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Abstract

Multi-Span Question Answering (MSQA) re-
quires models to extract one or multiple an-
swer spans from a given context to answer a
question. Prior work mainly focuses on de-
signing specific methods or applying heuristic
strategies to encourage models to predict more
correct predictions. However, these models
are trained on gold answers and fail to con-
sider the incorrect predictions. Through a sta-
tistical analysis, we observe that models with
stronger abilities do not predict less incorrect
predictions compared with other models. In
this work, we propose Answering-Classifying-
Correcting (ACC) framework, which employs
a post-processing strategy to handle incorrect
predictions. Specifically, the ACC framework
first introduces a classifier to classify the pre-
dictions into three types and exclude "wrong
predictions", then introduces a corrector to
modify "partially correct predictions". Exper-
iments on several MSQA datasets show that
ACC framework significantly improves the Ex-
act Match (EM) scores, and further analysis
demostrates that ACC framework efficiently
reduces the number of incorrect predictions,
improving the quality of predictions.1

1 Introduction

Machine Reading Comprehension (MRC) requires
models to answer a question based on a given con-
text (Rajpurkar et al., 2018; Kwiatkowski et al.,
2019; Lai et al., 2017). In a real-world scenario, a
single question typically corresponds to multiple
answers. To this end, Multi-Span Question Answer-
ing (MSQA) has been proposed (Ju et al., 2022;
Li et al., 2022; Yue et al., 2023). Different from
the traditional Single-Span Question Answering
(SSQA) task, the goal of MSQA is to extract one

*Corresponding author. This work was supported by the
National Key Research and Development Program of China
under Grant 2023YFB3002201.

1Our code and data are available at https://github.
com/TongjiNLP/ACC.

Context:

Don’t Hug Me I’m Scared (often abbreviated to 

DHMIS) is a live - action / animated surreal 

horror comedy web series created by British 

filmmakers Becky Sloan and Joseph Pelling ...

Question: 

Who made Don't Hug Me I'm Scared?

Gold Answers: 

Becky Sloan, Joseph Pelling

Predictions:

Joseph Pelling (correct)

Sloan (partially correct)

DHMIS (wrong)

Figure 1: An example of MSQA. This question has
two gold answers: "Becky Sloan" and "Joseph Pelling".
"Joseph Pelling" is a correct prediction, "Sloan" is a
partially correct prediction and "DHMIS" is a wrong
prediction. Best read in colors.

or multiple non-overlapped spans from the given
context. Taking Figure 1 as an instance, the ques-
tion "Who made Don’t Hug Me I’m Scared?" has
two answers: "Becky Sloan" and "Joseph Pelling".

Recent MSQA work integrates various ap-
proaches. Yang et al. (2021); Hu et al. (2019)
incorporate heuristic strategies based on traditional
pointer models (Vinyals et al., 2015) to extract mul-
tiple answers; Segal et al. (2020); Li et al. (2022)
convert MSQA task into a sequence-tagging task to
mark answers; Huang et al. (2023a); Zhang et al.
(2024) enumerate all candidate answers and select
the final answers with a learnable threshold, and
Huang et al. (2023b); Zhang et al. (2023) utilize
Large Language Models (LLMs) to handle MSQA
tasks with few shot prompts.

Prior work mainly focus on specific methods
or heuristic strategies for more correct predictions.
However, these models are trained on gold answers,
and fail to consider the incorrect predictions. To
further investigate the incorrect predictions, we
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categorize predictions into "correct predictions",
"partially correct predictions" and "wrong predic-
tions" based on whether they should be modified or
excluded. Then we conduct a statistical analysis on
several MSQA models (details in Section 2.3), and
observe that stronger MSQA models 1 do not pre-
dict less incorrect predictions compared with other
models. Consequently, performance of the MSQA
models can be further improved on the basis of
reducing incorrect predictions.

In this work, we propose Answer-Classify-
Correct (ACC) framework, which employs a post-
processing strategy to handle with incorrect predic-
tions. The ACC framework simulates humans strat-
egy in realword examinations: listing candidate
answers, reviewing and modifying. Specifically,
we design the classifier to categorize candidate an-
swers into "correct predictions", "partially correct
predictions" or "wrong predictions", then we de-
sign the corrector to modify "partially correct pre-
dictions", finally we exclude "wrong predictions"
and obtain final predictions. To train the classi-
fier and the corrector, we also apply an automatic
annotation approach which samples incorrect pre-
dictions from the training datasets and constructs
the silver-labeled datasets.

We conduct experiments on four MSQA datasets.
Experiment results show that the ACC framework
significantly improves the performance. After
applying the ACC framework, the EM F1 score
increases from 69.05% to 72.26% for Tagger-
RoBERTa (Li et al., 2022) and from 65.57% to
76.31% for BART-base (Lewis et al., 2020) on
the MultiSpanQA dataset (Li et al., 2022). Fur-
ther analysis on the predictions indicates that the
ACC framework effectively reduces the number
of incorrect predictions and obtains more correct
predictions, enhancing the qualities of predictions.
In addition, a pilot study with GPT-3.5 2 is con-
ducted, exhibiting extensive application of ACC
framework for LLMs in a Chain-of-Thought (CoT)
manner (Wei et al., 2022; Kojima et al., 2022).

Our contributions are summarized as follows:

• We develop a three-fold taxonomy for the
MSQA predictions based on whether a pre-
diction should be modified or excluded. Then,
we conduct a statistical analysis, revealing dis-
tributions over the three categories.

1"stronger" indicates higher MSQA performance, which
can be demonstrated using EM scores.

2https://platform.openai.com/.

• Inspired by humans’ strategies, we propose
the ACC framework, which includes a clas-
sifier to exclude incorrect predictions and in-
cludes a corrector to modify imperfect predic-
tions. We also design an automatical annota-
tion approach to sample incorrect predictions
and construct silver-labeled datasets.

• We conduct experiments and analysis on sev-
eral MSQA datasets. Results show that the
ACC framework significantly enhances the
quality of the MSQA predictions.

2 Taxonomy of MSQA Predictions

2.1 Formalization
Given a question Q and its corresponding context
C, the goal of MSQA is to train a model M to ex-
tract a set of m answer spans P = {p1, p2, ..., pm}
from the given context, shown as Eq. 1.

