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Abstract

Multimodal entity alignment (MMEA) inte-
grates multi-source and cross-modal knowl-
edge graphs, a crucial yet challenging task for
data-centric applications. Traditional MMEA
methods derive the visual embeddings of enti-
ties and combine them with other modal data
for alignment by embedding similarity compar-
ison. However, these methods are hampered by
the limited comprehension of visual attributes
and deficiencies in realizing and bridging the
semantics of multimodal data. To address
these challenges, we propose MM-ChatAlign, a
novel framework that utilizes the visual reason-
ing abilities of MLLMs for MMEA. The frame-
work features an embedding-based candidate
collection module that adapts to various knowl-
edge representation strategies, effectively fil-
tering out irrelevant reasoning candidates. Ad-
ditionally, a reasoning and rethinking module,
powered by MLLMs, enhances alignment by ef-
ficiently utilizing multimodal information. Ex-
tensive experiments on four MMEA datasets
demonstrate MM-ChatAlign’s superiority and
underscore the significant potential of MLLMs
in MMEA tasks. The source code is available
at https://github.com/jxh4945777/MMEA/.

1 Introduction

Multimodal entity alignment (MMEA) aligns
equivalent entities across diverse multimodal
knowledge graphs (MMKGs) (Zhu et al., 2022),
playing a key role in synthesizing heterogeneous
data for data-centric applications. Unlike tradi-
tional entity alignment, MMEA necessitates the in-
tegration of information across various modalities
and MMKGs, thereby imposing higher demands
on the visual reasoning ability of MMEA methods.

Current representative MMEA methods (Liu
et al., 2021; Lin et al., 2022; Zhu et al., 2023; Xu
et al., 2023; Chen et al., 2023) mainly adopt knowl-
edge representation learning (KRL) and measure
the similarity of entity embeddings for MMEA.

Figure 1: Comparison between the previous MMEA
and MM-ChatAlign.

As shown in Figure 1, these methods face critical
challenges. Firstly, their reliance on the represen-
tation learning approaches, which convert various
attributes of entities into embeddings respectively,
weakens the insight into underlying connections in
visual attributes. As shown in Figure 1, the left
image in ICEWS shows a scene of President Biden
talking to leaders from other countries, and the
right image in WIKI is a portrait of young Biden.
Although both images are related to Biden, they
have different embeddings for their contrasting rep-
resentation. Existing embedding-based MMEA
methods lack the visual reasoning capability to
explicitly recognize that two images represent vi-
sual attributes of Biden at different times. Sec-
ondly, high-quality MMEA demands the learning
of associations with visual, structural, literal, and
other information in MMKGs to achieve comple-
mentary information integration. However, dis-
crepancies in modal information within MMKGs
lead to cross-modal misalignment (Zheng et al.,
2023), across different modalities may limit the ef-
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fectiveness of cross-modal information utilization
achieved through feature fusion (Lin et al., 2022;
Zhu et al., 2023; Xu et al., 2023; Chen et al., 2023).

Multimodal large language models (MLLMs)
have emerged as front-runners in comprehending
visual information and integrating diverse modali-
ties, especially in natural language generation and
visual reasoning (Huang et al., 2023). These mod-
els excel in deciphering the deep semantic infor-
mation beyond the visual information, bringing
a significant advantage to multimodal knowledge
reasoning tasks (Huang et al., 2023). Crucially,
the extensive background knowledge and advanced
reasoning ability of MLLM open avenues for en-
riching the entity information and bridging the se-
mantic gap of various crossmodal attributes, show-
casing their potential in adequately understanding
and utilizing the breadth of multimodal data.

In this paper, we propose MM-ChatAlign.
Different from the representation learning-based
MMEA paradigm of previous methods, this novel
framework is designed to maximize the potential
of MLLMs oriented to the MMEA task. MM-
ChatAlign utilizes the entity set derived from
embedding-based methods as candidates, enhanc-
ing alignment accuracy through the visual rea-
soning capabilities of MLLMs. The framework
initially implements the MMKG-Code translation
module to effectively represent MMKG in a code
format (Jiang et al., 2024) that is highly compatible
with MLLMs, thus facilitating a better understand-
ing of multi-modal information in the MMKG. Fur-
thermore, MM-ChatAlign capitalizes on the back-
ground knowledge and visual reasoning abilities
of MLLMs by generating comprehensive descrip-
tions for entities based on their images, names, and
relational data, and reasons for alignment. The re-
thinking phase evaluates the probabilities of entity
pair alignment, revisits results, and potentially ex-
pands the search scope via an iterative candidate
collection process to ensure precise alignments. Ex-
tensive experiment results over four representative
MMEA datasets demonstrate the effectiveness of
MM-ChatAlign and also highlight the feasibility of
using MLLMs for the MMEA task.

In general, our main contributions are as follows:
(1) We introduce a new paradigm in MMEA by

combining MLLMs with traditional embedding-
based methods to leverage advanced multimodal
reasoning and the extensive knowledge of MLLMs.

(2) We design MM-ChatAlign, a framework that
integrates MLLMs with KRL-based methods for

enhancing the efficiency and accuracy of MMEA.
(3) We conduct experiments on four representa-

tive MMEA datasets to validate the effectiveness
of MM-ChatAlign and demonstrate the significant
potential of MLLMs in MMEA.

2 Methodology

In this paper, we propose the MM-ChatAlign, a ver-
satile plug-and-play MMEA framework that cap-
italizes on the advanced reasoning abilities and
background knowledge of MLLMs, while opti-
mizing both efficiency and accuracy. The overall
architecture of MM-ChatAlign is shown in Fig-
ure 2. The framework integrates an embedding-
based candidate collection module, configurable
across various KRL methods, designed to exclude
non-relevant candidates. Moreover, it features
a reasoning and rethinking module, powered by
MLLMs, that enhances alignment by effectively
leveraging multimodal information.

2.1 Task Formulation
Formally, the MMEA task refers to the process
of identifying correspondences between entities
across two different MMKGs, denoted as G1 =
(E1,V1,R1, T1) and G2 = (E2,V2,R2, T2). The
primary challenge in MMEA is to discover and
establish links between pairs of entities (e1, e2)
where e1 ∈ E1 and e2 ∈ E2, which are deemed to
be equivalent in the real-world context. This task
is intricate due to the necessity of integrating mul-
timodal data, especially the visual data contained
in V , to align entities between the MMKGs.

2.2 Embedding-based Candidate Collecting
To harness the strengths of embedding-based meth-
ods while incorporating the advanced capabilities
of MLLMs, MM-ChatAlign features a plug-and-
play capability to integrate seamlessly with exist-
ing embedding-based MMEA methods, such as
Simple-HHEA (Jiang et al., 2023) and XGEA (Xu
et al., 2023). The framework is further enhanced by
cross-modal matching techniques (Radford et al.,
2021). Subsequently, it either directly generates
results or efficiently accumulates candidate entities.
This optimization is achieved through an iterative
process of candidate collection.

