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Abstract

The remarkable success of Large Language
Models (LLMs) and instruction tuning drives
the evolution of Vision Language Models
(VLMs) towards a versatile general-purpose
model. Yet, it remains unexplored whether
current VLMs genuinely possess quality
object-level image understanding capabilities
determined from ‘what objects are in the
image?’ or ‘which object corresponds to a
specified bounding box?’. Our findings reveal
that the image understanding capabilities of
current VLMs are strongly correlated with
their zero-shot performance on vision language
(VL) tasks. This suggests that prioritizing basic
image understanding is crucial for VLMs to
excel at VL tasks. To enhance object-level im-
age understanding, we propose Crayon Large
Language and Vision mOdel ( CoLLaVO),
which incorporates instruction tuning with
Crayon Prompt as a new visual prompt
tuning scheme based on panoptic color maps.
Furthermore, we present a learning strategy of
Dual QLoRA to preserve object-level image
understanding without forgetting it during
visual instruction tuning, thereby achieving a
significant leap in numerous VL benchmarks
in a zero-shot setting. Code is available in
https://github.com/ByungKwanLee/CoLLaVO.

1 Introduction

Spurred by the enduring ambition for artificial
general intelligence (AGI) and the success of lan-
guage models such as BERT (Devlin et al., 2018),
GPT-3 (Brown et al., 2020), and LLaMA (Touvron
et al., 2023a), there has been a surge in demand
for a general-purpose model in a task-unified for-
mat via natural language instruction, leading to
the emergence of instruction tuning (Wei et al.,
2022; Chung et al., 2022). Building on the suc-
cess of Large Language Models (LLMs) and in-
struction tuning, InstructBLIP (Dai et al., 2023),
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Figure 1: Zero-shot performance of CoLLaVO-7B on
challenging VL datasets compared with closed-source
VLMs (OpenAI, 2023a,b; Team et al., 2023; Bai et al.,
2023). Note: The scores of MME are rescaled by 1/20
to match the scales with the accuracies of others.

LLaVA1.5 (Liu et al., 2023c,b), and Qwen-VL (Bai
et al., 2023) have either directly designed or uti-
lized visual instruction tuning datasets for a wide
range of vision language (VL) tasks using natural
language instructions. Consequently, they have be-
come paradigm-shifting in Vision Language Mod-
els (VLMs), showcasing remarkable zero-shot per-
formance in VL tasks.

However, it is yet uncharted whether the cur-
rent leading VLMs truly possess a comprehen-
sive understanding of fine-grained object infor-
mation, and how this understanding influences
their zero-shot performance in VL tasks related
to each object. Hence, we delve into the analysis
of object-level image understanding and zero-shot
performance in VL tasks across different objects.
To illustrate the behavior of object-level image
understanding, we employ four strong baselines:
BLIP2 (Li et al., 2023c), InstructBLIP (Dai et al.,
2023), LLaVA1.5 (Liu et al., 2023b), and Qwen-
VL (Bai et al., 2023). We pose two types of simple
questions to gauge their object-level understanding
such as: (1) ‘Is there any {object name} in this im-
age?’ (Class2Binary: C2B), and (2) ‘Which object
is in the specified bounding box [xmin, ymin, xmax,
ymax]?’ (Box2Class: B2C). We then evaluate the
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Is there an instance of the category "bottle" in the image? There may be multiple instances 

which are grouped together. Answer the question using either yes or no.

BLIP2: No

GT: Yes

Let's say the upper left corner of the image is [0.0, 0.0], the bottom right corner of the image is 

[1.0, 1.0]. What is the main object whose upper left corner is [0.58, 0.23] and whose bottom 

right corner is [0.61, 0.41] in the image? Answer the question using a single word or phrase.

BLIP2: Surfboard

GT: Bottle

BLIP2

Acc of C2B and B2C

<All objects>

<Bottle>

C2B B2C

60.8% 24.6%

C2B B2C

19.1% 1.0%

Is there an instance of the category "hair drier" in the image? There may be multiple instances 

which are grouped together. Answer the question using either yes or no.

InstructBLIP: No

GT: Yes

Let's say the upper left corner of the image is [0.0, 0.0], the bottom right corner of the image is 

[1.0, 1.0]. What is the main object whose upper left corner is [0.10, 0.45] and whose bottom 

right corner is [0.17, 0.57] in the image? Answer the question using a single word or phrase.

InstructBLIP: Mirror

GT: Hair Drier

InstructBLIP

Acc of C2B and B2C

<All objects>

<Hair Drier>

C2B B2C

91.3% 22.1%

C2B B2C

66.7% 18.2%

Is there an instance of the category "handbag" in the image? There may be multiple instances 

which are grouped together. Answer the question using either yes or no.

Qwen-VL: No

GT: Yes

What is <ref>this object</ref><box>(681,402),(784,487)</box> in the image? Answer the 

question using a single word or phrase.