P = M(C,Q) (1)

2.2 Taxonomy
Intuitively, the predictions can be categorized as
correct or incorrect predictions. However, some
of incorrect predictions should be modified while
others should be excluded. For instances in Fig-
ure 1, "Sloan" and "DHMIS" are both incorrect
predictions. However, "Sloan" is similar to the
gold answer "Bercy Sloan" but "DHMIS" is totally
wrong. Therefore, we further categorize incorrect
predictions into "partially correct predictions" and
"wrong predictions".

Based on above analysis, we category the predic-
tion pi ∈ P into one of the following three types:
"correct prediction", "partially correct prediction"
and "wrong prediction".

Correct prediction. If the prediction pi is one
of the gold answers, which means pi ∈ A, pi is
regarded as a correct prediction.

Partially correct prediction. We utilize Word
Overlap (WO) and BERTScore (BS) (Zhang et al.,
2020) to define partially correct predictions. Word
Overlap considers the overlap between two spans in
word level, while BERTScore computes semantic
similarity of two spans in the manner of cosine sim-
ilarity. Details of Word Overlap and BERTScore
are shown in Appendix A.

For a prediction pi, if there exists aj ∈ A which
satisfies WO(pi, aj) ≥ α and BS(pi, aj) ≥ β,
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Figure 2: The distribution of correct predictions, partially correct predictions and wrong predictions on the validation
set of MultiSpanQA. The validation set of MultiSpanQA contains 653 questions with 1,911 gold answers.

where α and β are hyper-parameters, the pi is re-
garded as the partially correct prediction.

Wrong prediction. If pi is not a correct predic-
tion or a partially correct prediction, the pi is re-
garded as wrong prediction.

Figure 1 shows an example containing these
three types of predictions. The gold answers are
"Becky Sloan" and "Joseph Pelling". Among the
three predictions, "Joseph Pelling" is a correct pre-
diction; "Sloan" is a partially correct prediction and
"DHMIS" is a wrong prediction.

2.3 Distribution of MSQA Predictions

Based on the taxonomy, we conduct a statistical
analysis on the validation set of MultiSpanQA (Li
et al., 2022). We select four discriminative models:
MTMSN (Hu et al., 2019), MUSST (Yang et al.,
2021), Tagger (Li et al., 2022) and SpanQualifier
(Huang et al., 2023a), and three generative models:
BART (Lewis et al., 2020), T5 (Raffel et al., 2020)
and GPT-3.5 (zero-shot and few-shot). Details of
these models are shown in Appendix B.2.

The statistical results are shown in Figure 2.
We observed that models with better performance
(shown in Table 1) on the validation set predict
more correct predictions as well as more wrong pre-
dictions. For example, for discriminative models,
Tagger predicts 1,303 correct predictions but also
predict 565 wrong predictions, while MTMSN pre-
dicts 1,000 correct predictions and 484 wrong pre-
dictions; Similarly, after adding few-shot demon-
strations, the LLM generates more correct as well
as wrong predictions compared with zero-shot set-
ting. Therefore, we believe that the post-processing
method can effectively enhance the quality of pre-
dictions by reducing the number of incorrect pre-

dictions, resulting in better performance.

3 Method

In this section, we describe the ACC framework,
which is designed to handle with partially correct
predictions and wrong predictions. The architec-
ture of the ACC framework is shown in Figure 3.

Similar to the humans’ strategies, the post-
processing procedure of the ACC framework con-
sists of three steps: The first step is answering,
where we employ a reader to obtain initial predic-
tions P ; The second step is classifying, where we
employ a classifier to categorize each prediction
pi into one of the three classes: correct prediction,
partially correct prediction and wrong prediction;
The last step is correcting, where we employ a
corrector to modify the partially correct predic-
tions. We reserve correct predictions predicted by
the classifier and the modified predictions from the
corrector as the final predictions.

Next, we will provide more details of the reader,
the classifier and the corrector. We will also in-
troduce an automatic annotation approach which
samples incorrect predictions and constructs train-
ing data for the classifier and the corrector.

3.1 Reader

The main function of the reader is to extract several
text spans from context based on a given question.
This process can be described as:

P = Reader(Q,C) (2)

3.2 Classifier

The predictions of the reader may include partially
correct predictions or wrong predictions (men-
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Classifier

Context: Don't Hug Me I 'm Scared (often abbreviated to DHMIS) is a live - action / animated surreal 

horror comedy web series created by British filmmakers Becky Sloan and Joseph Pelling...

Question: Who made Don't Hug Me I'm Scared?

Reader

Joseph Pelling
(Correct)

DHMIS
(Wrong)

Corrector
Becky Sloan
(Corrected)

Original Predictions:

Joseph Pelling, Sloan, DHMIS 

Final Predictions:

Joseph Pelling, Becky Sloan 

Sloan
(Partial Correct) 

√

?

×

Joseph Pelling

Sloan

DHMIS

Context & Question

Figure 3: The overall architecture of our proposed ACC framework.

tioned in Section 2.2). To this end, we design the
classifier to classify them and exclude wrong pre-
dictions. Given the candidate predictions P , the
classifier splits them into correct predictions Pc,
partially correct predictions Pp and wrong predic-
tions Pw. This process can be described as:

Pc, Pp, Pw = Classifier(P,Q,C) (3)

Specifically, the classifier consists of a trans-
former (Vaswani et al., 2017) encoder and a clas-
sification head. The classification head includes
an MLP layer to obtain probability of each class.
Inspired by Zhu et al. (2022), we also add a cross-
attention layer in the classification head. The cross-
attention layer calculates the attention scores be-
tween the question and the context to enhance the
representations of them.

3.3 Corrector
The classifier is able to exclude wrong predictions,
however, there may still contain partially correct
predictions which are imperfect and should be mod-
ified. Hence, we design the corrector to modify
those partially correct predictions. This process
can be described as:

P̂p = Corrector(Pp, Q,C) (4)

where P̂p are the predictions modified by corrector.
We adopt traditional pointer model (Vinyals

et al., 2015) to predict the start and end proba-
bilities st and ed. During the inference stage,
for the text span starting at i-th token and end-
ing at j-th token, we calculate its confidence score

scoreij = sti + edj and obtain the best index pair
(i, j) which maximizes scoreij , then extract its cor-
responding span as the modified prediction.

The final outputs of the ACC framework P̃ con-
sist of the correct predictions Pc predicted by the
classifier and the modified predictions P̂p from the
corrector, described as:

P̃ = Pc ∪ P̂p (5)

3.4 Data Annotations

To train the classifier and the corrector, we need
both correct predictions and incorrect predictions.
However, most MSQA datasets do not contain in-
correct predictions. Inspired by Gangi Reddy et al.
(2020), we adopt an automatical sampling method
similar to K-fold cross-validation, to collect in-
correct predictions from the MSQA datasets and
construct our silver-labeled datasets.