2.2.1 KRL-based Entity Embedding
This stage initializes entity embeddings as a com-
bination of the name, image, temporal, and struc-
tural features of the entity. Specifically, it utilizes
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Figure 2: The comprehensive framework of MM-ChatAlign, which is designed to efficiently harness the advanced
visual reasoning capabilities and intrinsic background knowledge of MLLMs.

BERT (Devlin et al., 2018) with a feature whitening
transformation (Su et al., 2021) to obtain the entity
name embedding {hname

n }Nn=1. The image features,
denoted as {himg

n }Nn=1 , of entities are derived from
the CLIP model (Radford et al., 2021). The frame-
work encapsulates temporal characteristics with
Time2Vec (Goel et al., 2020), which converts time
into a learnable embedding {htime

n }Nn=1.
The structural feature is integrated through a

biased random walk (Wang et al., 2023) for precise
one-hop and multi-hop relational modeling.

Furthermore, considering the plug-and-play fea-
ture of MM-ChatAlign, we have developed a vari-
ant integrated with XGEA (Xu et al., 2023), which
adopts the cross-modal graph attention mechanism
with graph neural network to get the structural em-
bedding hstruc of the entity. The culmination of
these processes results in final embeddings that
merge name, temporal, and structural features into
a unified representation for entities, expressed as:

{hmul
n }Nn=1 = {[hname

n ⊗ htime
n ⊗ hstrucn ]}Nn=1,

(1)
where ⊗ denoted the concatenation operation. A
detailed description of the KRL-based entity em-
bedding can be found in Appendix A.3.

The entity embedding is trained by employing
margin ranking loss and cross-domain similarity
local scaling (CSLS) (Conneau et al., 2017) for
similarity measurement.

2.2.2 Cross-modal Matching
During the candidate entity collection phase,
we employed the cross-modal retrieval model
CLIP (Radford et al., 2021) to expedite the com-
parison of cross-modal attributes between enti-
ties, taking into account efficiency considerations.
Given two entities, the cross-modal similarity
simCLIP is calculated by the maximum of image-
to-image, image-to-text, and text-to-image similar-
ities simi2i, simi2t, simt2i:

simCLIP = max
(
simi2i, simi2t, simt2i

)
(2)

In the context of MMKG, the max aggregation
mechanism facilitates effective cross-modal infor-
mation comparison even in instances where images
are compromised by noise or absent entirely.

Then, the entity similarity of the given entity
pairs is computed as follows:

sim = (1− α) · simembed + α · simCLIP , (3)

where simembed represents the similarity based on
the entity embeddings, α is the hyper-parameter to
balance the importance between the simembed and
simCLIP , and these combined similarity measures
are used for ranking the candidate entities.

2.3 MLLM-based Reasoning and Rethinking
To efficiently utilize the vast background knowl-
edge and visual reasoning abilities of MLLMs, we
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have integrated a multimodal reasoning module
based on MLLM within the MM-ChatAlign frame-
work, as depicted in the lower section of Figure 2.

Given the target entity el, the framework first
gathers the potential entities as candidates by lever-
aging the similarity metric sim(el, {hrn}Nn=1), the
MLLM is utilized for subsequent inference if the
discrepancy in normalized similarity scores be-
tween the top two ranked candidates denoted as
simembed(el, er1)− simembed(el, er2), falls below
a predetermined threshold β. This approach en-
sures that MLLM is used only when necessary,
enhancing both efficiency and accuracy to produce
entity candidate list cand = {er1 , er2 , ...}.

After selecting candidates, MM-ChatAlign con-
ducts MMKG-Code translation and two-stage Rea-
soning & Rethinking. Based on prompt engineer-
ing, the MLLM estimates the alignment probability
of entity pairs and decides whether to continue
searching for additional candidates. The detailed
pseudo-code is illustrated in Algorithm 1.

Algorithm 1 MLLM-based Reasoning and Rethinking

Input: The KG pair to be aligned {KG1, KG2}
Output: Aligned entity pairs C

1: //Embedding-based Candidate Collecting
2: simembed← KRL-BASED ENTITY EMBEDDING(KG1,
KG2)

3: simCLIP ← CROSS MODAL MATCHING(KG1, KG2,
CLIP)

4: sim← (1− α) · simembed + α · simCLIP

5: if sim(el, er1) > β then Aligned entity pairs C ←
(el, er1)

6: else //MLLM-based Reasoning and Rethinking
7: for scope← {1, 10, 20} do
8: cand← COLLECT CANDIDATES(sim, scope)
9: align pair← REASONING(cand, KG1, KG2)

10: isSatisfied← RETHINKING(align pair)
11: if isSatisfied then
12: Aligned entity pairs C ← align pair
13: break
14: end if
15: end for
16: end if
17: return Aligned entity pairs C

2.3.1 MMKG-Code translation

To represent MMKGs in a format that MLLMs
can comprehend the visual information and other
modalities. The MMKG-Code translation module
of MM-ChatAlign plays a pivotal role, which has
validated the effectiveness of MLLM for under-
standing the MMKG (Yang et al., 2024) and im-
proving the compatibility of MMKG with MLLMs.
This module operates by encoding various modali-
ties of the MMKG, such as entities, relations, and

visual attributes into a structured code representa-
tion through the system prompt.

As shown in the MMKG-Code Translation
part in Figure 2, The __init__() function en-
ables MLLMs to process entity name, id, vi-
sual, and tuple information as input. Given an
entity, the get_neighbors(), get_relations(),
and get_temporal() functions enable MLLMs to
understand neighborhoods, relations, and temporal
information about entities in MMKGs.

2.3.2 Stage 1: Reasoning

The reasoning phase is designed to harness the
comprehensive background knowledge and visual
reasoning capabilities of MLLMs. As shown in
Figure 2, different from the cross-modal matching,
we first use MLLM to generate entity descriptions
by meticulously extracting the pivotal semantic
features in the image. Then we use the carefully
designed prompt template to generate textual de-
scriptions of entities based on the given images,
entity names and tuples with the help of the rich
knowledge from MLLM.

Subsequently, the MLLM conducts an in-context
learning procedure to compute alignment probabil-
ities between the target entity and its candidates. It
comprehensively considers a diverse set of features
for each entity pair at each step, including names,
images, temporal and structural information, and
generated descriptions by the MLLM. During this
reasoning phase, the MLLM assesses the alignment
scores for each candidate entity and re-ranks them
according to their probability of correct alignment,
thereby optimizing the candidate order to achieve
more accurate alignments.

