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Abstract

Large language models can accumulate incor-
rect or outdated knowledge as the real world
evolves. Compared to typical solutions such
as retraining, retrieval augmented generation,
model editing offers an effective yet low cost
solution to address this issue. However, exist-
ing model editing algorithms employ manual
selection of edit layers, which requires prior
domain knowledge or expensive architecture-
specific empirical layer selection methods, such
as causal tracing. In this work, we propose
SaLEM (Salient Layers Editing Model), an ef-
ficient solution for data driven layer selection
for the model editing task. Our solution utilizes
layer-wise saliency maps for layer selection,
and matches the accuracy of prior approaches
but with only 1/3 of their edits, enabling effi-
cient updates to the parametric knowledge in
large language models.

*Equal contribution; + Work done as Amazon
intern

1 Introduction

Large Language models (LLMs) are well known
for their capacity to store extensive factual knowl-
edge, which enables them to perform well in tasks
such as question answering (De Cao et al., 2021).
However, facts can change after model training,
which can introduce inaccuracies in model predic-
tions and degrade downstream task performance.
Updating such factual knowledge is typically done
by fine-tuning the model with corrected answers
but this is an expensive approach and is prone to
model overfitting (Mitchell et al., 2022). Model
editing (Sinitsin et al., 2020; Mitchell et al., 2022)
techniques, such as MEND (Mitchell et al., 2022)
and ROME (Meng et al., 2022) offer a practical
and an effective alternative approach to address
this problem, where we selectively edit a small
subset of model parameters to update the factual
knowledge.

An important prerequisite to do model editing is
to identify the network layers most likely to store
the corresponding facts to be edited. For instance,
in MEND (Mitchell et al., 2022), this selection is
done manually. While grounded in intuition, this
approach depends on the model developer’s do-
main knowledge and faces the risk of introducing
superfluous edits. On the other hand, in ROME,
(Meng et al., 2022), the authors employ causal trac-
ing, which attempts to locate facts in an autoregres-
sive neural network model by identifying hidden
states which have the strongest causal effect on
predictions of given facts. While effective, it is un-
clear if this technique generalizes beyond decoder
model architectures. More importantly, layer se-
lection through causal tracing is extremely costly,
requiring full two autoregressive passes through
the entire network for each layer and token in the
input sequence.

In this work, we develop a new approach for
automated layer selection for model editing called
SaLEM (Salient Layers Editing Model). SaLEM
leverages gradient values for given dataset with re-
spect to the parameters of the LLM to be edited to
create layer saliency profiles (Levin et al., 2022)
and outputs the most salient layer to be edited. The
salient layer selection method is an inexpensive,
effective, and architecture-neutral approach for this
task. We then thread the salient layer selection
approach with MEND to apply edits using decom-
posed gradients with respect to the selected layers.
Extensive experimental analysis established the ef-
fectiveness of SaLEM. Our main contributions in
this work are as follows:

1. We propose SaLEM (Figure 1), a simple yet
efficient and architecture-neutral approach for
precise editing of erroneous knowledge in lan-
guage models.

2. We conduct extensive empirical analysis on
several benchmark datasets, demonstrating
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the effectiveness of SaLEM in terms of editing
accuracy but with substantially fewer number
of training steps.

2 Related Work

Model Editors: The need to update and adapt
knowledge representations of language models has
traditionally been served through fine tuning (Ken-
ton and Toutanova, 2019). Various model editing
strategies have been explored, including modified
fine-tuning methods that enforce locality of edits
(Zhu et al., 2020) or minimize L2-norm parameter
updates for reliable edits (Sotoudeh and Thakur,
2021), updating model beliefs based on learned
optimizers (Hase et al., 2021). However, parame-
ter space constraints may not always translate ef-
fectively into function space for neural networks
(De Cao et al., 2021). To address this, fine-tuning
can be incorporated with a KL-divergence (Kull-
back and Leibler, 1951) constraint, but this may
not yield generalizable edits.