First, we randomly divide the training data D
into K equal subsets: D1, D2, ..., DK . We per-
form K iterations, in the i-th iteration we initialize
a MSQA model M (i.e. reader mentioned in Sec-
tion 3.1) and train it with all training data except
Di, then sampling the predictions of Di with M .
After K iterations, we utilize the gold answers from
training dataset D to annotate all predictions, and
construct the silver-labeled dataset 3.

3More details are shown in Appendix B.3.
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MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC-Multi
EM P EM R EM F1 EM P EM R EM F1 EM P EM R EM F1 EM P EM R EM F1

Discriminative Models (BERT-base)
MTMSN 51.76 41.69 46.18 60.88 51.46 55.78 72.65 77.41 74.96 71.50 76.71 74.01
+ACC 67.75 49.52 57.22 67.77 54.91 60.66 81.60 77.40 79.44 85.55 79.32 82.32
MUSST 61.44 53.74 57.33 67.48 59.71 63.36 76.28 79.00 77.62 75.68 78.12 76.88
+ACC 68.84 54.39 60.76 69.62 60.05 64.48 81.94 77.10 79.45 85.87 78.38 81.95
Tagger 56.66 65.46 60.74 52.81 55.92 54.30 77.15 81.83 79.42 74.71 76.74 75.70
+ACC 68.52 67.05 67.78 62.74 58.83 60.71 82.56 79.67 81.10 85.80 77.58 81.48
SpanQualifier 67.99 69.44 68.70 62.83 67.88 65.25 77.51 84.51 80.86 76.10 85.39 80.47
+ACC 72.04 67.82 69.86 65.78 67.13 66.45 82.40 80.76 81.57 85.67 83.37 84.51

Discriminative Models (RoBERTa-base)
MTMSN 59.86 49.97 54.47 63.39 56.00 59.47 73.94 78.36 76.08 71.69 77.47 74.46
+ACC 71.75 55.87 62.82 68.95 58.81 63.48 81.84 77.70 79.72 85.13 79.82 82.39
MUSST 69.82 61.94 65.64 69.29 63.16 66.08 78.01 79.71 78.85 76.69 77.16 76.92
+ACC 73.07 61.78 66.96 70.54 62.60 66.33 82.75 77.57 80.08 86.10 77.48 81.56
Tagger 66.22 72.14 69.05 64.35 65.66 64.99 79.47 83.59 81.48 75.85 78.19 77.00
+ACC 72.39 72.12 72.26 68.70 66.21 67.43 83.62 81.80 82.70 85.77 78.36 81.90
SpanQualifier 70.40 72.82 71.58 64.65 69.65 66.99 83.40 80.83 82.10 75.63 85.77 80.37
+ACC 73.69 71.32 72.47 67.68 68.53 68.09 82.83 81.88 82.35 85.14 83.77 84.45

Generative Models
BART-base 69.10 62.38 65.57 60.42 55.95 58.10 77.53 74.33 75.89 75.96 73.21 74.56
+ACC 73.90 61.80 67.31 63.68 55.70 59.43 80.47 72.47 76.26 81.26 71.22 75.91
T5-base 70.56 67.97 69.24 64.63 64.59 64.61 77.01 79.88 78.41 75.27 77.14 76.19
+ACC 73.93 66.20 69.85 67.43 63.32 65.31 80.79 77.43 79.07 80.65 74.73 77.58
GPT3.5 (Zeroshot) 64.83 60.86 62.78 39.60 53.68 45.58 45.45 57.34 50.71 57.00 63.27 59.97
+ACC 73.04 61.96 67.04 48.64 53.96 51.16 57.10 57.71 57.40 69.54 64.06 66.69
GPT3.5 (Fewshot) 68.94 68.18 68.56 42.44 58.13 49.06 58.42 73.79 65.21 65.38 76.68 70.58
+ACC 74.88 66.61 70.51 51.65 57.91 54.60 68.02 70.94 69.45 75.39 74.97 75.18

Table 1: EM Scores on four MSQA datasets. "EM P" "EM R" "EM F1" refer to the precision, recall and F1 score
under the EM metric, respectively. "Discriminative Models (BERT-base/RoBERTa-base)" refer to models that
utilize BERT-base or RoBERTa-base as encoders. The results marked in bold means improvements after applying
the ACC framework.

4 Experiments

4.1 Experimental Setup
Datasets Four MSQA datasets are integrated
in experiments: MultiSpanQA (Li et al.,
2022), MultiSpanQA-Expand (Li et al., 2022),
MAMRC (Yue et al., 2023) and an additional syn-
thetic dataset MAMRC-Multi. Details of these
datasets are shown in Appendix B.1.

MSQA models We set both discriminative mod-
els and generative models as readers. For discrim-
inative models, we set MTMSN (Hu et al., 2019),
MUSST (Yang et al., 2021), Tagger (Li et al., 2022)
and SpanQualifier (Huang et al., 2023a); For gener-
ative models, we set BART (Lewis et al., 2020), T5
(Raffel et al., 2020) and GPT-3.5. Details of these
models are shown in Appendix B.2.

Evaluation Metrics We use Exact Match Pre-
cision/Recall/F1 (EM P/R/F1) (Li et al., 2022) as
the main metrics in our experiments. EM assign a
score of 1 when a prediction fully matches one of
the gold answers and 0 otherwise.

Implementation Details For the classifier and
corrector in the ACC framework, we use RoBERTa-
base (Zhuang et al., 2021) as encoder. For dis-

criminative MSQA models, we use both BERT-
base (Devlin et al., 2019) and RoBERTa-base as
encoder. For the hyper parameters mentioned in
Section 2.2, based on the average Word Over-
lap and BERTScore of the sampled data, we set
α = 0.25 and β = 0.6 to obtain balanced training
data. See more training and inference details in
Appendix B.3.

4.2 Main Results

Table 1 shows the main results on four MSQA
datasets. Discriminative models perform better
than generative models on the MSQA task, es-
pecially on MultiSpanQA-Expand and MAMRC
where questions may contain only one answer or
no answer. The reason may be that discriminative
models are suited for extracting text spans from
a given context, whereas generative models are
suited for text generation.