2.3.3 Stage 2: Rethinking

The MLLM scores the current MMEA results from
the similarities of entity pairs within 4 dimensions:
name, description, structure, and image, and crit-
ically evaluates all dimensions together. If the re-
sults are not unsatisfactory, it will restart the candi-
date collection stage to re-evaluate the alignments
with more candidate entities (e.g., 1, 10, 20). This
iterative refinement of the candidate list can en-
sure that all possible alignments are evaluated and
improve the efficiency of reasoning.

3 Experiments

In this section, we conduct extensive experiments
to evaluate the effectiveness of MM-ChatAlign in
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MMEA tasks. Our investigation focuses on two
key research questions:

• RQ1: How does MM-ChatAlign perform in
MMEA, and what is the impact of each compo-
nent? We aim to assess the overall performance
of the framework and the contributions of each
module to understand their utility.

• RQ2: Does MM-ChatAlign balance accuracy
with efficiency in MMEA? This question ex-
plores the capability of MM-ChatAlign to deliver
high accuracy while maintaining efficiency.

Considering the above research questions, we
aim to provide comprehensive evaluations of MM-
ChatAlign, highlighting its abilities for MMEA.

3.1 Datasets
We first conduct experiments on two bench-
mark MMEA datasets, DBP15K(EN-FR) and FB-
YAGO (Sun et al., 2020; Liu et al., 2021). These
datasets have been widely used in previous MMEA
works, Furthermore, we extend the ICEWS-WIKI
and ICEWS-YAGO datasets (Jiang et al., 2023) to
multi-modal versions. These versions are specifi-
cally crafted to address the more demanding chal-
lenges of practical MMEA. They showcase signifi-
cant heterogeneity between MMKG pairs, which is
evident in the variance in their structural and other
modality features. For the dataset construction, we
use entity images from Google Image Search for
ICEWS. For WIKI and YAGO, we retrieve top-3
relevant images from their Wikipedia pages. All
images are manually verified to ensure quality and
relevance. The detailed statistics of datasets are
summarized in Appendix A.2.

3.2 Baselines
For a fair and comprehensive evaluation, we select
12 state-of-the-art methods and categorize these
into three groups: Single, Visual, and Literal.

Single methods only utilize the structural infor-
mation within MMKGs, including MTransE (Chen
et al., 2017), BootEA (Sun et al., 2018), GCN-
Align (Wang et al., 2018), and Dual-AMN (Mao
et al., 2021). Visual methods enhance entity
representations with images of entities, includ-
ing EVA (Liu et al., 2021), MCLEA (Lin et al.,
2022), MEAformer (Chen et al., 2023), XGEA (Xu
et al., 2023), and MMIEA (Zhu et al., 2023). Lit-
eral methods introduce entity names as supple-
mentary features, including RDGCN (Chen et al.,

2022), Dual-AMN (Mao et al., 2021), TEA (Zhao
et al., 2023), BERT-INT (Devlin et al., 2018),
MEAformer (Chen et al., 2023), XGEA (Xu et al.,
2023), and MMIEA (Zhu et al., 2023).

To compare the impacts of different embedding-
based methods, we have established two versions
of MM-ChatAlign: MM-ChatAlign∗ refers to the
version that incorporates XGEA as its base, while
MM-ChatAlign uses Simple-HHEA as its base. To
ensure fair comparisons and to accommodate the
diverse modalities utilized by various methods, we
make specific adaptations in our approach. In the
visual track, MM-ChatAlign leverages structural
and visual information. Meanwhile, in the Literal
track, MM-ChatAlign additionally incorporates en-
tity name information.

3.3 Experiment Settings
In our experiment setup, we utilized GPT-4V (Yang
et al., 2023) for visual reasoning and LLAMA2-
70b-Chat (Touvron et al., 2023) for entity align-
ment during the MLLM selection stage. Ablation
studies were conducted using various LLMs as
shown in Table 3. Data was split in a 3:7 ratio
for training and testing. For image and name em-
beddings, we employed CLIP (Radford et al., 2021)
and BERT (Su et al., 2021), respectively. The eval-
uation metrics used were Hits@k (for k = 1, 10)
and Mean Reciprocal Rank (MRR). Detailed con-
figurations are available in Appendix A.4.

3.4 Main Experiment Results
In response to RQ1, in our main experiments, as
detailed in Table 1, we evaluate the performance
of MM-ChatAlign from two versions: visual and
literal, across the four datasets.

In the visual category, which only allows meth-
ods to leverage the structural and visual fea-
tures, MM-ChatAlign demonstrates superior per-
formance compared to other leading methods.
For instance, on the DBP15K(EN-FR) and FB-
YAGO datasets, MM-ChatAlign achieves a remark-
able Hits@1 score of 0.940 and 0.680, which is
a notable improvement over XGEA, the runner-
up method with a Hits@1 score of 0.889 and
0.616. This represents 5.7% and 6.4% increases
in performance. Similarly, in two challenging
datasets(ICEWS-WIKI and ICEWS-YAGO), MM-
ChatAlign scored a Hits@1 of 0.430 and 0.415,
significantly surpassing the next-highest score of
0.263 and 0.302 on Hits@1, marking a substantial
16.7% and 11.3% improvement. This trend of out-
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Models DBP15K(EN-FR) FB-YAGO15K ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

Si
ng

le

MTransE 0.247 0.577 0.360 0.003 0.017 0.011 0.021 0.158 0.068 0.012 0.084 0.040
BootEA 0.653 0.874 0.731 0.323 0.579 0.410 0.072 0.275 0.139 0.020 0.120 0.056

GCN-Align 0.411 0.772 0.530 0.023 0.107 0.053 0.046 0.184 0.093 0.017 0.085 0.038
Dual-AMN 0.840 0.965 0.888 0.403 0.662 0.499 0.077 0.285 0.143 0.032 0.147 0.069

V
is

ua
l

EVA 0.793 0.942 0.847 0.171 0.417 0.260 0.081 0.203 0.119 0.019 0.075 0.038
MCLEA 0.834 0.975 0.885 0.388 0.641 0.474 0.253 0.494 0.336 0.231 0.412 0.295
XGEA 0.889 0.981 0.924 0.616 0.794 0.679 0.170 0.277 0.207 0.142 0.250 0.180

MMIEA 0.830 0.962 0.870 0.536 0.712 0.599 0.263 0.523 0.350 0.302 0.573 0.396
MEAformer 0.845 0.976 0.894 0.444 0.692 0.529 0.246 0.470 0.321 0.192 0.352 0.247

MM-ChatAlign∗ 0.940 0.999 0.952 0.680 0.915 0.910 0.430 0.930 0.548 0.415 0.630 0.479