Editable Neural Networks (ENN) (Sinitsin et al.,
2020) and Knowledge-Editor (KE) (De Cao et al.,
2021) use meta-learning techniques (Finn et al.,
2017; Ha et al., 2017) to effectively edit base mod-
els, offering alternative paths for desirable edit ca-
pabilities. But (Sinitsin et al., 2020) requires costly
specialized training of the original network, while
(De Cao et al., 2021) lacks tractability.

MEND (Mitchell et al., 2022) was proposed
as a resource-efficient approach for training large
language models by leveraging rank-1 gradients
in a novel parameter update scheme. Unlike tra-
ditional gradient-based meta-learning algorithms
(Finn et al., 2017; Lee and Choi, 2018; Park and
Oliva, 2019; Flennerhag et al., 2020), MEND intro-
duces adaptability post-hoc to a pre-trained model,
enabling effective model adaptation without high
computational costs. MEND, however, lacks a data-
driven method for identifying most effective layers
to edit, and instead applies edits to statically prede-
termined layers.

To address this gap, Meng et al. (2022) employed
causal mediation analysis (Pearl, 2022; Vig et al.,
2020) to trace hidden state activations within GPT
(Radford et al., 2019). This helped identify and
update parameters within the forward mid-layers
MLPs that are decisive for last subject token in
factual associations. Causal tracing, however, is
an expensive parameter discovery mechanism re-
quiring two full autoregressive passes through the

model for each token, and has been recently shown
not to always offer insights on the optimal MLP
layer to edit (Hase et al., 2023) .

Interpreting LLMs: In search for a less expen-
sive parameter discovery mechanism, we turned
into the interpretability and attribution literature.
Some previous work focused on measuring knowl-
edge stored in pre-trained models using cloze
queries (Petroni et al., 2019; Jiang et al., 2020),
checking factual consistency (Elazar et al., 2021),
examining knowledge neurons (Dai et al., 2022),
or identifying causal input features . (Sundararajan
et al., 2017). But most relevant to our purposes
was the work of (Levin et al., 2022), where weights
responsible for output are discovered by creating
parameter saliency profiles, which are then used
to obtain layer-saliency profiles utilizing gradient
information of all parameters.

Our proposed model, SaLEM, builds on MEND
with three crucial distinctions: (i) Empirical deter-
mination of the most salient layer, hence, eliminat-
ing the need for human expertise; (ii) Selectively
targeting and editing the most salient layer only
to minimize computational costs; (iii) Focusing
on editing the outputs of mispredicted samples to
enhance correctness and adaptivity.

3 SaLEM: Approach

3.1 Preliminaries

Consider a base model represented as fθW (X) =
Y , where X denotes the input, θW represents
trained parameters, and Y denotes the model out-
put. Given a set of incorrectly predicted examples
Xfail, the aim of model editing is to modify fθW ()
to fθW̃ (), thereby correcting the wrongly predicted
outputs Yfail to accurate answers. In other words,
we want to map old learned parameters θ to new
parameters θW̃ .

An important consideration while editing the
model is to ensure that the correct edits also
generalize to related inputs Xadapt which are se-
mantically equivalent to Xfail, while keeping
the model predictions unchanged for the cor-
rectly predicted examples Xpass (Sinitsin et al.,
2020; De Cao et al., 2021; Mitchell et al., 2022;
Meng et al., 2022). Therefore, a model editor is
trained using an edit dataset Dedit, which includes
the edit examples (Xfail, Yfail), generalizability
samples (Xadapt, Yfail) and the locality samples
(Xpass, Ypass). The model editor, denoted as E,
can be defined as:
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Eϕ(Dedit, θW ) = θW̃ (1)

To address the challenge of making efficient ed-
its without computationally expensive and over-
fitting global parameter changes, we next intro-
duce our approach which identifies the most salient
network parameters responsible for the erroneous
predictions, and performing edits solely on these
selected parameters.