Qwen-VL: Suitcase

GT: Handbag

Qwen-VL

Acc of C2B and B2C

<All objects>

<Handbag>

C2B B2C

75.1% 59.1%

C2B B2C

51.9% 38.4%

Is there an instance of the category "handbag" in the image? There may be multiple instances 

which are grouped together. Answer the question using either yes or no. 

LLaVA1.5: No

GT: yes

What is the main object located in [0.39, 0.41, 0.74, 0.67] in the image? Answer the question 

using a single word or phrase.

LLaVA1.5: Pillow

GT: handbag

LLaVA1.5

Acc of C2B and B2C

<All objects>

<Handbag>

C2B B2C

86.9% 59.8%

C2B B2C

63.4% 23.4%

Figure 2: Asking four baselines (BLIP2, InstructBLIP, Qwen-VL, and LLaVA1.5) two types of questions,
Class2Binary (C2B) and Box2Class (B2C), and measuring their accuracies on each object category.

accuracy of their responses for 80 object categories
(See Section 4 for more details) while assessing
their zero-shot performance on VL tasks across the
same set of categories.

Following this assessment, Figure 2 illustrates
that four strong baselines typically exhibit poor per-
formance on object-level image understanding for
several object categories with C2B and B2C accu-
racies lower than average. This phenomenon arises
from various factors, such as biases in co-occurring
objects or object size. In Figure 3, we observe
a strong correlation between the level of object-
level image understanding exhibited by VLMs and
their subsequent zero-shot performance. This trend
appears consistent across all four baseline VLMs.
Consequently, enhancing the object-level image
understanding capabilities of VLMs is expected to
significantly improve their zero-shot performance
in VL tasks.

To improve object-level image understanding,
we introduce a new visual prompt called Crayon
Prompt to assist VLMs in focusing more efficiently

on objects. The Crayon Prompt starts from a panop-
tic segmentation model (Cheng et al., 2022) that
generates a panoptic color map for any given im-
age. This map contains semantic information for
objects and their numbering. Leveraging this in-
formation, we replace both aspects with learnable
queries representing semantic and numbering em-
beddings, correctly termed as the Crayon Prompt.

This simple yet effective idea is inspired by the
practice of drawing red circles on images (Shtedrit-
ski et al., 2023), aiming to direct attention to a
specific area. They note that red circles poten-
tially invoke the object-level image understanding
of VLMs. However, they may distort image con-
tents, posing a risk to VL tasks, and cannot con-
sider foreground and background objects simultane-
ously. Instead, the Crayon Prompt encompasses all
foreground and background objects simultaneously,
thanks to a panoptic color map. Unlike drawing a
visual prompt directly on an image, we integrate the
Crayon Prompt into image embedding features at
every attention module layer in the backbone Multi-
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(a) Object-Level Image Understanding (b) Correlation with Zero-shot GQA

Average of C2B and B2C

(c) Correlation with Zero-shot TextVQA

Figure 3: Plotting the regressed relationships between (a) C2B and B2C for each object category, (b) the average of
C2B & B2C and zero-shot GQA (Hudson and Manning, 2019) performance for each object category, (c) the average
of C2B & B2C and zero-shot TextVQA (Singh et al., 2019) performance for each object category to visualize their
correlations. The light-colored areas indicate the vertical span with the probability of confidence interval 0.95.

modal Language Model (MLM) of CoLLaVO,
thereby keeping the raw visual context of the image
intact. The Crayon Prompt imparts semantic infor-
mation about objects and their numbering, akin to
how positional embedding (Vaswani et al., 2017)
assigns sequential information to token embedding
features.

By employing the Crayon Prompt, we create
simple crayon instructions to enhance object-level
image understanding. Additionally, we utilize
the visual instruction tuning datasets (Liu et al.,
2023c,b; Chen et al., 2023d) for zero-shot VL
tasks. However, conducting visual instruction tun-
ing only may be not sure for the grasp of object-
level image understanding. Hence, we propose
a learning strategy called Dual QLoRA involving
two QLoRA (Dettmers et al., 2023) modules. One
module is trained for crayon instructions while the
other module for visual instruction tuning datasets
is frozen, and vice versa. This approach enables
efficient fusion of crayon instructions and visual
instruction tuning datasets while preserving the
capabilities of both object-level image understand-
ing and complex question answering. Pursuing
parameter-efficient training, we employ quantized
LoRA (QLoRA) instead of LoRA (Hu et al., 2021).

Following the aforementioned methods, we pro-
pose a new large language and vision model called
Crayon Large Language and Vision mOdel (
CoLLaVO), where the Crayon Prompt and a VLM
collaborate to enhance object-level image under-
standing, which subsequently affects zero-shot VL
performance. Our contribution can be summarized
as follows:

• To the best of our knowledge, we first re-
veal the intriguing property of current VLMs,
wherein object-level image understanding is
strongly correlated with zero-shot VL tasks.

• We propose the Crayon Prompt and Dual
QLoRA, which enhance object-level image un-
derstanding and effectively maintain it along-
side complex VL performance, respectively.

• By applying all these ingredients, we present
an efficient model, CoLLaVO-7B, which
significantly achieves state-of-the-art zero-
shot VL performance compared to closed-
source VLMs and open-source VLMs.

