a rolling
window of N systems, moving from the worst to
the best systems. Due to the limited number of MT
systems (typically 10-15 systems) in the datasets,
they were unable to confirm that the correlation
declines as system quality improves with their ap-
proach. Due to the much larger size of our dataset
(see Section 3.1), we can achieve more stable re-
sults when using the rolling window approach from
Mathur et al. (2020a). Our findings reveal that a
downward trend is the most common, supporting
the results of Ma et al. (2019), although upward or
relatively flat trends are also seen in some language
pairs.

In WMT23 Metrics shared task (Freitag et al.,
2023), human translations received unexpectedly
low ratings, which prompted an investigation into
using synthetic references as a potential alternative.
They found that high-quality synthetic references
could produce a stronger correlation between hu-
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man evaluations and metrics compared to human
references. In our study, we reexamine the useful-
ness of synthetic references with three language
pairs and find that synthetic references can result
in comparable correlation.

2 Related Work

The metrics shared task at WMT (Ma et al., 2018;
Mathur et al., 2020b) has played a key role in the
development and evaluation of automatic metrics.
The annual data collected from WMT’s compre-
hensive human evaluation of the translation task
provides an ideal foundation for assessing these
metrics. In this event, metrics are ranked based
on the correlation calculated by comparing their
scores to human ratings.

Machine translation systems that are compared
typically come from the same evaluation campaign.
An exception to this is the study by Graham et al.
(2014), who study longitudinal improvements in
machine translation quality from 2007–2012 with
human assessments, finding that translation qual-
ity of the top submissions to the WMT shared task
indeed rose significantly. Our study is similarly lon-
gitudinal, but our data stems from a single commer-
cial system, and we do not perform our own human
evaluation, but instead assume that improvements
over time have been validated by company-internal
human A/B testing.

Instead of evaluating metrics through compari-
son with human judgement, Moghe et al. (2023)
explored a complementary approach by correlat-
ing metrics with the outcome of downstream tasks.
Similarly, our study does not use human judgment
directly; instead, we evaluate metrics based on their
preference for newer MT outputs.

3 Methods

We turn next to describe our data and the metrics
we use.

3.1 Data

The original corpus contains sentences in English
from Abstract Meaning Representation (AMR) An-
notation Release 2.0 (Knight and et al., 2017),
along with their German, Italian, Spanish, and Chi-
nese translations developed by Damonte and Cohen
(2018) and released by LDC in Damonte and Co-
hen (2020). This corpus contains 1371 sentences
per language. The source sentences were mainly
drawn from content gathered in the news domain.

Translations2 are gathered weekly from May
2018 – March 2024 using Google Translate from
each of the five languages to the other four lan-
guages. Early experiments revealed that for
English→Spanish, there was a substantial simi-
larity between professional translations and those
generated by the earliest systems (details in Ap-
pendix A). Consequently, Spanish was removed
from further investigation, reducing the number of
language pairs to 12. As minimal variation was ob-
served between consecutive weeks, we subsample
for the following analysis, with consecutive sys-
tems being approximately one month apart. After
removing duplicates (systems receiving identical
scores across all metrics), we retained 56–63 sys-
tems per language pair.

3.2 Metrics

In this section, we outline the three types of metrics
used in this study.

3.2.1 Surface-level overlap
BLEU (Papineni et al., 2002) measures n-grams
overlap between the translation and its reference.
We use corpus_bleu in SacreBLEU (Post, 2018).
chrF (Popović, 2015) assesses the overlap between
the characters of the translation and the reference.
We use corpus_chrf in SacreBLEU.

3.2.2 Embedding based
BERTScore (Zhang et al., 2020) derives contex-
tual embeddings from BERT (Devlin et al., 2019)
models and computes cosine similarity between
embeddings of the translation and the reference.
We use the F1 score without TF-IDF weighting.

3.2.3 Trained with human judgements
COMET-20 (Rei et al., 2020) is trained on top
of XLM-R (Conneau et al., 2020) using Direct
Assessments (DA) from WMT17 to WMT19. We
use wmt20-comet-da.
UniTE (Wan et al., 2022a,b) is capable of evalu-
ating translation outputs in source-only, reference-
only, and source-reference-combined assessment
scenarios. We use unite-mup.
COMET-22 (Rei et al., 2022a) is the current de-
fault model in COMET and trained on DA from
WMT17 to WMT20. We use wmt22-comet-da.

2Due to the origin of the translations, the data we use is to
be licensed by the Linguistic Data Consortium. If you would
like to use this dataset for your research, please contact the
authors. The collection of the data continues.
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Figure 1: The Spearman correlation measures the relationship between metric score rankings and time rankings for
MT systems. A positive correlation indicates an upward trend, with a higher correlation indicating a stronger trend.
A red star indicates lack of statistical significance (p-value > 0.05).