3.2 Saliency based layer selection
For a given base model fθW (), we begin by cal-
culating layer wise saliency profiles with respect
to the editing dataset Dedit. We utilize gradient
information from the loss function as a measure of
parameter saliency, aggregating at various levels:

1. Parameter Saliency: We compute parameter-
wise saliency profiles, as introduced in (Levin
et al., 2022), by calculating the gradients of
the loss on the editing data Dedit with respect
to the trained parameters θW for a given ex-
ample (X,Y ) from Dedit:

si(X,Y ) = |∇θWLθW (X,Y )| (2)

A higher norm of the gradient signifies a
greater impact of the respective parameter in
making mistakes in Dedit.

2. Column Saliency: We compute column-wise
saliency profiles by averaging parameter-wise
saliency values across all elements of a col-
umn p in each layer’s parameters of the net-
work:

sp(X,Y ) =
1

|p|

i=|p|∑

i=0

si(X,Y ) (3)

Here, |p| indicates number of parameters in
layer p and sp(X,Y ) quantifies the saliency
of given column p in a layer, with a higher
value indicating a more significant impact on
erroneous predictions.

3. Layer Saliency: Finally, to identify the
saliency values for a layer l, we further calcu-
late averages of column-wise saliency profiles
for each column p in the layer l, and repeat
this with each layer of the network:

sl(X,Y ) =
1

|l|

p=|l|∑

p=0

sp(X,Y ) (4)

4. Select Edit Candidates: Finally, we select
top K layers with the highest saliency values
as candidates for model editing:

EL = argmax
topK

(sl(X,Y )) (5)

3.3 Model Editing

Once we’ve identified the most salient layers,
model editing is performed using the MEND frame-
work (Mitchell et al., 2022). In this approach, we
train a lightweight model editor network E to edit
the weights of a specific layer l. During testing,
E transforms the fine-tuning gradient of the corre-
sponding layer into a parameter update that aligns
with three key properties: correctness (i.e., correct-
ing erroneous outputs), consistency (i.e., maintain-
ing correct outputs), and adaptiveness (i.e., adapt-
ing to semantically equivalent inputs).

The model editor E leverages the rank-1 fine-
tuning gradient ∇Wl

LθW (X,Y ) for the layer l
as input and outputs the parameter edits for
that layer, denoted as ∇̃Wl

. This is achieved
by conditioning on single layer gradient val-
ues, reducing the computational complexity com-
pared to editing all parameters. The overall loss
to train E combines correctness loss Lcorr =
− log pθW̃ (Ye|Xe) and consistency loss Lcons =

KL
(
pθW̃ (·|Xe)

∥∥ pθW (·|Xpass)
)

:

LE = cfailLcorr(θW̃ ) + Lcons(θW , θW̃ ) (6)

Here, Xe = Xfail ∪ Xadapt. The loss defined in
Equation 6 allows the model editor to adapt the
parameters of the selected layer effectively while
maintaining correctness, consistency, and adaptive-
ness.

4 Datasets

To evaluate our approach, we conducted exper-
iments on a diverse set of datasets encompass-
ing text classification with varying levels of ac-
curacy, question-answering and generation tasks.
We consider five text classification datasets: i)
FEVER-FACTCHECKING (Thorne et al., 2018)
- fact checking with respect to Wikipedia infor-
mation, ii) MULTINLI (Williams et al., 2018) -
sentence pairs annotated with textual entailment
information, iii) DIALOGUENLI (Welleck et al.,
2019) - sentence pairs consisting of a dialogue ut-
terance and corresponding persona annotated with
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EDITING MODELS → FT ENN KE MEND SaLEM
Datasets ↓ EA ↑ DD ↓ EA ↑ DD ↓ EA ↑ DD ↓ EA ↑ DD ↓ EA ↑ DD ↓ SL
MULTINLI 0.79 0.001 0.98 0.002 0.96 0.001 0.99 0.001 0.99 0.0001 10
DIALOGUENLI 0.90 0.001 0.99 0.0001 0.98 0.001 0.99 0.0001 0.99 0.0001 11
EMPATHETICDIALOGUES 0.53 0.026 0.76 0.017 0.69 0.214 0.76 0.016 0.76 0.015 10
PERSUASIONFORGOOD 0.66 0.16 0.90 0.009 0.87 0.011 0.90 0.008 0.90 0.002 10