2 Research Backgrounds

Visual Prompting. Researchers have prioritized
enhancing natural language prompts in construct-
ing instruction tuning datasets for LLMs (Wei et al.,
2022; Chung et al., 2022; Touvron et al., 2023b).
On the other hand, dealing with VLMs offers new
opportunities to manipulate both visual and tex-
tual aspects of prompts. Earlier studies on vi-
sual prompting have focused on techniques such
as learnable token embedding concatenated with
visual embedding (Jia et al., 2022; Sandler et al.,
2022), or learned perturbation patterns directly ap-
plied to an input image (Bahng et al., 2022; Chen
et al., 2023a; Oh et al., 2023). While these methods
aim to find the optimal visual prompt, the learned
visual prompts lack human interpretability, hinder-
ing the understanding of their effectiveness.

To address this, current VLMs use human-
interpretable visual prompts such as marks (Sht-
edritski et al., 2023; Yang et al., 2023b; Cai et al.,
2023) or semantic masks (Yang et al., 2023a). Sht-
edritski et al. (2023) draw red circles on images
and then demonstrate that CLIP (Radford et al.,
2021), by itself, can recognize the simple visual
prompts on images, showing improved zero-shot
performance for tasks such as referring expressions
comprehension and key point localization. By us-
ing SEEM (Zou et al., 2023) or SAM (Kirillov
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Vision

Provide multiple bounding box 

coordinates for person in the image.

Sure, it is (#1 person) [0.00, 0.16, 0.29, 0.88],

(#2 person) [0.50, 0.10, 0.83, 0.81]. 

(a) Crayon Prompt Tuning (CPT)

Multimodal Language Model (MLM)

MLP

Crayon

Prompt

MLP

Vision

What type of train is featured in 

the image?

The image features a small toy or model train on some tracks.

(b) Crayon prompt-based Instruction Tuning (CIT)

Multimodal Language Model (MLM)

MLP

Crayon

Prompt

MLP

Figure 4: Overview of two-step training for CoLLaVO. Note that ‘Vision’ represents vision encoder, and that the
fire symbols represent the modules to learn.

et al., 2023), Yang et al. (2023a) employs special
marks including alphanumerics and masks to help
VLMs understand fine-grained spatial information.
Yang et al. (2023b) uses semantic masks created
by an object detection model and SAM, along with
visual prompts like contour masks, colorful masks,
grayscale reverse masks, and blur reverse masks,
to enhance local attention in CLIP.

In brief, previous studies have focused on guid-
ing VLMs towards specific areas using marks and
semantic masks. Similar to Yang et al. (2023a),
we propose Crayon Prompt encompassing all fore-
ground and background objects at once. However,
compared with a direct visual prompt on the im-
age (Liu et al., 2023e; Shtedritski et al., 2023; Yang
et al., 2023b; Cai et al., 2023; Yang et al., 2023a),
the Crayon Prompt is injected into image embed-
ding features at every Transformer (Vaswani et al.,
2017) layer in a backbone MLM to keep the im-
age intact and not disrupt its raw visual context.
The Crayon Prompt provides semantic informa-
tion about objects in the image and their number-
ing, similar to how positional embedding (Vaswani
et al., 2017) provides sequential information about
the relative orders of token embedding features.

LLMs, VLMs, and Instruction Tuning.
Flan (Wei et al., 2022) pioneered the development
of instruction tuning by consolidating 62 language
datasets, covering a diverse range of tasks. It
demonstrates significant improvements in zero-
shot performance. In efforts to expand the scope
of tasks and the capacity of language models,
Chung et al. (2022) introduced Flan-PaLM and
Flan-T5, leveraging PaLM (Chowdhery et al.,
2023) and T5 (Raffel et al., 2020). Continuing
along the trajectory of instruction-tuned LLMs,
LLaVA (Liu et al., 2023c) utilizes a language-only

GPT-4 to produce visual dialogues, intricate
deductions, and detailed image descriptions for the
LLaVA-Instruct-665K dataset. Simultaneously,
various VLMs (Dai et al., 2023; Ye et al., 2023a; Li
et al., 2023a; Zhu et al., 2023; Chen et al., 2023c;
Bai et al., 2023) have developed unique instruction
tuning datasets to enhance grounding capability
and mitigate hallucinations.

Amidst the current surge of VLMs, we ap-
proach them from a fresh angle, notwithstanding
the strides made in instruction tuning. Conse-
quently, our focus shifts towards probing whether
VLMs effectively grasp object-level image under-
standing. Should they fall short, we then question
whether this inadequacy correlates with their VL
performance. In essence, Figure 2-3 emphasize
the importance of foundational image understand-
ing and its potential impact on VL performance, in
other words, a facet often overlooked in previous
studies. Thus, we advocate for a fusion of object-
level image understanding and visual instruction
tuning.