L
ite

ra
l

RDGCN 0.873 0.950 0.901 0.466 0.708 0.549 0.064 0.202 0.096 0.029 0.097 0.042
Dual-AMN 0.954 0.994 0.970 0.540 0.711 0.607 0.083 0.281 0.145 0.031 0.144 0.068

TEA 0.987 0.996 0.990 0.612 0.770 0.730 0.610 0.894 0.718 0.657 0.891 0.740
BERT-INT 0.990 0.997 0.993 0.678 0.797 0.780 0.561 0.700 0.607 0.756 0.859 0.793

XGEA 0.991 1.000 0.996 0.835 0.915 0.869 0.549 0.628 0.575 0.314 0.421 0.351
MMIEA 0.992 0.997 0.994 0.793 0.830 0.809 0.562 0.716 0.616 0.745 0.857 0.787

MEAformer 0.996 1.000 0.998 0.748 0.887 0.798 0.644 0.842 0.713 0.698 0.878 0.762
Simple-HHEA 0.959 0.995 0.972 0.735 0.835 0.776 0.720 0.872 0.754 0.847 0.915 0.870

MM-ChatAlign∗ 0.995 1.000 0.996 0.880 0.915 0.896 0.650 0.700 0.669 0.535 0.570 0.554
MM-ChatAlign 0.965 1.000 0.977 0.795 0.845 0.819 0.945 0.966 0.948 0.930 0.965 0.943

Table 1: Main experiment results on the four datasets. Bold: the best result; Underline: the runner-up result.

performance by MM-ChatAlign demonstrates its
robust capability in integrating visual reasoning.

In the literal category, which extra allows
methods to leverage the entity name fea-
ture, MM-ChatAlign also excels other methods.
On DBP15K(EN-FR) and FB-YAGO15K, MM-
ChatAlign achieves a remarkable Hits@1 score of
0.990 and 0.880, which is competitive with the
best baseline method. In the ICEWS-WIKI and
ICEWS-YAGO datasets, MM-ChatAlign achieves
a remarkable Hits@1 score of 0.945 and 0.920,
significantly outperforming the score of the best
baseline method (0.720 and 0.847) with 22.5% and
8.6%. This superior performance indicates profi-
ciency of MM-ChatAlign in leveraging both visual
and name information.

Notably, both MM-ChatAlign and MM-
ChatAlign∗ have demonstrated enhancements
over their base models. These improvements
are particularly pronounced in both visual and
literal tracks, emphasizing the effectiveness of
MM-ChatAlign. The enhancements observed in
the ICEWS-WIKI and ICEWS-YAGO datasets
underscore MM-ChatAlign’s versatility in han-
dling complex scenarios across diverse settings.
The notable performance gains in these modalities
affirm the successful integration of MLLMs,
effectively bridging the gap between different
types of modality representations.

Settings ICEWS-WIKI ICEWS-YAGO

Hits@1 MRR Hits@1 MRR

MM-ChatAlign 0.945 0.948 0.930 0.943
- w/o mllm reasoning 0.735 0.789 0.840 0.872
- w/o name 0.430 0.548 0.415 0.479
- w/o image 0.915 0.924 0.905 0.938
- w/o structure 0.925 0.942 0.885 0.902
- w/o temporal 0.875 0.896 0.895 0.911
- w/o code 0.885 0.897 0.845 0.890
- w/o description 0.870 0.881 0.810 0.881
- w/o clip 0.920 0.929 0.910 0.930

Table 2: Ablation study of MM-ChatAlign.

3.5 Ablation Study

To assess the contribution of each component in
MM-ChatAlign, we conduct ablation studies on the
ICEWS-WIKI and ICEWS-YAGO datasets. These
studies aim to determine the individual benefits
of components in MM-ChatAlign and investigate
their influence on the base MLLM’s performance.
The results are presented in Table 2.

3.5.1 Effectiveness of Each Component
To evaluate the impact of MLLMs, MM-ChatAlign
(w/o mllm reasoning) erases the MLLM compo-
nent, depending exclusively on entity embeddings
and cross-modal matching for MMEA. Compared
to this, MM-ChatAlign demonstrates substantial
performance improvements (with increases of 19%
and 9% in Hits@1), which underscores the crucial
contribution of MLLMs in the MMEA task.
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Figure 3: Performance comparison over different LLMs.

To determine the efficacy of MM-ChatAlign in
utilizing name, image, and structure information,
four variations are tested: MM-ChatAlign (w/o
name, w/o image, w/o structure, and w/o temporal),
excluding the corresponding features, respectively.

In MM-ChatAlign (w/o code), the MMKG-Code
translation module is substituted with the direct
input of entity names and tuples to the LLM. This
change leads to a notable reduction in performance,
thereby affirming the effective role of the MMKG-
Code translation module in aiding the LLM to com-
prehend MMKGs effectively.

MM-ChatAlign (w/o description) excludes entity
descriptions and also shows a performance decline.
This result indicates that generating entity descrip-
tions using the MLLM’s visual reasoning ability
and background knowledge effectively harnesses
visual and contextual information about entities.

In MM-ChatAlign (w/o clip), the CLIP is substi-
tuted with the direct entity embedding for candidate
selection, the drop in the performance compared
with the original version demonstrated the contri-
bution of cross-modal matching.

In summary, this ablation study demonstrates
how MM-ChatAlign capitalizes on MLLMs for
MMEA. Additionally, it underscores the impor-
tance of leveraging the MLLM’s extensive back-
ground knowledge for effective MMEA.

3.5.2 Influence Over Different LLMs

Considering the versatile compatibility of MM-
ChatAlign with diverse LLMs during the reason-
ing and rethinking phase, this study focuses on
evaluating the effect of various LLMs on their
performance as depicted in Figure 3. The results
show that MM-ChatAlign integrated with GPT-4V
achieves the best performance, which can be at-
tributed to the advanced capability of GPT-4V in
boosting the framework’s effectiveness. Addition-
ally, MM-ChatAligns with LLAMA2 at varying
scales (13b, 70b) disclose a direct relationship be-

Figure 4: Performance improvement of MM-ChatAlign
compared with the embedding-based method.

tween the model size and effectiveness of MM-
ChatAlign. The performance of smaller-scale mod-
els (e.g., LLAMA2-13b) exhibits a considerable
reduction, the constraints are evident in shortcom-
ings related to reasoning and output formatting, as
detailed in Appendix A.5

3.5.3 Influence Over Embedding Methods
Initially, through the analysis presented earlier, the
main experiments examining the integration of
MM-ChatAlign with XGEA and Simple-HHEA
demonstrated significant performance improve-
ments. Additionally, the ablation studies, which
involved removing the MLLM reasoning compo-
nent, have broadly confirmed that incorporating
MLLM significantly enhances performance across
different embedding-based MMEA methods.