Table 1: Results of SaLEM for val sets of natural language inference datasets viz. MULTINLI and DIALOGUENLI and
classification datasets viz. EMPATHETICDIALOGUES and PERSUASIONFORGOOD. Each of the datasets base model is trained by
fine-tuning BERT-large (Kenton and Toutanova, 2019).

Datasets → ZSRe WIKITEXT

Generation Models → T5-XL BART GPT-Neo 2.7B Distil-GPT2
EDITING MODELS ↓ EA DD ↓ EA ↑ DD ↓ EA ↑ DD ↓ EA ↑ DD ↓
FT 0.57 0.001 0.96 0.001 0.55 0.200 0.28 0.991
ENN - - 0.99 0.001 - - 0.92 0.100
KE 0.04 0.001 0.98 0.001 0.0 0.148 0.25 0.607
MEND 0.88 0.001 0.98 0.003 0.81 0.062 0.86 0.276
SaLEM 0.88 0.001 0.98 0.002 0.81 0.054 0.87 0.253

Table 2: Results of SaLEM on val sets of Question-Answering dataset ZSRe and generation dataset WIKITEXT. - denotes that
ENN had not been run due to high computational requirements.

Model EA ↑ DD ↓
Train Val Train Val

FT 0.74 0.75 0.001 0.001
ENN 0.94 0.97 0.002 0.003
KE 0.90 0.94 0.003 0.004
MEND 0.99 0.99 0.001 0.001
SaLEM (3 layers) 0.99 0.99 0.0001 0.0001
SaLEM 0.99 0.99 0.0001 0.0001

Table 3: Results of SaLEM on FEVER-FACTCHECKING
used by (Mitchell et al., 2022)

Generation Model → GPT2-XL
Editing Models ↓ Efficacy ↑ Generalization ↑

ES EM PS PM
ROME 1 0.979 0.964 0.627
SaLEM 1 0.986 0.967 0.649

Table 4: Results of SaLEM on COUNTERFACT used by
(Meng et al., 2022)

textual entailment information, iv) EMPATHETIC-
DIALOGUES (Rashkin et al., 2019) - dialogue sit-
uations annotated with one of the 32 fine-grained
emotions, and v) PERSUASIONFORGOOD (Wang
et al., 2019) - a dialogues agent responses annotated
with imbibed persuasion strategies. These datasets
provide comprehensive evaluations on a diverse set
of tasks. Statistics for each of these datasets are
listed in Table 5 of the Appendix. For generation
tasks such as Question-Answering and next token
generation, we utilized ZSRE (Levy et al., 2017)
and WIKITEXT (Merity, 2016) datasets. Details
on how we used these datasets to train the editor
networks are in Appendix A.

5 Experimental Results

We conduct detailed experiments, comparing
SaLEM with four competitive baselines: i) FT
(Fine-tuning), ii) ENN (Editable Neural Networks),
iii) KE (Knowledge Editing) and iv) MEND, and

report results on two key evaluation metrics: EA
(Edit Accuracy) and DD (Drawdown).

5.1 Implementation Details

To optimize the performance of SaLEM, we
used identity function as the initialization method
(Mitchell et al., 2022), along with a residual con-
nection (He et al., 2016) for enhanced learning. Ad-
ditionally, a combination of partially random and
partially zero initialization strategies is employed
(Zhang et al., 2019). U1 and U2 are initialized with
zeros, while V1 and V2 are initialized using the
standard Xavier initialization (Glorot and Bengio,
2010). To address varying input magnitudes, u and
δl+1 are normalized to have zero mean and unit
variance. This improves the conditioning, training
speed, edit performance and efficiency of SaLEM.