3 CoLLaVO

Model Architecture and Prompt Protocol. The
structure of CoLLaVO, as illustrated in Figure 4,
comprises a vision encoder, Crayon Prompt, a back-
bone MLM, and MLP connectors between the vi-
sion and language components. CLIP (Radford
et al., 2021) is considered as the vision encoder,
benefiting from its adeptness in image understand-
ing. The MLM utilized in CoLLaVO is from
InternLM-7B (Team, 2023), which is a multilingual
foundation model instruction tuned by 1.6T multi-
lingual datasets with RLHF (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022). More-
over, two fully-connected MLPs with GELU activa-
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Crayon Prompt

Crayon Instruction

• Provide multiple object names with their numbering index in the image.

• Provide multiple object names with their numbering index and the objects' bounding box coordinates in this image.

• Provide multiple bounding box coordinates for {select_class} in the image. 

Semantic

Numbering

Panoptic

…
…

unknownBlack

Darkred person

Purple tree

Semantic

Queries

(Learnable)
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1DarkredNumbering

Queries

(Learnable)
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1 2
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grass

building

tree

horse horse

fence

Figure 5: Describing how the Crayon Prompt is generated from a panoptic color map with learnable semantic
queries and numbering queries. In addition, crayon instruction examples are given, which are used to conduct CPT
and CIT. Note that, ‘{}’ denotes the place where we adaptively input information.

tion function (Hendrycks and Gimpel, 2016) serve
as the bridge connector. Regarding CoLLaVO in-
put, adherence to a prompt protocol is maintained,
where ‘<image>’ signifies a special token for image
embedding features, ‘<stop>’ denotes a stop token
for text generation, ‘User: {}’ represents a question
template, and ‘Assistant: {}’ indicates an answer
template (See below Figure 5 for an example).

Crayon Prompt Tuning (CPT). To ensure a
comprehensive object-level grasp on the entire im-
age, CoLLaVO should recognize all distinct
objects within it, including both foreground (e.g.,
person, bus, bottle, hairdryer, and handbag) and
background (e.g., sky, road, river, sea, and snow)
objects. To achieve this, we employ a panoptic
segmentation model (Cheng et al., 2022), which
generates a panoptic color map as illustrated in Fig-
ure 4(a)-(b). This map enables the discrimination
of 133 different object categories (See Appendix A)
of foreground and background objects from MS-
COCO 2017 (Lin et al., 2014), serving as a visual
cue for CoLLaVO to focus on all objects within
the image.

Notably, the panoptic map contains two crucial
pieces of information for each object: semantic
information and numbering information. For in-
stance, if an image depicts two people riding horses,
as illustrated in Figure 4(a), the panoptic map as-
signs each object a category label and a numbering
index, as shown in Figure 5. The two people re-
ceive different numbering indices ‘1’ and ‘2’ but
share the same object category ‘person’. Other
objects, being singular, are all labeled with the
numbering index ‘1’. It is worth noting that the
unknown category is assigned the numbering in-

Crayon Instruction Example for CPT

<image>
User: Provide multiple object names with their numbering index
and the objects’ bounding box coordinates in this image.
Assistant: Sure, it is (#1 horse) [0.06, 0.38, 0.27, 0.91],
(#2 horse) [0.56, 0.41, 0.77 , 0.99], (#1 person) [0.00, 0.16, 0.29, 0.88],
(#1 sky) [0.39, 0.00, 0.69, 0.18], (#1 fence) [0.00, 0.42, 0.99, 0.99],
(#1 building) [0.00, 0.14, 0.47, 0.83], (#1 tree) [0.00, 0.00, 0.99, 0.47],
(#1 grass) [0.21, 0.49, 0.99, 0.95], (#2 person) [0.50, 0.10, 0.83, 0.81]<stop>

dex ‘0’. To streamline the next process, we pre-
pare 133+1(unk) learnable semantic queries, in-
cluding the aforementioned 133 categories and
an unknown category. In addition, we prepare
20+1(‘0’ for unk) learnable numbering queries un-
der the assumption that no more than 20 instances
of the same object category appear within one im-
age.

Leveraging 134 semantic queries and 21 num-
bering queries, we then replace both the semantic
and numbering color maps with these queries, akin
to generating vector quantized features through a
codebook mechanism (Van Den Oord et al., 2017;
Esser et al., 2021). This process results in the gen-
eration of semantic and numbering embeddings in
Figure 5, which are subsequently combined in the
backbone MLM. This combined representation is
referred to as Crayon Prompt. The Crayon Prompt
meets the MLP connector, and then its output is
added with the image features at every attention
module layer in the MLM as shown in Figure 6(a).
We then utilize crayon instructions, as shown in the
lower half of Figure 5, and perform Crayon Prompt
Tuning (CPT) to align the Crayon Prompt to the
backbone MLM and enhance object-level image
understanding. Here, the magenta colored-text is
auto-regressively learned, as demonstrated in the
crayon instruction example below Figure 5.
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MLP

QLoRAQLoRA MLM

(a) Crayon Prompt Operation in CoLLaVO (c) Dual QLoRA for VL-CIT

QLoRAMLM

(b) Dual QLoRA for Image-CIT

QLoRA

Crayon

Prompt

Attention Module

× N

Image

Part
Language

Part

+
MLP

Crayon

Prompt

MLP

Crayon

Prompt

MLM Layer in CoLLaVO

Figure 6: Illuminating (a) how the Crayon Prompt is injected into image embedding features and learning strategies
of (b), (c) Dual QLoRA for the object-level image understanding capability (Image-CIT) and VL task capability
(VL-CIT) to efficiently coexist without catastrophic forgetting (Luo et al., 2023).