After applying the ACC framework, both dis-
criminative models and generative models gain im-
provements. For instances, the EM F1 score of
Tagger (RoBERTa-base) increases from 69.05% to
72.26% and the EM F1 score of BART increases
from 65.57% to 67.31% on MultiSpanQA. For
most settings, presicion scores show significant
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MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+ cls only 64.90 63.98 64.44
+ cor only 62.49 69.11 65.63
+ cor & cls 67.14 67.44 67.29
+ binary cls & cor 68.58 66.56 67.56
+ cls & cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+ cls only 70.54 70.58 70.56
+ cor only 68.50 73.09 70.72
+ cor & cls 71.21 71.43 71.32
+ binary cls & cor 72.45 70.94 71.68
+ cls & cor 72.39 72.12 72.26

Table 2: Ablation study of ACC framework on the dev
set of MultiSpanQA. The best performance is in bold.

MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+ att cls & T5 cor 64.90 63.98 64.44
+ vanilla cls & ext cor 68.54 66.10 67.29
+ att cls & ext cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+ att cls & T5 cor 70.54 70.58 70.56
+ vanilla cls & ext cor 72.23 71.56 71.89
+ att cls & ext cor 72.39 72.12 72.26

Table 3: Comparison between diffent combinations
of the classifier and the corrector on the validation set
of MultiSpanQA. "Att cls" refers to the classifier men-
tioned in Section 3.2; "vanilla cls" refers to the classifier
without cross-attention layer; "Ext cor" refers to the cor-
rector mentioned in Section 3.3 and "T5 cor" refers to
the T5 corrector. The best performance is in bold.

improvements while some recall scores show slight
declines, the reason may be that while the classifier
successfully identifies some wrong predictions, it
also mistakenly classifies some correct predictions
as wrong, leading to the exclusion of some correct
predictions and thereby lowering the recall scores.
In Section 5.2, we will analyze the classification
results of the classifier to verify this point.

We also evaluate the ACC framework with Par-
tial Match P/R/F1 (PM P/R/F1), which considers
the overlap between the predictions and gold an-
swers. Results are shown in Appendix C.1.

5 Discussions

5.1 Ablation Study

Roles of classifier and corrector. ACC frame-
work uses the "answer-classify-correct" procedure
with the classifier and the corrector. To investigate
whether there exists better post-processing proce-
dure, we conduct an ablation study by: 1. only em-
ploying the classifier or corrector (cls \ cor only); 2.

changing the order of classifier and corrector (cor
& cls); 3. modifying both correct predictions and
partially correct predictions (binary cls & cor).4

Table 2 shows the results of the ablation study on
the dev set of MultiSpanQA. The performance of
"cls only" and "cor only" lags behind ACC frame-
work, demonstrating the significance of the clas-
sifier and corrector. Changing the order between
classifier and corrector also shows decline, the rea-
son may be that using corrector first may lead to
conceal wrong predictions, thereby the classifier
may fail to categorize them as wrong predictions.
We also observe that modifying both correct pre-
dictions and partially correct predictions does not
achieve improvements, demostrating the necessity
of distinguishing correct predictions and partially
correct predictions and modifying partially correct
predictions solely.

Comparison with different models. ACC
framework uses a classifier with a cross-attention
layer and a corrector based on the pointer model.
However, ACC framework can also opt for alterna-
tive type of classifiers or correctors. To this end, we
replace the classifier and the corrector with other
models and compare their performance.5

Table 3 shows the results of the comparison be-
tween different model combinations on the dev set
of MultiSpanQA. After replacing the classifier or
the corrector, ACC framework shows declines, es-
pecially when applying a generative model, ACC
framework lag behind other settings. This indicates
that the generative models are less capable than tra-
ditional pointer models in correcting predictions.

5.2 Analysis on the Predictions
Accuracy of the classifier. To analyze the ca-
pability of the classifier, we conduct a statistical
analysis on its classification results. Table 4 shows
the accuracy of the classifier on the dev set of Mul-
tiSpanQA. The classifier achieves an high accu-
racy on the correct predictions (95.82% for Tagger-
BERT and 95.45% for Tagger-RoBERTa), demon-
strating that the ACC framework reserves most cor-
rect predictions. On the other hand, the classifier
exclude about 1/3 wrong predictions, contributing

4For "cls only", we only exclude wrong predictions; for
"cor only", we correct all predictions; for "cor & cls", we first
correct all predictions, then classify them and only exclude
wrong predictions.

5For the classifier, we replace it with a vanilla classifier
where we remove the cross-attention layer; for the corrector,
we replace it with T5 (Raffel et al., 2020) which outputs texts
as the corrected answers.
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Figure 4: Top: Average Word Overlap of the predictions. Button: Average BERTScore of the predictions. After
applying the ACC framework, both Word Overlap and BERTScore raise, indicating that the ACC framework
effectively enhances the quality of the predictions.

Tagger BERT
label \ pred wrong partially correct
wrong 268 (37.85%) 148 (20.9%) 292 (41.24%)
partially 16 (6.13%) 98 (37.55%) 147 (56.32%)
correct 26 (2.18%) 24 (2.01%) 1145 (95.82%)
Tagger RoBERTa
label \ pred wrong partially correct
wrong 135 (27.44%) 105 (21.34%) 252 (51.22%)
partially 22 (8.63%) 83 (32.55%) 150 (58.82%)
correct 27 (2.01%) 34 (2.54%) 1280 (95.45%)

Table 4: Accuracy of the classifier on the dev set of
MultiSpanQA. The correct classifications of each types
are in bold.

to the imporvements on EM F1 scores, while the
accuracies on the partially true predictions and the
wrong predictions can be further improved.

Changes in answers by the corrector. To ana-
lyze the capability of the corrector, we also con-
duct a statistical analysis on how many prediction
has been changed. Table 5 shows the changes of
the partially correct predictions on the dev set of
MultiSpanQA. The corrector changes 30.77% of
the answers for Tagger-BERT and 27% for Tagger-
RoBERTa, respectively. For Tagger-BERT, 27.47%
of the not-correct predictions are modified to the
correct predictions, while 3.3% of the correct pre-
dictions are modified to the not-correct predictions.
Furthermore, among all the partially correct predic-
tions derived from the classifier, over 60% of the
incorrect predictions remain incorrect, indicatisng

Tagger BERT
cls \ cls & cor incorrect correct
incorrect 172 (63.00%) 75 (27.47%)
correct 9 (3.30%) 17 (6.23%)
Tagger RoBERTa
cls \ cls & cor incorrect correct
incorrect 137 (61.43%) 52 (23.32%)
correct 11 (4.93%) 23 (10.31%)

Table 5: Changes in answers by the corrector on the
dev set of MultiSpanQA.

a significant room for improvements.