COMET-Kiwi (Rei et al., 2022b) is a reference-
free metric trained using DA from WMT17 to
WMT20, and DA from the MLQE-PE corpus. We
use wmt22-cometkiwi-da.

MS-COMET-QE-22 (Kocmi et al., 2022) is a
reference-free metric, extending COMET by Mi-
crosoft Research with proprietary data.

4 Results

4.1 How do metric scores change over time?

While it is reasonable to expect that systems im-
prove over time, how metric scores will reflect
these improvements remains unclear. To investi-
gate this, we visualize how metric scores vary over
time for individual language pairs in Appendix B.
In general, upward trends are evident for the met-
rics across the language pairs.

We use Spearman correlation to measure
whether the upward trends are consistent. Met-
rics with higher correlation are deemed more re-
liable, as they better reflect the overall ranking of
the systems. As illustrated in Figure 1, COMET-
22, UniTE, COMET-20, and COMET-Kiwi con-
sistently demonstrate high correlation across the
language pairs. Among the remaining four met-
rics, we notice low correlations in specific language
pairs, like BLEU and chrF in English→German or
MS-COMET-22-QE in Italian→English.

4.2 How good can the metrics rank
incremental systems accurately?

In this section, we evaluate metrics in a common
scenario (Mathur et al., 2020a): ranking a pair of
systems. As we assume newer systems are bet-
ter than old ones, accuracy (Kocmi et al., 2021) is
adopted as follows. For each system pair, we calcu-
late the difference of the metric scores (metric∆)
and the difference in time (time∆). Accuracy for
a specific metric is calculated as the ratio of rank
agreements between metric and time deltas to the
total number of comparisons:

Accuracy =
|sign(metric∆) == sign(time∆) |

|all system pairs|

Since the systems span from 2018 to 2024, those
separated by a substantial time interval might ex-
hibit considerable quality gaps, potentially result-
ing in an overestimate of metric reliability (Mathur
et al., 2020a). Consequently, we only pair systems
with a gap of less than a year. Even within such a
timeframe, substantial improvements in quality are
possible (Caswell and Liang, 2020).

Table 1 shows that trained metrics generally out-
perform non-trained metrics. For all system pairs,
COMET-22 achieves the highest accuracy, fol-
lowed by COMET-Kiwi. In contrast, MS-COMET-
QE-22 struggles to attain high accuracy except for
into Chinese. Among surface-level metrics, chrF
outperforms BLEU, reflecting results in previous

2996



All Into EN From EN Into DE Into IT Into ZH
COMET-22 73.9 66.6 71.6 76.4 79.4 72.6
COMET-Kiwi 73.4 72.1 73.9 74.8 75.3 71.4
UniTE 73.2 66.5 73.7 77.1 75.0 73.9
COMET-20 72.5 66.1 74.6 74.3 74.0 74.9
chrF 71.4 74.5 57.8 60.4 76.5 74.6
MS-COMET-22-QE 69.9 57.4 68.1 68.8 73.9 78.6
BLEU 68.2 71.7 57.3 56.3 68.9 76.4
BERTScore 68.0 65.4 62.2 68.8 69.0 68.6

Table 1: Accuracy for ranking system pairs. Column “All” shows the results for all system pairs. Each following
column evaluates accuracy over a subset of systems. Rows are sorted by the accuracy over all system pairs.

Figure 2: Accuracy over a rolling window of 36 systems. The x-axis represents the index of the starting system,
with systems ordered chronologically from the earliest to the most recent. The x-axis scale may vary due to differing
numbers of systems, as discussed in Section 3.1.

studies (Kocmi et al., 2021), and achieves the high-
est accuracy for into English. We also examine
performance for individual language pairs. Trained
metrics exhibit high accuracy, yet no single metric
excels across all pairs. More details in Appendix C.

4.3 Does the reliability of metrics depend on
the quality of the systems evaluated?

As mentioned in Section 1, metric reliability may
decline as the quality of evaluated systems im-
proves (Ma et al., 2019). However, the limited
number of MT systems made it difficult to fully
confirm this trend (Mathur et al., 2020a). We re-
visit this issue using a larger sample of MT systems.
Following the approach of Mathur et al. (2020a),
we implement a rolling window of N systems, tran-
sitioning from the earliest to the most recent ones.

Using accuracy as explained in Section 4.2, we
conduct tests with N varying from 24 to 40. Fig-

ure 2 illustrates the results for N = 36, repre-
senting the identified scenarios. Different met-
rics display varying trends. For instance, in
English→German, trained metrics show an upward
trend, while surface-level metrics show a down-
ward trend. A downward trend is most common,
with each metric showing a clear decline across 7
or more language pairs. However, we also observe
upward or relatively flat trends in the remaining
language pairs.