Crayon Prompt-based Instruction Tuning (CIT).
CPT focuses solely on learning semantic and num-
bering queries in the Crayon Prompt and its MLP
connector with the MS-COCO 2017 dataset (Lin
et al., 2014), aligning them with the backbone
MLM to enhance object-level image understand-
ing of CoLLaVO. On the other hand, Crayon
Prompt-based Instruction Tuning (CIT) utilizes
the visual instruction tuning datasets (Liu et al.,
2023c,b; Chen et al., 2023d) as well as crayon in-
structions to handle complex question answering
for VL tasks. It involves training the semantic and
numbering queries and the MLP connector again,
along with the backbone MLM of CoLLaVO.

When training the MLM with CIT, we introduce
a learning strategy called Dual QLoRA, which man-
ages object-level image understanding and complex
VL performance, respectively, to effectively main-
tain both aspects. Figure 6 provides an overview
of Dual QLoRA, where Image-CIT denotes using
crayon instructions to bootstrap object-level image
understanding and training only the first QLoRA
module, while VL-CIT indicates using complex
question-answer pairs from visual instruction tun-
ing datasets to achieve zero-shot VL performance
and training only the second QLoRA module. Dur-
ing CIT, we present an image in the form of Crayon
Prompt to CoLLaVO, and randomly determine
whether to proceed with Image-CIT or VL-CIT.
The overarching objective of Dual QLoRA is to
efficiently preserve both capabilities of object-level
image understanding and complex VL performance.
Note that the key distinction between CPT and
Image-CIT lies in whether the backbone MLM of

CoLLaVO is trained or not. Further details will
be addressed in the following section.

4 Experiments

Implementation Details of CoLLaVO. To
ensure successful reproducibility, we outline the
following five crucial technical details of
CoLLaVO: (a) QLoRA, (b) Crayon Prompt, (c)
instruction detail of Image-CIT and VL-CIT, (d)
training hyper-parameters, and (e) text-generation.

(a): we employ Quantized Low-Rank Adapta-
tion (QLoRA) (Hu et al., 2021; Dettmers et al.,
2023) since CoLLaVO pursues efficient training
with minimal parameter tuning. Double quantiza-
tion and normalized float 4-bit (nf4) are used with
LoRA of r = 64 and α = 64. (b): In contrast
to CPT with only crayon instructions and images
from MS-COCO 2017, CIT is conducted with vi-
sual instruction tuning datasets (Liu et al., 2023c,b;
Chen et al., 2023d) as well. Hence, many images
contain unrecognizable objects, such as text, code,
posters, or mathematical symbols. Consequently, a
panoptic color map with the unknown category and
‘0’ numbering will be generated, and the semantic
query of the unk category and numbering query of
‘0’ will operate to create the Crayon Prompt in these
cases. (c): Once the color map is given with dis-
cernible objects, text descriptions, including object
names, their numbering indices, and their bounding
box coordinates, are added to the question template.
Conversely, if an image contains no objects, the
question template includes the phrase “None of de-
tailed object information for image.” (d): Regard-
ing training, we train CoLLaVO with a batch size
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Figure 7: In (a) and (b), there are three metrics for the mean accuracy over Top-20 object categories, Bottom-20,
and average of all categories to visualize object-level image understanding of VLMs. In (c), zero-shot performances
of VLMs on MME-P (1/20 scaled down of score), SQA-IMG, TextVQA, and SEED-IMG (accuracy) are shown.

of 32 in one epoch using the AdamW (Loshchilov
and Hutter, 2019) optimizer, scheduled by cosine
annealing (Loshchilov and Hutter, 2016) from a
learning rate of 1e-4 to 1e-6 for CPT and from 1e-5
to 1e-6 for CIT, respectively. In addition, h = 35,
w = 35, and d = 4096 are used in Figure 5. (e):
To find the best performance, CoLLaVO uses
greedy or beam search (n = 3) for text generation
without any other hyper-parameters.

Object-level Image Understanding. Before
delving into validating CoLLaVO in VL tasks, it
is crucial to ensure its proficiency in object-level
image understanding. We assessed the accuracy of
80 object categories classified as ‘thing’ (See Ap-
pendix A) in the MS-COCO 2017 across two direc-
tions: Class2Binary (C2B) and Box2Class(B2C),
using four strong baselines: BLIP2, InstructBLIP,
Qwen-VL, and LLaVA1.5. As illustrated in Fig-
ure 7(a)-(b), CoLLaVO nearly outperforms the
baselines in three cases: Top-20, Bottom-20, and
Average for both C2B and B2C. Furthermore, it
has the smallest performance gap between the Top-
20 accuracy and the Bottom-20 accuracy for both
C2B and B2C. Such observation indicates that

CoLLaVO has a solid object-level image un-
derstanding across numerous object classes. Be-
yond its ability, Appendix B shows zero-shot object
grounding performance of CoLLaVO for strong
generalization to grounding-level understanding.