For classification, we use BERT-large (Kenton
and Toutanova, 2019) with 12 layers and 125M
parameters, whereas for generation, we use Distil-
GPT2 with 6 layers 82M parameters (Sanh et al.,
2019) and GPT-Neo (Black et al.; Gao et al., 2020)
with 24 layers and 2.7B parameters. Lastly, for
Question-Answering task, we employ BART-large
(Lewis et al., 2020) with 24 layers and 406M pa-
rameters and T5-XL (Raffel et al., 2020) with 24
layers and 3B parameters. Consistent with previous
research work (Mitchell et al., 2022), all reported
performance metrics are based on the validation
set. The maximum number of training steps is set
at 150000, but we terminate training if validation
set does not decrease for 30000 steps to prevent
overfitting. Following (Mitchell et al., 2022) we
focus on editing MLP layers rather than editing the
attention layers, as they yield better performance.
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During training, we utilize a batch size of 10, em-
ploying gradient accumulation to effectively update
model parameters. We employ the Adam optimizer
(Kingma and Ba, 2015) to optimize parameters at
each time step. Throughout our experiments, we
maintain a consistent value of cfail = 0.1 for all
the conducted trials (Mitchell et al., 2022). This
ensures that the optimization procedure focuses on
editing the existing information while also allow-
ing for sufficient non-edits to search for potentially
better solutions.

5.2 Classification Results
We first present performance on the FEVER-
FACTCHECKING dataset, as edit instances are sam-
pled differently in this task. As evident in Table 3,
the data driven layer selection approach of SaLEM
in conjunction to MEND, meets the EA of vanilla
MEND (which manually selects layers 10, 11, and
12 for editing) and achieves lower DD. Further,
while vanilla MEND required 55,000 steps for this
experiment, SaLEM completed it in only 45,000
steps, highlighting its computational efficiency ad-
vantage.

We next evaluated SaLEM on the other datasets
mentioned above, and show results in Table 1, high-
lighting the selected layer under column SL in the
table. In terms of EA, it outperforms FT and KE
and meets ENN and MEND across all four datasets.
ENN and MEND, while competitive, come with
specific limitations: ENN requires maintaining a
duplicate base model, leading to increased memory
demands while MEND depends on manual layer se-
lection process. SaLEM further excels in DD value,
potentially due to its 1/3 edits compared to MEND.
The reduced number of edits allows SaLEM to min-
imize updates to the base model as compared to
MEND, hence resulting into better DD score. he
varying layer selections for different datasets un-
derscore SaLEM’s adaptability to diverse dataset
characteristics. Its advantage lies in its ability to
gain insights into the network’s inner workings,
identifying relevant parameters contributing to in-
correct predictions, thus achieving efficient and
targeted editing by focusing on a single layer.

5.3 Generation Results
In Table 2, we present the results for the Question-
Answering datasets ZSRE and WIKITEXT. No-
tably, SaLEM outperforms the baselines FT, and
KE across both datasets. Further, SaLEM matches
MEND’s performance in terms of successful edits.

It is also seen that ENN outperforms all other mod-
els for both ZSRE and DISTIL-GPT2. Due to high
computational requirements ENN is not evaluated
for T-5-XL and GPT-Neo. Similarly, SaLEM out-
performs FT, KE and meets MEND’s results with
T-5-XL and GPT-Neo. Specifically, FT struggles
to generalize to different rephrasings of the edit
input, resulting in reduced edit success. The KL-
constrained baseline shows reduced DD for T5-XL,
and GPT-Neo, but it comes at the expense of edit
success. KE proves to be ineffective at this scale,
generally failing to provide successful edits.