To investigate whether introducing MLLMs into
MM-ChatAlign can enhance the performance over
traditional MMEA methods with varying quali-
ties of entity embeddings, we designed experi-
ments involving embedding noise. In these ex-
periments, random noise is injected into the di-
mensions of entity embeddings learned by MMEA
methods (i.e., Simple-HHEA), at ratios varying
from 0% to 60%. We chose Simple-HHEA as
the base to observe the performance improvement
brought by integrating MM-ChatAlign under vari-
ous embedding conditions. As shown in Figure 4,
as the noise ratio increases, the performance of
Simple-HHEA declines sharply, but the proportion
of performance improvement brought by introduc-
ing MM-ChatAlign expands, validating the effec-
tiveness and adaptability of MM-ChatAlign.

3.6 Case Study

In assessing the capabilities of our MM-ChatAlign,
we explore a case study from our experimental
evaluations. As illustrated in Figure 5, traditional
MMEA methods, which primarily depend on en-
tity embeddings, often lead to inaccuracies due to
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the misalignment of similar images, structures, and
other modal information of entities. This is evident
in their erroneous alignment of Joseph Robinette
Biden Jr. with wrong case Hunter_Biden. In con-
trast, MM-ChatAlign, as depicted in the reasoning
process in Figure 5, initially utilizes MLLM to gen-
erate integrated entity descriptions, incorporating
images and other multimodal data. This approach
effectively addresses the information loss typically
associated with compressing images into embed-
dings and capitalizes on the contextual knowledge
in MLLMs. Subsequently, MM-ChatAlign exe-
cutes a step-by-step reasoning process, synthesiz-
ing information across various dimensions related
to the entity. It not only results in the correct align-
ment of Joseph Robinette Biden Jr. with Joe_Biden,
but also enhances explainability. The case exempli-
fies how MM-ChatAlign effectively leverages the
MLLMs to achieve accurate and reliable MMEA.

Figure 5: The case study of MM-ChatAlign, which over-
comes the inaccuracies of traditional MMEA methods
by integrating multimodal data with MLLMs.

3.7 Efficiency Analysis

In response to RQ2, we discuss how MM-
ChatAlign optimizes efficiency while maintaining
MMEA accuracy. To optimize efficiency while
maintaining accuracy, MM-ChatAlign implements
a three-round iterative candidate collecting, intri-
cately tailored to adapt to the complexities of dif-
ferent datasets. As illustrated in Figure 6, with
simpler datasets where neural methods perform bet-
ter (i.e., DBP15K(EN-FR) and FB-YAGO), MM-
ChatAlign tends to converge faster, leading to bet-
ter utilization of resources and higher efficiency.
Conversely, for more challenging datasets like
ICEWS-WIKI/YAGO, the framework inclines to-
wards collecting more candidates and conducting
thorough analyses across additional iterations. This
adaptive methodology guarantees the maintenance
of accuracy while optimizing resource utilization.
Additionally, the comparison between the original

Figure 6: Proportions of iteration rounds of MM-
ChatAlign’s two-stage reasoning on different datasets.

Settings ICEWS-WIKI ICEWS-YAGO

avg.tokens avg.time avg.tokens avg.time

- w/ llama2-70b 13,162 84.5 7,276 50.6
- w/ llama2-13b 41,178 112.3 23,118 77.7
- w/ gpt-3.5 15,101 11.9 15,124 13.0
- w/ gpt-4 9,275 69.8 8,644 65.3
- w/o two-stage 62,825 403.3 54,403 378.1

Table 3: Efficiency analysis of MM-ChatAlign.
avg.tokens and avg.time respectively denote the average
tokens and time (seconds) cost per sample.

MM-ChatAlign and the w/o two-stage variant in
Table 3 also demonstrates the superiority of the
two-stage strategy in conserving over 80% comput-
ing resources and time consumption. Furthermore,
MM-ChatAlign is adaptive to different MLLMs,
which positions it to benefit from the ongoing evo-
lution of MLLMs. Given the efficiency challenges
associated with current MLLMs, from the perspec-
tive of application scenarios, MM-ChatAlign is
now suitable for settings where accuracy in MMEA
is crucial, often prioritizing result reliability over
speed. However, as the efficiency of LLM im-
proves, MM-ChatAlign’s efficiency and accuracy
are expected to enhance correspondingly, as evi-
denced in Figure 3 and 6.

4 Conclusion

This study introduces MM-ChatAlign, an innova-
tive framework for MMEA that leverages the ad-
vanced capabilities of MLLMs. By incorporating
a code-type transformation module for MMKGs
and a two-stage multimodal reasoning process, the
method realizes the efficient and effective MMEA.
Our experimental results not only validate MM-
ChatAlign’s superior performance on newly devel-
oped MMEA datasets and classical datasets but
also highlight the tremendous potential of MLLMs
in challenging MMEA tasks. Future work will
continue to focus on optimizing efficiency, further
unleashing the potential of MLLM in MMEA.
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5 Limitations

Despite MM-ChatAlign’s high accuracy in MMEA
through innovative architecture and LLM integra-
tion, its application may be limited by substan-
tial resource consumption and slow LLM infer-
ence speeds, posing challenges in time-sensitive
or resource-limited environments. While enhance-
ments in the methodology have improved the bal-
ance between precision and efficiency, further ad-
vancements such as model distillation are necessary.
Additionally, the system’s reduced effectiveness
with smaller-scale models highlights the need for
future iterations to explore techniques like sparse
fine-tuning (SFT), enabling efficient performance
without reliance on large model sizes.
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A Appendix

A.1 Related Works of Entity Alignment

Entity alignment (EA) has historically seen diverse
methodologies. Translation-based methods such
as MTransE (Chen et al., 2017), and BootEA (Sun
et al., 2018), based on the TransE framework (Bor-
des et al., 2013), excel in knowledge representation
by embedding entities and relations. Graph Neural
Network (GNN) (Kipf and Welling, 2016) based
methods, such as GCN-Align (Wang et al., 2018),
RDGCN (Chen et al., 2022), and Dual-AMN (Mao
et al., 2021), leverage neighborhood aggregation
mechanism for modeling structural information.
Other methods, such as BERT-INT (Tang et al.,
2020), TEA (Zhao et al., 2023), AttrGNN (Liu
et al., 2020), SDEA (Zhong et al., 2022), address
KG heterogeneity using multi-view information.

Multimodal entity alignment (MMEA) extends
EA to multimodal domains, which is more chal-
lenging due to the request of modeling visual in-
formation of entities. Current MMEA methods
primarily employ representation learning models
to calculate similarities between entity embed-
dings based on multiple modalities, EVA (Liu
et al., 2021) leverages visual similarities for pre-
alignment and introduces a multimodal fusion mod-
ule. MCLEA (Lin et al., 2022) and XGEA (Xu
et al., 2023) capture cross-modal relationships for
measuring entity similarity. MMIEA (Zhu et al.,
2023) extends the BERT-INT to suit the MMEA
task. MEAformer (Chen et al., 2023) proposes
an attention mechanism that dynamically fosters
modality preferences adaptable to entities.