5.3 Analysis on the Quality of the Predictions

Previous experiment indicates that the ACC frame-
work imporves EM scores. However, the ACC
framework may overfit to the annotation bound-
aries rather than enhancing the quality of the pre-
dictions. To this end, we utilize other metrics such
as the Word Overlap and BERTScore (mentioned
in Section 2.2) and compare the changes of these
metrics after applying the ACC framework.

Figure 4 shows the comparison results. Both
Word Overlaps and BERTScores raise after apply-
ing the ACC framework, with the most significant
enhancement in the Tagger where Word Overlap
increases by 7% and BERTScore increases by 4%.
This indicates that the ACC framework enhances
the quality of the predictions, rather than overfit to
the annotation boundaries.

We also utilize LLM to evaluate the modified
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Question:  Where was the pride of Britain awards held ?
Context: ...The first Pride of Britain Awards were held at the Dorchester Hotel in London in May 1999 , then relocated 
to The London Studios in 2000 , and then later relocated to Grosvenor House from the 2011 award ceremony . The 
awards are organized in association with the Daily Mirror , Lidl , ITV , Good Morning Britain and The Prince 's Trust .
Predictions (MTMSN RoBERTa): 
{ the London Studios in 2000 ; and then later relocated to Grosvenor House ; London ; Dorchester Hotel ; Daily Mirror }

Corrector Output:
the London Studios in 2000 

London studios
and then later relocated to Grosvenor House 

Grosvenor House
London 

London Studios

Final Predictions :
{ Dorchester Hotel ; Grosvenor House ; London Studios }
Gold Answers :
{ Dorchester Hotel ; Grosvenor House ; The London Studios }

Classifier Output :
the London Studios in 2000 : Partially Correct
and then later relocated to Grosvenor House : Partially Correct 
London : Partially Correct
Dorchester Hotel : Correct
Daily Mirror : Wrong

Figure 5: Case study. The example are selected from the validation set of MultiSpanQA. The correct predictions
and gold answers are in green, the partially correct predictions are in blue and the wrong predictions are in red. Best
read in colors.

answers, results are shown in Appendix C.2.

5.4 Case Study

We conduct a case study to demostrate that the
ACC framework effectively excludes incorrect pre-
dictions and corrects some partially correct predic-
tions. We select a real example where the predic-
tions exactly match the gold answers (i.e. EM F1
= 100%), shown in Figure 5. In this example, the
MTMSN presents five predictions: "the London
Studios in 2000", "and then relocated to Grosvenor
House", "London", "Dorchester Hotel" and "Daily
Mirror". The classifier identifies “Dorchester Ho-
tel” as a correct prediction and "Daily Mirror" as a
wrong prediction. The others three predictions con-
tain irrelevant information or lack specific details,
so they are identified as partially correct predic-
tions and modifed by the corrector.6 This example
demostrates that our ACC framework effectively
enhance the quality of the predictions.

5.5 Pilot Study with LLM

ACC framework utilizes a fine-tuned RoBERTa en-
coder as the backbone. To investigate whether our
proposed method works on larger models, we con-
duct a pilot study by replacing the classifier or cor-
rector with a prompted LLM. The implementation
details and prompts are shown in Appendix C.4.

6When calculating EM scores, the article "the" is ignored,
so "London Studios" and "The London Studios" are consid-
ered as the same prediction.

MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+LLM cls & LLM cor 68.60 63.35 65.87
+LLM cls & FT cor 70.04 64.47 67.14
+FT cls & LLM cor 67.93 66.51 67.21
+FT cls & FT cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+LLM cls & LLM cor 72.71 68.10 70.33
+LLM cls & FT cor 73.69 68.97 71.25
+FT cls & LLM cor 71.71 71.48 71.59
+FT cls & FT cor 72.39 72.12 72.26

Table 6: Performance of ACC framework with LLM
on the dev set of MultiSpanQA. "LLM cls/cor" refers to
classifier/corrector replaced by LLM, and "FT cls/cor"
refers to a fine-tuned model. The best performance is in
bold.

Table 6 shows the experiment results. After re-
placing the classifier or the corrector with LLM,
the ACC framework still achieves improvements on
Tagger-BERT and Tagger-RoBERTa, which proves
that our post-processing strategies can be effec-
tively applied to LLM.

5.6 Model Size and Inference Time
We analyze the model size and the inference time
of the ACC framework. Results and analysis are
shown in Appendix C.3.

6 Related Work

6.1 Multi-Span Question Answering
Recently, a series of MSQA benchmarks (Ju et al.,
2022; Li et al., 2022; Yue et al., 2023) have been
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proposed to faclitate research on QA tasks that
are closer to real-world scenarios. MSQA tasks
require models to extract one or multiple answer
spans from a given context. Therefore, traditional
SSQA models (Seo et al., 2017; Yu et al., 2018) are
not sufficient to handle multi-span questions.

Existing MSQA methods can be categorized into
four categories: (1) pointer-network-based meth-
ods. MTMSN (Hu et al., 2019) predicts the num-
ber of answers, then extracts non-overlapped an-
swer spans; MUSST (Yang et al., 2021) uses an
autogressive approach to iteratively extract mul-
tiple answers. (2) sequence-tagging-based meth-
ods. Segal et al. (2020) first convert MSQA task
to a sequence-tagging task and utilize BIO tags to
mark answer spans; Furthermore, Li et al. (2022)
introduce multi-task learning and achieve better
performance. (3) span-enumeration-based meth-
ods. SpanQualifier (Huang et al., 2023a) utilizes
Multi-Layer Perceptron (MLP) to obtain confi-
dence scores for each candidate span and applies
a learnable threshold to select answer spans; Sim-
ilarly, CSS (Zhang et al., 2024) compares each
candidate span with its corresponding question af-
ter scoring to obtain answers more similar to the
question. (4) LLM-based methods. With the emer-
gence of LLMs like ChatGPT and GPT-4, genera-
tive pre-trained language models have been widely
applied to various NLP tasks. Zhang et al. (2023)
employ CoT strategies to prompt LLM, and Huang
et al. (2023b) add negative examples in the few-
shot demonstrations.