5.4 Autoregressive Models

To showcase the effectiveness of SaLEM’s param-
eter selection mechanism with large autoregres-
sive model (like GPT2-XL), we compared it with
ROME (Meng et al., 2022) which uses causal trac-
ing to select salient layer. In Table 4, we can see
that SaLEM performs better than ROME (Meng
et al., 2022) on the COUNTERFACT dataset devel-
oped in (Meng et al., 2022). In addition, SaLEM is
computationally efficient since it needs only a sin-
gle pass compared to ROME’s multiple passes. Our
experiments show the promising performance of
SaLEM in both encoder-decoder and decoder only
autoregressive architectures, while it is unclear how
well ROME performs in encoder-decoder models.
We provide additional experiments and results in
Appendix C.

6 Conclusion

Facts stored in LLMs routinely get outdated, and
model editing offers an elegant solution to selec-
tively update these facts without compromising the
integrity of the model. However, existing algo-
rithms suffer from shortcomings such as relying
on domain knowledge or using computationally ex-
pensive mechanism for layer selection. To address
these shortcomings, here we propose SaLEM, an
effective and computationally efficient solution for
layer selection which utilizes parameter saliency
maps aggregated at various levels. Our experi-
mental results demonstrate that by identifying the
salient layer, SaLEM matches the edit success of
MEND and ROME with considerably better com-
putational efficiency. Further, detailed evaluation
of SaLEM across various NLP tasks, including
natural language inference, classification, question-
answering, and generation, demonstrate its robust
performance.
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Limitations

For low base classifier accuracies, SaLEM can be
further improved. As we focused to edit only failed
examples, we restricted our dataset size while train-
ing the edit models of SaLEM. SaLEM can be
improved by enriching the editing dataset with bet-
ter failed samples and their semantic and counter-
factual equivalents. We also need a better weight
update mechanism to inform the editor about the
extent of updates for borderline instances, such
that consistency of edited model can be main-
tained. This drives towards our future work. Fur-
ther, though SaLEM is computationally efficient,
in its current form it expects the entire LLM to be
in memory before edits and hence requires con-
siderable GPU memory when working with large
LLMs. It maybe possible to perform the edits with-
out loading the full model into memory, we defer
this exploration for future work.

Ethics Statement

Algorithms designed for model editing offer a po-
tential solution to address the issue of undesirable
model behaviors by allowing developers to modify
and rectify these behaviors as they are identified.
However, it is important to acknowledge that a
model editor could also be misused, potentially
amplifying the very behaviors we aim to eliminate.
For examples, a large language model can be edited
to generate toxic sentences for given input. This
dual use presents a risk inherent in development of
these large language models. For all experiments,
we used only publicly available datasets and ad-
hered to their policies. On acceptance, we will
make our editing datasets publicly available.
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A Datasets Creation

To train the editor networks, we require correct,
consistent and adaptive instances. Hence, to cre-
ate such datasets, samples to be corrected (i.e.,
Xfail) are obtained from test datasets where the
base model fθW () failed. Similarly, Xpass corre-
sponds to accurately predicted instances in the test
dataset. The adaptive samples Xadapt are obtained
through rephrases of Xfail. We get five rephrased
samples for each of the instance in Xfail in three
phases as follows:

1. Paraphrasing: We initially tried to generate
paraphrases using different openly accessible
LLMs like GPT-Neo (Black et al.; Gao et al.,
2020), GPT-J (Wang and Komatsuzaki, 2021;
Wang, 2021), using which we obtained seven
rephrases of 20-30 samples from each of the
five datasets. The generated responses were
found to be qualitatively bad for GPT-Neo,
while GPT-J lacked in fluency and diversity
of generated outputs. Hence, we employed
Chat-GPT (OpenAI, 2023) to generate the fi-
nal paraphrases for 50% of samples of each of
the five datasets and then trained three differ-
ent versions of the BART model (Lewis et al.,
2020) to generate 3-2-2 paraphrases respec-
tively. We leverage three BART models in
order to counteract any information loss due
to finite memory.