Zero-shot VL Evaluation. Following improved
object-level image understanding, CoLLaVO is
evaluated to measure zero-shot performance of VL
tasks on renowned datasets (See Appendix C). As
shown in Figure 1, 7(c), and Table 1, CoLLaVO
surpasses several closed-source VLMs like GPT-
4V, Gemini-Pro, Qwen-VL-Pro, as well as numer-
ous open-source VLMs (See Appendix D for all
VLMs used in evaluation). Particularly, noteworthy
is its superiority over other models in the follow-

ing benchmarks: MME, MM-Bench, MM-Bench-
Chinese, and Q-Bench, which primarily evaluate
visual perception and cognition abilities, where
CoLLaVO demonstrates its significant margins.

The effectiveness of Crayon Prompt and CIT.
We ablate the following factors in CoLLaVO:
semantic embedding in Crayon Prompt, number-
ing embedding in Crayon Prompt, Dual QLoRA,
Image-CIT, and VL-CIT. As illustrated in Table 2,
it is evident that the semantic and numbering em-
bedding in the Crayon Prompt significantly boost
the zero-shot performance of CoLLaVO on
MME dataset. It is noteworthy that the semantic
embedding alone can improve the zero-shot per-
formance by a large margin, especially in MME-P
with ‘E&P’ scores, implying that injecting object-
level semantics helps the model perceive the exis-
tence of objects better for solid object-level image
understanding. Moreover, the numbering embed-
ding considerably boosts the ‘Count’ score, demon-
strating its effectiveness in differentiating objects
of the same category by further refining the perfor-
mance.

Table 3 demonstrates that Dual QLoRA, Image-
CIT, and VL-CIT contribute to improving zero-shot
performance, respectively. VL-CIT alone exhibits
better performance of 1599.2 in MME-P and 414.1
in MME-C over other open-source VLMs, with
the assistance of the Crayon Prompt. Additionally,
Image-CIT also enhances performance, albeit to
a limited extend without QLoRA, by integrating
crayon instructions into CIT as well as CPT. Fi-
nally, Dual QLoRA produces the most significant
improvement, demonstrating its efficacy in fully
leveraging both aspects of Image-CIT and VL-CIT.

5 Discussion and Conclusion

We have shown the effectiveness of CoLLaVO
alongside Crayon Prompt and Dual QLoRA serving
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VLM GQA SQA-IMG TextVQA POPE MME-P MME-C MM-Bench MMB-CN MM-Vet Q-Bench

BLIP2-13B 42.4 61.0 42.5 85.3 1293.8 290.0 - - 22.4 -
InstructBLIP-7B 49.2 60.5 50.1 - - - 36.0 23.7 26.2 56.7
InstructBLIP-13B 49.5 63.1 50.7 78.9 1212.8 - - - 25.6 -
Shikra-13B - - - - - - 58.8 - - 54.7
IDEFICS-9B 38.4 - 25.9 - - - 48.2 25.2 - -
IDEFICS-80B 45.2 - 30.9 - - - 54.5 38.1 - -
Qwen-VL-7B 59.3 67.1 63.8 - - - 38.2 7.4 - 59.4
Qwen-VL-Chat-7B 57.5 68.2 61.5 - 1487.5 360.7 60.6 56.7 - -
MiniGPT-4-7B 43.5 - - - 581.7 - 23.0 - 22.1 -
Otter-7B - - - - 1292.3 - 48.3 - 24.6 47.2
LLaVA-7B - 38.5 - - 807.0 247.9 34.1 14.1 26.7 -
MiniGPT-v2-7B 60.3 - - - - - - - - -
MiniGPT-v2-Chat-7B 60.1 - - - - - - - - -
LLaVA1.5-7B 62.0 66.8 58.2 85.9 1510.7 293.8 64.3 58.3 30.5 58.7
LLaVA1.5-13B 63.3 71.6 61.3 85.9 1531.3 295.4 67.7 63.6 35.4 62.1
mPLUG-Owl-7B - - - - 967.3 - 46.6 - - 58.9
mPLUG-Owl2-7B 56.1 68.7 58.2 1450.2 - 64.5 - 36.2 62.9
ShareGPT4V-7B - 68.4 - 1567.4 376.4 68.8 62.2 37.6 63.4
CogVLM-17B 56.1 68.7 58.2 - - 65.8 55.9 54.5 -
LLaVA-XTuner-20B - - - - - - 75.1 73.7 37.2 -
Intern-XC-7B - - - 1528.4 391.1 74.4 72.4 35.2 64.4

CoLLaVO-7B 61.4 80.7 64.2 87.2 1689.7 525.0 83.0 82.1 40.3 67.6

Table 1: Evaluating zero-shot performances of CoLLaVO on ten vision language datasets compared with the
current powerful VLMs such as InstructBLIP, Qwen-VL, LLaVA1.5, and so forth.