Existing methods mainly focus on predicting
more correct predictions, while the ACC frame-
work takes a post-processing strategy which aims
to reduce the number of incorrect predictions. By
excluding or modifying incorrect predictions, the
ACC framework achieves better performance.

6.2 Post-Processing Methods
The post-processing method refers to modifying
the original of the model to obtain better predic-
tions. Existing post-processing methods can be
categorized into two types: rule-based methods
and model-based methods.

Ruled-based methods typically involve mannu-
ally designed rules such as voting to process the
outputs from models (Campos and Couto, 2021;
Wang et al., 2023). On the other hand, model-
based methods utilize additional models to modify
the hidden states or outputs of the original model,
which have been widely applied in Controlled Text

Generation (CTG) (Yang and Klein, 2021; Krause
et al., 2021; Kim and Cho, 2023). In addition to
CTG methods, GRACE (Khalifa et al., 2023) ap-
plies a fine-tuned discriminator to guide language
model towards correct multi-step solutions; Ohashi
and Higashinaka (2023) utilize a generative model
to rewrite the output from a dialogue system and
optimize it with Reinforcement Learning (RL) al-
gorithms (Stiennon et al., 2020).

The work most similar to ours is (Gangi Reddy
et al., 2020), which utilizes a corrector to modify
the outputs of the SSQA model. However, they
only focus on partial matches in single-span ques-
tions. In constrast, we consider the correctness
of multiple predictions in MSQA and additionally
employ a classifier to exclude incorrect predictions.

7 Conclusion

In this work, we primarily focus on incorrect pre-
dictions of the MSQA models. Through a statis-
tical analysis, we observe that models with better
performance do not predict less incorrect predic-
tions compared with other models. To this end, we
propose ACC framework, which employ a post-
processing strategy to exclude wrong predictions
and modify partially correct predictions. Experi-
ments and analysis show that the ACC framework
significantly improving the performance by reduc-
ing the number of incorrect predictions and obtain-
ing more correct predictions, enhancing the quality
of the MSQA predictions.

8 Limitations and Future Work

In this work, we categorize incorrect predictions
into "partially correct predictions" and "wrong pre-
dictions", based on whether the answer should be
modified or excluded. However, for "partially cor-
rect predictions", there exists more complicated
conditions, for example, an incorrect prediction
may responses to multiple gold answers. However,
the ACC framework can only obtain one modified
prediction. In addition, we do not consider the gold
answers that MSQA models fail to predict (i.e.,
"missing predictions"), although the SOTA model
still miss 1/3 gold answers. As for future work, we
will design more effectively models to handle "par-
tially correct predictions" and "wrong predictions".
we will also explore strategies to handle "missing
predictions".
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A Details of Word Overlap and
BERTScore

Word Overlap. Assuming that a prediction pi
contains k words {pi1, pi2, ..., pik} and a gold an-
swer aj contains l words {aj1, aj2, ..., ajl}, the
Word Overlap is defined as Equation 6:

WO(pi, aj) =
|pi ∩ aj |
max(k, l)

(6)

where |A| denotes the number of element in the set
A.

BERTScore(Zhang et al., 2020). BERTScore
primarily calculates the semantic similarity be-
tween the candidate text and the reference text
using cosine similarity. Given candicate text X
with m tokens {x1, x2, ..., xm} and reference text
Y with n tokens {y1, y2, ..., yn}, BERTScore first
computes the cosine similarity sij between each
pair of token vectors xi and yj . Then, it maximizes
the similarity score using a greedy matching ap-
proach to calculate the precision score P (X,Y )
and the recall score R(X,Y ). Finally, it computes
the harmonic mean of these two scores (i.e., the F1
score) to obtain the final BERTScore. The above
process can be represented by Equation 7-10. 7

sij =
Hxi ·Hyj

||Hxi || ||Hyj ||
(7)

P (X,Y ) =
1

n

n∑
j=1

max
i

sij (8)

R(X,Y ) =
1

m

m∑
i=1

max
j

sij (9)

BS(X,Y ) = 2 · P (X,Y ) ·R(X,Y )

P (X,Y ) +R(X,Y )
(10)

where Hxi and Hyj are the representations of xi
and yj from a Pre-trained Language Model, ||a||
denotes the length of the vector a.

B More Details of Experimental Setup

B.1 Datasets

MultiSpanQA and MultiSpanQA-Expand (Li
et al., 2022) : MultiSpanQA and MultiSpanQA-
Expand focus on multi-span questions. The raw

7For simplicity, Equation 7-10 do not consider inverse
document frequency (idf) weighting or scaling of R(c, r).
For more details of BERTScore, please refer to (Zhang et al.,
2020)
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#train #dev answer number prop. avgerage
answer number

average
context length

avgerage
question length≥2 1 0

MultiSpanQA 5,230 658 100.0% 0.0% 0.0% 2.89 279 10
MultiSpanQA-Expand 15,690 1,959 33.4% 33.3% 33.3% 1.30 251 10
MAMRC 110,108 13,764 58.7% 41.3% 0.0% 1.77 69 10
MAMRC-Multi 64,625 8,081 100.0% 0.0% 0.0% 2.31 77 10

Table 7: Dataset statistics.

questions and contexts are extracted from the Nat-
ural Question dataset (Kwiatkowski et al., 2019).
MultiSpanQA only contains multi-span questions,
while MultiSpanQA-Expand contains both multi-
span questions, single-span questions and unan-
swerable questions.

MAMRC and MAMRC-Multi (Yue et al., 2023)
: MAMRC is a large-scale dataset containing over
100,000 questions, including both multi-span ques-
tions and single-span questions. To investigate the
performance on the multi-span questions, we select
multi-span questions from MAMRC and obtain
MAMRC-Multi.

Since the official test sets of these four datasets
are not public, we report the performance on vali-
dation sets. Some statistics about the four datasets
are shown in Table 7.

B.2 MSQA models
MTMSN (Hu et al., 2019) : MTMSN adds
a classification head to predict the number of
answers. During the inference stage, for each
question, MUSST first obtains top-20 predic-
tions and predict answer number K, then applies
Non-Maximum Sampling algorithm (Rosenfeld
and Thurston, 1971) to extract K non-overlapped
spans.

MUSST (Yang et al., 2021) : MUSST adds m
linear layer to predict the start position and end
position of m spans, where m is the maximum an-
swer number in the training dataset. During the
inference stage, MUSST applies an autogressive
decoding strategy, where in each iteration MUSST
masks out predicted spans and chooses top-1 pre-
dictions. The iterative process terminates when the
model predicts no more answers or the number of
predictions reaches the maximum answer number.