4.4 Can synthetic references serve as an
alternative to human references?

We generate synthetic references for three lan-
guage pairs using another commercial MT system,
DeepL, and examine their impact on metric eval-
uation. As depicted in Figure 3, we observe that
for English→German, all metrics achieve a higher
accuracy, while for the remaining language pairs,
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Figure 3: Accuracy across three language pairs using either human or synthetic references. The two reference-free
metrics are not included as they will not be influenced by reference.

there are some drops. Overall, synthetic references
lead to a comparable accuracy for the three lan-
guage pairs we investigate, suggesting that they
can be used when human references are unavail-
able.

5 Conclusion

Our dataset, covering 12 language pairs with at
least 56 machine translations each, surpasses pre-
vious datasets that typically included only 3 pairs
with around 15 machine translations each. Based
on the assumption that newer translations of a reg-
ularly updated commercial system tend to be of
a higher quality, we apply the dataset to revisit
prior findings on MT metrics. We provide larger-
scale evidence for debated questions such as the
relationship between MT quality and metric reli-
ability—issues that previous research was unable
to conclusively resolve on smaller datasets. Ad-
ditionally, the systems are incremental (a baseline
compared to improvements developed by the same
group), reflecting the most common use case of
the metrics. We encourage the use of our dataset
for future investigations into MT metrics or the
development of MT quality over time.

Limitations

Our study bases on the assumption that newer sys-
tems of Google Translate outperform older ones
due to the quality assurance measures, including
human testing, taken before deployment. Although
this is a reasonable belief, it might not always be
true.

Recently, LLM-based evaluators have demon-
strated great performance in evaluating MT sys-
tems. However, we have not included any LLM-
based evaluators in this study because it would be
costly to experiment with our extensive dataset.
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Ma, and Ondřej Bojar. 2020b. Results of the WMT20
metrics shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 688–725, On-
line. Association for Computational Linguistics.

Nikita Moghe, Tom Sherborne, Mark Steedman, and
Alexandra Birch. 2023. Extrinsic evaluation of ma-
chine translation metrics. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13060–
13078, Toronto, Canada. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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Appendices
A Metric scores for English → Spanish translations

Figure 4 displays the scores of four different metrics for English→Spanish translations in our early
experiments. Early systems achieved nearly perfect metric scores, whereas later systems displayed
markedly lower scores. Upon closer examination of the human translations, we noticed roughly 25%
of them are identical to that of the early systems. This indicates the use of Google Translate in the
professional translation.

(a) BLEU (b) chrF

(c) BERTScore (d) COMET-22

Figure 4: The metric scores for English→Spanish translations. While the earliest system achieved nearly perfect
scores, subsequent systems showed a notable decline.

B Metric scores over time

Figure 5 illustrates the findings regarding the change of metric scores over time. Generally, upward trends
are evident for the metrics across language pairs. Furthermore, these trends sometimes appear as step-like
progressions. Based on a visual inspection of the results, we have some interesting findings as follows:

1. Although there have been concerns that MT systems were optimized for BLEU, given its longstanding
status as the primary evaluation metric, our findings suggest that the upward trends of BLEU are less
consistent compared to other metrics. This observation might provide implicit evidence that BLEU
is not solely used during system development.
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2. The trajectories of BLEU and chrF exhibit a high degree of similarity, as do the trajectories of
COMET-20, COMET-22, COMET-Kiwi, and UniTE. In contrast, BERTScore and MS-COMET-22-
QE follow distinct trajectories of their own. These similarities and discrepancies reflect the inherent
properties of these metrics. BLEU and chrF both rely on measuring surface-level overlap, while
BERTScore is unique in its reliance on contextual embeddings. As for the trained metrics, although
they are all trained in a similar manner, MS-COMET-22-QE was trained using entirely different data.

3. In certain language pairs, the trajectories of certain metrics may experience a downturn. For instance,
noticeable troughs are observed for BLEU and chrF in English→German, Italian→German, and
English→Italian; for BERTScore in English→German, German→Italian, and English→Italian; and
for MS-COMET-22-QE in Italian→English, Italian→German, and Chinese→English. On the other
hand, the trajectories of the remaining metrics may occasionally exhibit bumps but do not show clear
troughs.

Figure 5: Metric scores over time.
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Figure 5: Metric scores over time.
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Figure 5: Metric scores over time.
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C Accuracy across language pairs

Figure 6: Accuracy for ranking system pairs across individual language pairs.
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