Crayon Prompt MME

Sem-Query Num-Query MME-P MME-C E&P Count

✗ ✗ 1553.4 375.0 288.3 141
✓ ✗ 1636.7 482.1 310.6 147
✓ ✓ 1689.7 525.0 341.6 160

Table 2: Controlling semantic and numbering queries in
crayon prompt. Note: ‘E&P’ denotes the score of the
existence and position, and ‘Count’ denotes the score to
understand the numbering.

CIT MME

Dual Q-LoRA Image-CIT VL-CIT MME-P MME-C E&P Count

✗ ✗ ✓ 1599.2 414.1 298.6 145
✗ ✓ ✓ 1620.5 456.2 308.3 146
✓ ✓ ✓ 1689.7 525.0 341.6 160

Table 3: Controlling Dual QLoRA, Image-CIT, and VL-
CIT in conducting CIT.

as a key in enhancing the object-level image under-
standing. Notably, Figure 8(a) illustrates the im-
pressive ability of CoLLaVO achieving cutting-
edge zero-shot performance with a relatively small
size, thanks to its grasp of object-level understand-
ing validated in SEED-IMG (Li et al., 2023b) with
9 types of questions on spatial understandings of
images. Even from the perspective of hallucina-
tion, Figure 8(b) and Appendix E demonstrate
that CoLLaVO reduces hallucination due to im-
proved object-level image understanding, satisfac-
torily compared to both closed-source and open-
source VLMs on POPE (Li et al., 2023d) and Hal-
lusionBench (Liu et al., 2023a). This suggests that
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Figure 8: Demonstrating the efficiency and effectiveness
of CoLLaVO compared with those of other VLMs.
Note that accuracy is measured on SEED-IMG and Hal-
lusionBench dataset.

while many researchers have dramatically scaled up
their models and curated their own visual instruc-
tion tuning datasets, tackling object-level image
understanding proves to be an effective strategy.
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6 Limitations

Crayon Prompts, relying on a panoptic color map,
which is an external source beyond VLMs, may
be constrained by the performance of the seg-
mentation model and its encompassing number
of object classes. Despite this, we have achieved
commendable scores across all zero-shot tasks.
It is expected for CoLLaVO to further im-
prove once it incorporates a plethora of visual
prompts obtained from diverse sources like ro-
bust object classification or image captioning mod-
els (Lee et al., 2020, 2022, 2023; Kim et al., 2023c),
object-centric causally human-interpretable infor-
mation (Kim et al., 2021, 2023b), open object de-
tection (Zhang et al., 2023a), visual grounding (Liu
et al., 2023d; Ren et al., 2024), interactive or unsu-
pervised segmentation (Kirillov et al., 2023; Kim
et al., 2023a), optical characteristic recognition
model (Bautista and Atienza, 2022), and other
fascinating approaches (Lee et al., 2024a,b; Park
et al., 2024b,a; Kim et al., 2024). Beyond its limita-
tion, we believe our promising direction for crayon
prompt-like visual cues surely further improve on
image understanding for human-like AGI.

7 Ethics Statement

We affirm that all research presented in this paper
adheres to the principles of ethical conduct and in-
tegrity. The experiments conducted and the results
reported are based on rigorous scientific methods
and strive to contribute positively to the field of
vision language models. All datasets used in this
study: MS-COCO 2017 (Lin et al., 2014) and vi-
sual instruction datasets (Liu et al., 2023c,b; Chen
et al., 2023d) were obtained and analyzed in com-
pliance with relevant regulations and guidelines
for research ethics and data privacy. In addition,
any potential limitations have been transparently
discussed, so we are committed to upholding the
highest standards of integrity, accountability, and
respect for communities affected by our research.

1129



References
Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan,

and Phillip Isola. 2022. Exploring visual prompts
for adapting large-scale models. arXiv preprint
arXiv:2203.17274.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Darwin Bautista and Rowel Atienza. 2022. Scene text
recognition with permuted autoregressive sequence
models. In European Conference on Computer Vi-
sion, pages 178–196. Springer.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gre-
gory P Meyer, Yuning Chai, Dennis Park, and
Yong Jae Lee. 2023. Making large multimodal
models understand arbitrary visual prompts. arXiv
preprint arXiv:2312.00784.

Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua
Zhang, and Sijia Liu. 2023a. Understanding and
improving visual prompting: A label-mapping per-
spective. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 19133–19143.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yunyang Xiong, and Mohamed
Elhoseiny. 2023b. Minigpt-v2: large language model
as a unified interface for vision-language multi-task
learning. arXiv preprint arXiv:2310.09478.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. 2023c. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv
preprint arXiv:2306.15195.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023d. Sharegpt4v: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Bowen Cheng, Ishan Misra, Alexander G Schwing,
Alexander Kirillov, and Rohit Girdhar. 2022.
Masked-attention mask transformer for universal im-
age segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 1290–1299.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul

Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

XTuner Contributors. 2023. Xtuner: A toolkit for
efficiently fine-tuning llm. https://github.com/
InternLM/xtuner.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. InstructBLIP: Towards
general-purpose vision-language models with instruc-
tion tuning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021.
Taming transformers for high-resolution image syn-
thesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
12873–12883.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive
evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394.