Despite their widespread adoption, these meth-
ods heavily rely on the quality of input MMKG data
and entity embeddings derived from knowledge
representation learning (KRL). This phenomenon
becomes a bottleneck, particularly evident in han-
dling more challenging but practical EA scenar-
ios (Jiang et al., 2023). Besides, MMKG-derived
modal representations limit their ability to lever-
age visual comprehension and broader background
knowledge, underscoring the need for more ad-
vanced MMEA methods. Consequently, there is a
growing interest in exploring new paradigms for
MMKG tasks, with MLLMs emerging as a promis-
ing supplement. Leveraging extensive parametric
knowledge and visual reasoning abilities, MLLMs
offer potential solutions to overcome the limitations
of previous methods, processing MMKGs without
solely relying on KRL.

A.2 Detailed Statistics of the MMEA datasets

The detailed statistics of the four MMEA datasets
in our experiments are shown in Table 4

A.3 Detailed KRL-based Entity Embedding

This stage initializes entity embeddings as a com-
bination of the name, image, temporal, and struc-
tural features of the entity. Specifically, it utilizes
BERT (Devlin et al., 2018) with a feature whitening
transformation (Su et al., 2021) to obtain the entity
name embedding {hname

n }Nn=1. The image features,
denoted as {himg

n }Nn=1 , of entities are derived from
the CLIP model (Radford et al., 2021). The frame-
work encapsulates temporal characteristics with
Time2Vec (Goel et al., 2020), which converts time
into a learnable embedding {htime

n }Nn=1.
Furthermore, the structural feature is integrated

through a biased random walk (Wang et al.,
2023) for precise one-hop and multi-hop rela-
tional modeling. Let ej represent the node se-
lected at the j-th step of random walks, and de-
fine (e1, r1, e2, . . . , ej−1, rj−1, ej) as the path gen-
erated during this process. The selection probabil-
ity of an entity is as follows:

Pr (ej+1 | ej) =

{
β, d (ej−1, ej+1) = 2

1− β, d (ej−1, ej+1) = 1
, ej+1 ∈ Nej

−
,

(4)

where Nej
− denotes the set of 1-hop neighbors

Nej of entity ej , excluding ej−1. d (ej−1, ej+1)
denotes the shortest path length between ej−1 and
ej+1. Here, β ∈ (0, 1) is a hyper-parameter that
balances BFS and DFS search strategies (Wang
et al., 2023). Then, the Skip-gram SkipGram(·)
is adopted to learn entity embeddings {hstrucn }Nn=1

based on the generated random walk paths.
Furthermore, considering the plug-and-play fea-

ture of our proposed framework, we have devel-
oped a variant integrated with XGEA (Xu et al.,
2023), which adopts the cross-modal graph atten-
tion mechanism with graph neural network, ex-
pressed as:

h
l+1
et
← AGG

∀(es,r,et)∈Q
(ATT(hl

es
, h

l
r, h

l
et

) · MSG (h
l
es

, h
l
et

)), (5)

where hl+1
et denotes the learned entity embed-

dings of et at layer l, MSG, ATT, and AGG denote
message passing, cross-modal attention, aggrega-
tion, and self-loop mechanism of XGEA (Xu et al.,
2023), respectively. Finally, the output from the fi-
nal layer is used as the structural embedding hstruc

of the entity.
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Dataset #Entities #Relations #Facts Density #Anchors Image Temporal

DBP15K(EN-FR) EN 15,000 193 96,318 6.421
15,000

15,000 No
FR 15,000 166 80,112 5.341 15,000 No

FB-YAGO15K FB 14,951 1345 592,213 39.481
11,199

13,444 No
YAGO 15,404 32 122,886 8.192 11,194 No

ICEWS-WIKI(V) ICEWS 11,047 272 3,527,881 319.352
5,058

33,141 Yes
WIKI 15,896 226 198,257 12.472 47,688 Yes

ICEWS-YAGO(V) ICEWS 26,863 272 4,192,555 156.072
18,824

80,589 Yes
YAGO 22,734 41 107,118 4.712 68,202 Yes

Table 4: The detailed statistics of the datasets. Temporal denotes whether the dataset contains temporal information.

The culmination of these processes results in fi-
nal embeddings that merge name, temporal, and
structural features into a unified multi-view repre-
sentation for each entity, expressed as:

{hmul
n }Nn=1 = {[hname

n ⊗ htime
n ⊗ hstrucn ]}Nn=1,

where ⊗ denoted the concatenation operation.

A.4 Detailed Experiment Settings
A.4.1 Model Configuration
For LLM selection, during the candidate collecting
stage, we adopt CLIP (Radford et al., 2021) to
realize cross-modal retrieval.

For MLLM selection, during the reasoning &
rethinking stage, we choose GPT-4V (Yang et al.,
2023) to generate descriptions for visual reasoning
of entities based on the given images and MLLM’s
background knowledge. Then, we adopt the open-
source LLAMA2-70b-Chat (Touvron et al., 2023)
for aligning entities. We also validate other repre-
sentative LLMs (i.e., directly adopt GPT-4V) for
MMEA in ablation studies 3. To ensure fairness in
our evaluation, baseline models are configured ac-
cording to their original hyper-parameter settings,
except for setting hidden dimensions of the learned
entity embedding to 64. Through extensive experi-
mentation, we respectively set the hyper-parameter
α and β to 0.3 and 0.2 to achieve optimal perfor-
mance. Datasets are split following a 3:7 ratio
for training and testing, respectively, and identical
preprocessing steps were applied to all models for
initial feature. The experiments are conducted with
four 40GB NVIDIA A100 GPUs.

A.4.2 Initial Feature Setup
For a fair comparison, all image embeddings are ob-
tained by CLIP (Radford et al., 2021). All MMEA
models that utilize entity names share the same
name embeddings. For DBP15K(EN-FR), we ob-
tain entity names using machine translation. For

FB-YAGO, we map the IDs of Freebase and YAGO
into entity names. For ICEWS-WIKI/YAGO, we
use the original entity names. After that, we em-
ploy BERT (Su et al., 2021) to obtain the name
embeddings. Structure-based MMEA methods that
do not utilize entity name information were ini-
tialized according to their original method-specific
configurations. This process involved the random
initialization of embeddings.