2. Automatic Filtration: The generated para-
phrasers from BART are quantitatively eval-
uated in terms of BERTScore F1 (BSF1)
(Zhang et al., 2020) to check the quality of
paraphrases, and those with BSF1 < 0.4
are discarded. After this, if the number of
rephrases were found to be less than five for
a given instance in Xfail, we repeated the
previous step by generating rephrases using
Chat-GPT (OpenAI, 2023).

3. Manual Filtration: We randomly sampled
50% of all rephrased samples from previous
steps, and evaluated them in terms of fluency,
adequacy and semantic-coherence on an in-
teger likert scale (Likert, 1932; Joshi et al.,
2015) of 1, 2, and 3 1. Evaluations were con-
ducted by authors of the paper. Candidates
with fluency=1, adequacy=1 and semantic-
coherence=1 are sampled and rephrased again

11,2, and 3 denotes low, neutral and high quality rephrase.
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Figure 1: SaLEM Architecture: Identifying the most critical layer for erroneous entailment and training an editing
network using low-rank gradient decomposition.
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by the authors of the paper. Only 6% sam-
ples were found to be low quality rephrases.
After editing these low quality rephrases, we
end up with our Xadapt samples for each of
the Xfail instances in all of four datasets viz..
MULTINLI, DIALOGUENLI, EMPATHETIC-
DIALOGUES and PERSUASIONFORGOOD.

Finally, for generation tasks such as Question-
Answering and next token generation, we uti-
lized ZSRE (Levy et al., 2017) and WIKITEXT

(Merity, 2016) datasets respectively. FEVER-
FACTCHECKING, ZSRE and WIKITEXT are used
same as (Mitchell et al., 2022). The edit in-
stances for editing datasets viz. MULTINLI,
DIALOGUENLI, EMPATHETICDIALOGUES and
PERSUASIONFORGOOD datasets are incorrectly
predicted instances in 3-fold cross-validation
of respective classifiers. Whereas FEVER-
FACTCHECKING differs from these datasets in the
sense that edit instances binary labels are obtained
by sampling from a Bernoulli distribution with a
probability value of 0.5. The new flipped labels are
treated as labels to be edited.

B Experiments

We conduct experiments to (i) to assess the effec-
tiveness of SaLEM with respect to various compet-
itive baselines: Fine-tuned (FT), Editable Neural
Networks (ENN) (Sinitsin et al., 2020), Knowl-
edge Editor (KE) (De Cao et al., 2021), and Model
Editor Networks with Gradient Decomposition
(MEND) (Mitchell et al., 2022), and (ii) perform
extensive empirical analysis to showcase the impor-
tance of selecting layers empirically using SaLEM.

B.1 Baselines

1. FT: The fine-tuned base-model on edit dataset
Dedit.

2. ENN: Discover a set of model parameters that
achieves high performance on a given ’base
task’ such as classification or machine trans-
lation, simultaneously, aim to enable efficient
editing of the model’s predictions for a spe-
cific set of ’edit examples’ through gradient
descent, while ensuring that the model’s be-
havior remains unchanged for unrelated in-
puts.

3. KE: An RNN that conditions explicitly on the
input, incorrect output, and new desired label.

outputs a mask mi, offset bi, and a scaling
factor α to the gradient ∇̃Wi for ith weight
matrix in a language model.

4. MEND: A collection of small auxiliary edit-
ing networks that use a single desired input-
output pair to make fast, local edits to a pre-
trained model’s behavior. It learns to trans-
form the gradient obtained by standard fine-
tuning, using a low-rank decomposition of the
gradient to make the parameterization of this
transformation tractable.