Tagger : Following the implementation of (Li
et al., 2022), we utilize BIO tags to label each
token in context: the first token of the answer is
labeled with "B", the other tokens of the answer
are labeled with "I" and the tokens not in an answer
are labeled with "O".

SpanQualifier (Huang et al., 2023a) : Span-
Qualifier enumerates all possible answer spans and
obtains their corresponding confidence scores as
correct predictions, then utilizes a learnable thresh-
old to select the correct prediction spans, achiev-
ing state-of-the-art performance on MultiSpanQA-
Expand dataset.

BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020) : Both BART and T5 are pre-trained mod-
els with encoder-decoder architecture, which are
commonly used in text generation tasks. In this
work, we use the delimiter "#" to concatenate multi-
ple answers and fine-tune the models in a sequence-
to-sequence form.

GPT-3.5 : GPT-3.5 is one of the most commonly
used LLMs today and can be accessed via API 8.
In our work, we select gpt-3.5-turbo-0120 for our
experiments and set up both zero-shot and few-
shot prompts. The zero-shot prompt contains only
a basic description of the MSQA task, while the
few-shot template includes several demonstrations.
Specifically, we apply In-Context Learning (ICL)
(Brown et al., 2020) and utilize a BM25 retriever
(Robertson and Walker, 1994) to select the demon-
strations which is similar to the questions. The
prompts are shown in Table 12.

B.3 Implementation Details

To determine the hyper parameters α and β, we
analyze the Word Overlap and BERTScore of the
sampled data, shown in Table 9. For the middle
60% of sampled data, the Word Overlaps range
from 0 to 0.25, and the BERTScore range from
0.36 to 0.62. Based on this, we set α to 0.25 and β
to 0.6.

When sampling training data for ACC frame-
work, we set split number K = 3, which means
in each iteration, we use two-thirds of the train-
ing data for training and sample the predictions on
the remaining data. for the classifier, we maintain
a balanced ratio of 1:1:1 among the three answer
categories for the classifier, and for the corrector,

8https://platform.openai.com/.
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MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC_Multi
PM P PM R PM F1 PM P PM R PM F1 PM P PM R PM F1 PM P PM R PM F1

Discriminative Models (BERT-base)
MTMSN 69.97 79.23 74.30 73.29 73.46 73.37 84.59 89.62 87.03 84.68 89.97 87.25
+ACC 81.10 66.77 73.24 77.20 67.04 71.76 88.45 85.86 87.13 90.74 85.68 88.14
MUSST 76.39 68.76 72.38 77.79 70.99 74.22 87.25 88.25 87.74 87.75 87.69 87.72
+ACC 81.25 65.68 72.64 78.36 68.65 73.17 88.68 85.46 87.04 90.93 84.61 87.66
Tagger 78.27 77.92 78.09 70.60 65.75 68.05 88.81 89.05 88.92 88.23 84.98 86.57
+ACC 83.30 77.29 80.19 74.06 66.64 70.14 89.07 87.13 88.09 90.85 83.54 87.04
SpanQualifier 81.17 79.70 80.43 74.01 76.73 75.34 87.75 90.94 89.31 87.55 91.90 89.67
+ACC 84.26 77.70 80.84 76.20 75.15 75.67 88.83 87.94 88.38 90.78 88.37 89.56

Discriminative Models (RoBERTa-base)
MTMSN 77.57 82.29 79.86 76.36 76.80 76.58 85.77 89.72 87.70 85.15 90.18 87.60
+ACC 85.65 72.12 78.30 78.88 69.93 74.14 88.74 86.21 87.46 90.45 86.08 88.21
MUSST 83.44 75.72 79.39 80.22 73.36 76.63 88.64 88.44 88.54 88.65 86.64 87.63
+ACC 85.41 73.24 78.86 79.99 70.83 75.13 89.42 85.95 87.65 91.17 83.89 87.38
Tagger 83.97 83.92 83.94 77.91 75.43 76.64 90.09 90.22 90.15 88.07 85.90 86.98
+ACC 86.60 82.67 84.59 79.43 74.62 76.95 89.92 89.01 89.46 90.81 84.20 87.38
SpanQualifier 83.85 83.17 83.50 76.77 78.62 77.65 89.82 88.19 89.00 87.27 92.14 89.63
+ACC 86.39 81.27 83.74 78.69 76.67 77.66 89.34 88.98 89.16 90.49 88.82 89.65

Generative Models
BART-base 85.76 74.85 79.94 76.35 66.40 71.02 87.99 84.25 86.08 88.44 82.83 85.55
+ACC 88.22 72.85 79.81 76.58 64.26 69.88 87.99 84.25 86.08 88.18 80.91 84.39
T5-base 86.70 79.48 82.93 81.06 74.81 77.81 87.52 88.45 87.98 87.41 85.56 86.47
+ACC 88.15 76.88 82.13 81.22 72.22 76.46 86.69 85.99 86.34 87.40 83.22 85.26
GPT3.5 (Zeroshot) 85.70 79.64 82.56 57.62 66.03 61.54 61.10 73.70 66.81 72.27 77.71 74.89
+ACC 89.64 74.73 81.51 64.38 64.07 64.23 67.19 69.23 68.19 78.24 74.55 76.35
GPT3.5 (Fewshot) 88.19 81.28 84.59 59.67 70.81 64.76 72.47 85.98 78.65 79.27 87.04 82.98
+ACC 90.76 78.23 84.03 67.07 68.27 67.67 77.55 81.59 79.52 83.54 83.97 83.75

Table 8: PM scores on four MSQA datasets.

we added examples that require no modifications
and maintained a ratio of 2:1 between examples
requiring modifications and examples requiring no
modifications, considering that corrector may not
necessarily modifies all the input predictions.

During training stage of classifier and correc-
tor, for MultiSpanQA and MultiSpanQA-Expand,
we set learning_rate = 3e−5, batch_size =
48, epochs = 10 and max_length = 512;
For MAMRC and MAMRC-Multi, we set
learning_rate = 3e−5, batch_size = 96,
epochs = 5 and max_length = 256. We choose
the best classifier and corrector on our sliver-
labeled validation sets. All the baselines were
trained with three different seeds and we report
the mean results. We perform our experiments on
a single Tesla V-100 GPU(32GB).