A.4.3 Evaluation Metrics
In line with standard practices in prior MMEA
research, we use two metrics for evaluation: (1)
Hits@k, measuring the percentage of correct entity
alignments within the top k (k = 1, 10) matches.
(2) Mean Reciprocal Rank (MRR), reflecting the
average inverse ranking of correct results. Higher
values in both Hits@k and MRR indicate better
MMEA performance.

A.5 Detailed Error Analysis of the Llama
2-13B Model in MM-ChatAlign

As mentioned in Section 3.5.2, the performance of
MM-ChatAlign is closely related to the scale and
capabilities of the LLMs utilized. In our experi-
ments, we observed a performance decline when
using Llama 2-13B compared to larger LLMs. Due
to space constraints, a detailed analysis was not ex-
panded upon in the main body of the paper. Here,
we provide additional analysis based on case stud-
ies that illustrate the reasoning and formatting er-
rors contributing to the decrease in performance.

Through case study analysis, we identified that
Llama 2-13B’s limited capabilities in following
instructions and in-depth reasoning were the pri-
mary causes of performance degradation. Below,
we present three cases that highlight these issues:

In these cases, Llama 2-13B demonstrated diffi-
culties in maintaining accurate reasoning processes
and adhering to the expected output format. These
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Table 5: Case Studies Illustrating Reasoning and Format Errors in Llama 2-13B.

Case Entity 1 Entity 2 Output Error Type

Case 1
(Reasoning
Process
Error)

Name = "South
Africa"
Description =
"South Africa is a
country located at
the southernmost
tip of Africa, rep-
resented by the
flag shown in the
image..."

Name = "Common-
wealth_of_Nations"
Description
= "Common-
wealth_of_Nations
is a political associ-
ation of 54 member
states..."

[NAME SIMILARITY] =
4 out of 5
[PROBABILITY OF DE-
SCRIPTION POINTING
SAME ENTITY] = 4 out
of 5
[STRUCTURE SIMILAR-
ITY] = 3 out of 5
[TIME SIMILARITY] = 2
out of 5

The reasoning process for name
similarity is incorrect. Entity 1
does not have the word ’Com-
monwealth’ in its name, and it
appears that the LLM has forgot-
ten the information about Entity
1, identifying both entities as En-
tity 2. Subsequent analyses are
also largely based on this erro-
neous identification.

Case 2
(Reasoning
Process and
Output For-
mat Error)

Name = "Hungary"
Description = "Hun-
gary is a country lo-
cated in..."

Name = "Serbia"
Description = "Ser-
bia is..."

The output simply copies
the format constraint text
"A/B/C/D out of 5" from
the prompt without replac-
ing A/B/C/D with specific
graded scores.

The reasoning process and output
format are both incorrect. The
output merely copies the format
constraint text "A/B/C/D out of
5" from the prompt without re-
placing A/B/C/D with specific
graded scores. The reasoning
process is flawed, assuming that
’Hungary’ and ’Serbia’ are simi-
lar.

Case 3
(Output For-
mat Error)

Name = "Salman
Khurshid"
Description =
"Salman Khurshid
is a senior Indian
politician and a
member of the
Indian National
Congress..."

Name =
"Salman_Khurshid"
Description =
"Salman Khurshid
is an Indian politi-
cian, lawyer, and..."

The output copied the
format constraint text
’A/B/C/D out of 5’ from
the prompt, but did not
replace A/B/C/D with
specific graded scores,
resulting in the inability to
extract specific scores for
calculation.

Output format error. The out-
put copied the format constraint
text ’A/B/C/D out of 5’ from
the prompt but did not replace
A/B/C/D with specific graded
scores, resulting in the inability
to extract specific scores for cal-
culation.

issues can be attributed to its smaller parameter size
and limitations in handling complex instruction-
based tasks.

Reasoning Errors: The model occasionally
fails to retain crucial information from Entity 1,
leading to erroneous comparisons, as observed in
Case 1. Additionally, Case 2 shows a flawed as-
sumption of entity similarity, demonstrating inade-
quate reasoning.

Output Format Errors: Both Case 2 and Case
3 indicate problems with output format adherence,
where the model fails to populate expected template
placeholders with appropriate scores.

Potential solutions to mitigate these performance
issues in smaller models like Llama 2-13B include
instruction fine-tuning to improve the model’s abil-
ity to follow instructions and generate structured
outputs. Additionally, incorporating external rea-
soning modules or specialized pre-training on rea-
soning tasks could enhance the model’s perfor-
mance.

A.6 Detailed prompts of MM-ChatAlign
In this section, we illustrate the prompts of MM-
ChatAlign in Table, 6, 7, 8, and 9.

A.7 Details about the Case Study of
MM-ChatAlign

The details of the Case Study of MM-ChatAlign,
including input prompt and model output, are illus-
trated in Table 10 and 11.
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Table 6: Prompt for getting descriptions

Prompt for getting descriptions

Given following informations: 1.[Entity] {{ Name }}; 2.[Knowledge Tuples] = {{ Tuples }}; 3.IMAGES
related to [Entity]. Please answer the question:

[Question]: What is {{ Name }}? Please give a two-sentence brief introduction. The first sentence is to
simply describe what is {{ Name }}, combining the identity features in IMAGES. The second sentence
is to give additional description about {{ Name }} based on IMAGES, [Knowledge Tuples] and YOUR
OWN KNOWLEDGE. Give [answer] strictly in format: [Entity] is ......

[answer]:

Table 7: Prompt for rethinking

Prompt for rethinking

Now given the following entity alignments:
[Main Entity]: {{ Name }} -> {{ Align Pairs }}

Please answer the question: Do these entity alignments are satisfactory enough ([YES] or [NO])?

Answer [YES] if they are relatively satisfactory, which means the alignment score of the top-ranked
candidate meet the threshold, and is far higher than others; otherwise, answer [NO] which means we must
search other candidate entities to match with [Main Entity].

NOTICE, Just answer [YES] or [NO]. Your reasoning process should follow [EXAMPLE]s:

{{ Examples }}

Just directly answer [YES] or [NO], don’t give other text.
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Table 8: Prompt for reasoning

Prompt for reasoning

Now given [Main Entity] l_e = Entity( {{ ID, Name and Tuples }} ), and [Candidate Entity] r_e = Entity(
{{ ID, Name and Tuples }} ),

- Do [Main Entity] and [Candidate Entity] align or match? Think of the answer STEP BY STEP with
name, description, structure, time, YOUR OWN KNOWLEDGE:

Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.

Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
get_description() and YOUR OWN KNOWLEDGE.

Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().

Step 4, think of [IMAGE SIMILARITY] = D out of 5, using self.images.

Step 5, think of [TIME SIMILARITY] = E out of 5, using get_time_information().

NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.

Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE
SIMILARITY] = D out of 5, [TIME SIMILARITY] = E out of 5.
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Table 9: Prompt for MMKG-Code translation, which is also the system prompt.