B.2 Evaluation Metrics
We evaluate the correctness, consistency and adap-
tiveness of a model editor through the use of two
key metrics: Edit Accuracy (EA), and Drawdown
(DD) (Mitchell et al., 2022). Edit Accuracy (EA),
serves as a measure of the effectiveness of our
model editor. It quantifies the success rate of edit-
ing by evaluating the extent to which the edited
model aligns with the desired modifications or en-
hancements. It can be formulated as:

EA = Exe,ye1{argmaxpθ(y|xe) = ye} (7)

To assess the consistency aspect of the edits, we
employ the Drawdown metric (DD). DD is com-
puted by measuring the performance degradation
of the edited model on the remaining dataset, when
compared to the base model. The specific form of
DD calculation depends on the problem being ad-
dressed. For tasks involving generative LLMs, DD
is determined by the increase in perplexity of the
edited model. On the other hand, for tasks involv-
ing classification, DD is computed as the decrease
in accuracy. Considering both Edit Accuracy (EA),
and Drawdown (DD), we gain insights into the cor-
rectness of the model editor’s modifications as well
as their impact on the adaptiveness capabilities of
the edited model. These metrics provide a com-
prehensive evaluation framework for assessing the
performance and effectiveness of our model edi-
tor. To evaluate all model editors, we adopt the
train:val::90:10 split across all datasets. All editors
are evaluated on val datasets and trained on train
datasets.

C Additional Results

C.1 Layerwise Ablations
To highlight the importance of selecting the most
salient layer, we conducted experiments with
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Datasets # of instances Model Accuracy # Edit instances # Adaptive instances
MULTINLI 412349 0.823 76204 381020
DIALOGUENLI 343110 0.955 16951 84750
EMPATHETICDIALOGUES 19194 0.576 8080 40400
PERSUASIONFORGOOD 6018 0.706 1865 9327

Table 5: Dataset Statistics of MULTINLI, DIALOGUENLI, EMPATHETICDIALOGUES, and PERSUASIONFORGOOD.

Model EA DD Steps
MEND (0,1,2) 0.89 0.005 55000
MEND (1,2,3) 0.95 0.009 1135000
MEND (2,3,4) 0.96 0.008 110000
MEND (3,4,5) 0.95 0.008 70000
MEND (4,5,6) 0.93 0.007 65000
MEND (5,6,7) 0.94 0.010 75000
MEND (6,7,8) 0.94 0.012 70000
MEND (7,8,9) 0.96 0.011 85000
MEND (2,5,9) 0.97 0.09 90000
MEND (1,2,4) 0.94 0.08 80000
MEND (8,9,10) 0.99 0.0001 50000
MEND (9,10,11) 0.99 0.001 55000

Table 6: Results of MEND on FEVER-FACTCHECKING
with different set of layers. MEND (a, b, c) denotes MEND
with ath, bth, and cth layers.

MEND by editing different sets of layers in in Ta-
ble 6 of Appendix. From the table, it is evident
that when using the sets {8, 9, 10} and {9, 10, 11},
MEND achieves the same performance w.r.t. EA,
which is significantly better than the other variants
such as MEND (0,1,2), MEND (1,2,3), MEND
(2,3,4), MEND (4,5,6), MEND (5,6,7), MEND
(6,7,8), and MEND (7,8,9). It is worth noting that
MEND performs less effectively in the shallower
layers of BERT-large compared to the deeper lay-
ers. This observation suggests that deeper layers
play a more significant role in making decisions.
Further, in terms of EA and DD, it is also seen that
MEND (8,9,10), and MEND (9,10,11) outperforms
MEND (2,5,9), and MEND (1,2,4) selecting three
layers randomly. This supports our argument that
we do need a mechanism to select the most salient
layer/s need to be edited.

C.2 Error Analysis

It can be seen in Table 1 that SaLEM for base mod-
els with low accuracy, the editing accuracy is low
compared to high accuracy base models. It could be
due to the absence of reliable edit samples to train
the editor which can clearly discriminate between
different classes. For generation tasks (in Table 2)
with Distil-GPT2, SaLEM achieves lower DD as
compared to ENN, reflecting that SaLEM performs
edits even for consistent examples. These instances
could be borderline instances, which SaLEM may

perceive as edit instances.
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