C Additional Experiments and
Discussions

C.1 Partial Match Results

The Partial Match results are shown in Table 8.
While EM F1 scores show significant improve-
ments after applying the ACC framework, PM F1
scores achieve less improvements and even de-
cline in some cases. The main reason may be
that PM scores consider the overlaps between pre-
dictions and gold answers, as a result, incorrect

Word Overlap BERTScore
Min. 0.00 0.00
Max. 0.96 1.00
Avg. 0.11 0.49
Mid. 60% Range (0.00,0.25) (0.36,0.62)

Table 9: The distribution infomation of the sampled
data on Word Overlap and BERTScore (metric we use to
define partially correct prediction and wrong prediction).
"Min." refers to the minimum value, "Max." refers to
the maximum value, "Avg." refers to the average value,
and "Mid. 60% Range" refers to the range of the middle
60% of the data.

predictions may contribute to PM F1 score (i.e.,
EM F1 = 0, PM F1 > 0). However, such pre-
dictions are not desired and may be excluded by
the ACC framework, limiting the improvements in
PM F1 scores.

C.2 Evaluation of the predictions with LLM

We utilize LLM to evaluate whether the predictions
are closer to the gold answers after applying the
ACC framework. For each dataset, we collect the
predictions modified by the ACC framework and
randomly sample 500 pairs (including original pre-
diction, new prediction and gold answers for each
pair) for evaluation. We mannully label four pairs
as the few-shot demostractions for GPT-3.5. The
prompts are shown in Table 13.
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Datasets original new
MultiSpanQA 89 (17.8%) 411 (82.2%)
MultiSpanQA-Expand 98 (19.6%) 402 (80.4%)
MAMRC 98 (19.6%) 402 (80.4%)
MAMRC-Multi 92 (18.4%) 408 (81.6%)

Table 10: LLM evaluation on which prediction is closer
to the gold answer, where "original" indicates that GPT-
3.5 judge the original prediction to be closer and "new"
indicates that GPT-3.5 judge the prediction modified by
the ACC framework to be closer.

MultiSpanQA MultiSpanQA
-Expand

MAMRC-Multi MAMRC
0

5

10

15

20

25

13.31 13.62

10.56 10.52

23.23 23.30

12.48 12.74

Inference times per answer (ms)
cls model
cor model

Figure 6: Inference times on four datasets.

The evaluation results are shown in Table 10.
Across the four datasets, the LLM consider approx-
imately 80% of the new preictions to be closer
to the gold answers. This indicates that the ACC
framework improves the quality of the predictions.

C.3 Model Size and Inference Time

We compare model sizes between MSQA models
and the ACC framework, shown in Table 11. The
ACC framework improves the performance of base-
lines without applying large-size models, avoiding
consuming excessive computational resources.

We also analyze inference times of the ACC
framework, shown in Figure 6. The results de-
mostrate that the ACC framework is time-effective,
especially when the input length is short (we set
max_length = 256 for MAMRC and MAMRC-
Multi and we set max_length = 512 for Multi-
SpanQA and MultiSpanQA-Expand).

C.4 Implementation details of pilot study with
LLM

We use OpenAI’s official API 9 and select the
model gpt-3.5-turbo-0120 for our pilot study. Due
to the poor performance in zero-show settings, we

9https://platform.openai.com/.

model BERT-base RoBERTa-base
MTMSN 110M 125M
MUSST 110M 125M
Tagger 109M 125M
SpanQualifier 115M 131M
classifier - 128M
corrector - 124M

Table 11: Model sizes of baselines model, the classifier
and the corrector.

apply In-Context Learning (ICL) (Brown et al.,
2020) and utilize a BM25 retriever (Robertson and
Walker, 1994) to select the demonstrations which
is similar to the questions. When replacing the clas-
sifier, we select one demonstration for each answer
type; when replacing the corrector, we select two
demostractions for answers requiring modification
and requiring no modification. The prompts are
shown in Table 14.
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Instruction:
For this task, we will provide you a passage and a question. The question contains one or
multiple answers and these answers are in the passage. You should first read the given pas-
sage and question, then extract answer spans from the passage and use "#" to split each answer
spans, i.e. answer1#answer2#answer3.You should output your answer in a json format like "{"an-
swer":"your_answer"}", DO NOT include any explanations in your responses.

Demostractions (for few-shot setting):
Example 1:
Passage: ...
Question: ...
Answer: ...
...

Query:
Query:
Passage: ...
Question: ...
Answer:

Table 12: Prompts for zero-shot LLM reader and few-shot LLM reader.

Instruction:
For this task, we will provide you with the gold answer to a question, the original prediction from our
AI model, and a new prediction modified by another AI model. The question is from a QA dataset.
You need to determine which prediction, the original or the new, is more accurate and closer to the gold
answer.

Demostractions (for few-shot setting):
Example 1:
Original Prediction: Billy
New Prediction: Billy Jorl
Gold: Billy Joel
Answer: new

Query:
Original Prediction: ...
New Prediction: ...
Gold: ...
Answer:

Table 13: Prompts for the evaluation on the predictions with LLM.
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cls model prompt:
For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide you a candidate answer from
our AI model. You should read the passage, the question and classify the candidate answer into one
of three classes: "correct prediction", "partially correct prediction" and "wrong prediction". Correct
prediction refers to a completely correct prediction; Partially correct prediction refers to a prediction
that is basically correct but still requires some modifications. Wrong prediction refers to a prediction
that is completely incorrect and should be excluded. You should output your answer in a json format
like "{{"answer":"your_answer"}}", DO NOT include any explanations in your responses.
Example1:
Passage: ...
Question: ...
Candidate Answer:...
Output: {"answer":"correct prediction"}
...
Query:
Passage: ...
Question: ...
Candidate Answer: ...
Output:

cor model prompt:
For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide a candidate answer that our AI
model believes needs some modifications. You should read the passage, the question and judge whether
the candidate answer requires modifications. If no modifications are needed, you should output the
candidate answer as is. Otherwise, you should modify it by adding or deleting some words, and the
modified prediction must be a part of the passage and similar to the original candidate answer. You
should output your answer in a json format like "{{"answer":"your_answer"}}", DO NOT include any
explanations in your responses.
Example1:
Passage: ...
Question: ...
Original Answer: ...
Output: {"answer":"xxx"}
...
Query:
Passage: ...
Question: ...
Candidate Answer: ...
Output:

Table 14: Prompts for pilot study with LLM
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