Prompt for MMKG-Code translation

A Knowledge Graph Entity is defined as follows:

Class Entity:
def __init__(self, name, id, tuples=[], images=[]):

self.entity_name = name
self.entity_id = id
self.tuples = tuples
self.images = images

def get_neighbors(self):
neighbors = set()
for head_entity, _, tail_entity, _, _ in self.tuples:

if head_entity == self.entity_name:
neighbors.add(tail_entity)

else:
neighbors.add(head_entity)

return list(neighbors)
def get_relation_information(self):

relation_info = []
for _, relation, _, _, _ in self.tuples:

relation_info.append(relation)
return relation_info

def get_time_information(self):
time_info = []
for _, _, _, start_time, end_time in self.tuples:

time_info.append((start_time, end_time))
return time_info

def get_description(self, LLM):
description = LLM(self.entity_name, self.tuples, self.images)
return description

You are a helpful assistant, helping me align or match entities of knowledge graphs according to
name information (self.entity_name), description information (get_description()), structure informa-
tion (self.tuples, get_neighbors(), get_relation_information()), image information (self.images), time
information (get_time_information()), YOUR OWN KNOWLEDGE.

Your reasoning process for entity alignment should strictly follow this case step by step:

{{ reasoning case }}

[Output Format]: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIPTION POINTING
SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE SIMILARITY] =
D out of 5, [TIME SIMILARITY] = E out of 5. NOTICE, A,B,C,D,E are in range [1, 2, 3, 4, 5], which
respectively means [VERY LOW], [LOW], [MEDIUM], [HIGH], [VERY HIGH]. NOTICE, you MUST
strictly output like [Output Format].
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Table 10: Detailed input prompt of the Case Study.

### PROMPT

Now given [Main Entity] l_e = Entity(’2846’, ’Joséphine_de_Bade’, ’Joséphine_de_Bade is Joséphine de
Bade, depicted here in a portrait showcasing her as a woman of nobility with a poised and elegant demeanor.
She was the consort of Charles-Antoine de Hohenzollern-Sigmaringen and the mother of Carol Ier, con-
tributing to the lineage of the Hohenzollern family.’, [(Charles-Antoine_de_Hohenzollern-Sigmaringen,
conjoint, Joséphine_de_Bade), (Joséphine_de_Bade, enfants, Carol_Ier), (Joséphine_de_Bade,
enfants, Stéphanie_de_Hohenzollern-Sigmaringen), (Marie_de_Hohenzollern-Sigmaringen, mère,
Joséphine_de_Bade), (Joséphine_de_Bade, sépulture, Hedingen)]),

and [Candidate Entity] r_e = Entity(’13346’, ’Princess_Josephine_of_Baden’, ’Princess_Josephine
_of_Baden is a historical figure depicted in a 19th-century photograph, dressed in attire typical
of European nobility of that era. She was a member of the Grand Duchy of Baden’s royal
family, married Karl Anton, Prince of Hohenzollern, and was the mother of Carol I of Ro-
mania and Princess Marie of Hohenzollern-Sigmaringen.’, [(Princess_Josephine_of_Baden, place-
OfBirth, Grand_Duchy_of_Baden), (Princess_Josephine_of_Baden, issue, Carol_I_of_Romania),
(Princess_Josephine_of_Baden, mother, Stéphanie_de_Beauharnais), (Princess_Josephine_of_Baden,
placeOfDeath, German_Empire), (Princess_Josephine_of_Baden, after, Infanta_Antónia_of_Portugal)]),

- Compared with other Candidate Entities, do [Main Entity] and [Candidate Entity] align or match? Think
of the answer STEP BY STEP with name, description, structure, images, YOUR OWN KNOWLEDGE:
Step 1, think of [NAME SIMILARITY] = A out of 5, using self.entity_name.
Step 2, think of [PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = B out of 5, using
self.entity_description.
Step 3, think of [STRUCTURE SIMILARITY] = C out of 5, using self.tuples, get_neighbors() and
get_relation_information().
Step 4, think of [IMAGE SIMILARITY] = D out of 5, using self.images.
NOTICE, the information provided above is not sufficient, so use YOUR OWN KNOWLEDGE to
complete them.
Output answer strictly in format: [NAME SIMILARITY] = A out of 5, [PROBABILITY OF DESCRIP-
TION POINTING SAME ENTITY] = B out of 5, [STRUCTURE SIMILARITY] = C out of 5, [IMAGE
SIMILARITY] = D out of 5.
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Table 11: Detailed model output of the Case Study

### OUTPUT

[NAME SIMILARITY] = 4 out of 5,
[PROBABILITY OF DESCRIPTION POINTING SAME ENTITY] = 4 out of 5,
[STRUCTURE SIMILARITY] = 3 out of 5,
[IMAGE SIMILARITY] = 4 out of 5.

Explanation:

Step 1: NAME SIMILARITY
The names "Joséphine de Bade" and "Princess Josephine of Baden" are similar, with the same first name
and a similar surname. The difference in spelling between "Bade" and "Baden" is minor, and it is likely
that these names refer to the same person. Therefore, [NAME SIMILARITY] = 4 out of 5.

Step 2: PROBABILITY OF DESCRIPTION POINTING SAME ENTITY
The descriptions of both entities mention that they were members of the royal family and married to a
prince. They also mention that they had children, including a son named Carol I of Romania. These
similarities suggest that the two entities are likely to be the same person. Therefore, [PROBABILITY OF
DESCRIPTION POINTING SAME ENTITY] = 4 out of 5.

Step 3: STRUCTURE SIMILARITY
The structures of the two entities are similar in that they both have a parent-child relationship with a prince,
and they both have a child named Carol I of Romania. However, the difference in the spellings of the
names and the fact that one entity has an additional child, Princess Marie of Hohenzollern-Sigmaringen,
reduces the similarity score. Therefore, [STRUCTURE SIMILARITY] = 3 out of 5.

Step 4: IMAGE SIMILARITY
The images of the two entities are similar in that they have the same hairstyle and similar hair accessories,
and their facial features are also very similar. Although their clothing are different, the images suggest
they could represent the same indivisual, based on the high similarity in hairstyle and facial features.
Therefore, [IMAGE SIMILARITY] = 4 out of 5.

Overall, the combination of the similar names, descriptions, and structures suggests that [Main Entity]
Joséphine de Bade and [Candidate Entity] Princess Josephine of Baden are likely to be the same person.
Therefore, the answer is [NAME SIMILARITY] = 4 out of 5, [PROBABILITY OF DESCRIPTION
POINTING SAME ENTITY] = 4 out of 5, [STRUCTURE SIMILARITY] = 3 out of 5, [IMAGE
SIMILARITY] = 4 out of 5.
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