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang,
Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang,
Ping Luo, and Kai Chen. 2023. Multimodal-gpt: A
vision and language model for dialogue with humans.
arXiv preprint arXiv:2305.04790.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

1130

https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner


Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700–6709.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1821–
1831.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire
Cardie, Serge Belongie, Bharath Hariharan, and Ser-
Nam Lim. 2022. Visual prompt tuning. In Euro-
pean Conference on Computer Vision, pages 709–
727. Springer.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. ReferItGame: Referring to
objects in photographs of natural scenes. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 787–
798, Doha, Qatar. Association for Computational
Linguistics.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min-
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In
Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part IV 14, pages 235–251.
Springer.

Junho Kim, Byung-Kwan Lee, and Yong Man Ro. 2021.
Distilling robust and non-robust features in adversar-
ial examples by information bottleneck. Advances in
Neural Information Processing Systems, 34:17148–
17159.

Junho Kim, Byung-Kwan Lee, and Yong Man Ro.
2023a. Causal unsupervised semantic segmentation.
arXiv preprint arXiv:2310.07379.

Junho Kim, Byung-Kwan Lee, and Yong Man Ro.
2023b. Demystifying causal features on adversarial
examples and causal inoculation for robust network
by adversarial instrumental variable regression. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12302–
12312.

Seongyeop Kim, Hyung-Il Kim, and Yong Man Ro.
2024. Improving open set recognition via visual
prompts distilled from common-sense knowledge. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 2786–2794.

Yeonju Kim, Junho Kim, Byung-Kwan Lee, Sebin Shin,
and Yong Man Ro. 2023c. Mitigating dataset bias
in image captioning through clip confounder-free
captioning network. In 2023 IEEE International
Conference on Image Processing (ICIP), pages 1720–
1724. IEEE.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen
Lo, Piotr Dollar, and Ross Girshick. 2023. Segment
anything. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
4015–4026.

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas
Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
Wang, Siddharth Karamcheti, Alexander M Rush,
Douwe Kiela, et al. 2023. Obelisc: An open web-
scale filtered dataset of interleaved image-text docu-
ments. arXiv preprint arXiv:2306.16527.

Byung-Kwan Lee, Chae Won Kim, Beomchan Park,
and Yong Man Ro. 2024a. Meteor: Mamba-based
traversal of rationale for large language and vision
models. arXiv preprint arXiv:2405.15574.

Byung-Kwan Lee, Junho Kim, and Yong Man Ro. 2022.
Masking adversarial damage: Finding adversarial
saliency for robust and sparse network. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15126–15136.

Byung-Kwan Lee, Junho Kim, and Yong Man Ro. 2023.
Mitigating adversarial vulnerability through causal
parameter estimation by adversarial double machine
learning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4499–
4509.

Byung-Kwan Lee, Beomchan Park, Chae Won Kim,
and Yong Man Ro. 2024b. Moai: Mixture of all
intelligence for large language and vision models.
arXiv preprint arXiv:2403.07508.

Byung-Kwan Lee, Youngjoon Yu, and Yong Man Ro.
2020. Towards adversarial robustness of bayesian
neural network through hierarchical variational infer-
ence.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023a. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023b. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023c. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023d. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:

1131

https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.3115/v1/D14-1086


Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer.

Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen,
Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou.
2023a. Hallusionbench: You see what you think? or
you think what you see? an image-context reasoning
benchmark challenging for gpt-4v (ision), llava-1.5,
and other multi-modality models. arXiv preprint
arXiv:2310.14566.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023b. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023c. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. 2023d. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Weihuang Liu, Xi Shen, Chi-Man Pun, and Xiaodong
Cun. 2023e. Explicit visual prompting for low-
level structure segmentations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19434–19445.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2023f. Mm-
bench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek
Lim, Geunyoung Jung, Jiyoung Jung, Hosik Choi,
and Kyungwoo Song. 2023. Blackvip: Black-box
visual prompting for robust transfer learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 24224–24235.

OpenAI. 2023a. Gpt-4v(ision) system card. https:
//openai.com/research/gpt-4v-system-card,
Last accessed on 2024-02-13.

OpenAI. 2023b. Gpt-4v(ision) technical work and
authors. https://openai.com/contributions/
gpt-4v, Last accessed on 2024-02-13.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Sungjune Park, Hyunjun Kim, and Yong Man Ro. 2024a.
Integrating language-derived appearance elements
with visual cues in pedestrian detection. IEEE Trans-
actions on Circuits and Systems for Video Technol-
ogy.

Sungjune Park, Hyunjun Kim, and Yong Man Ro. 2024b.
Robust pedestrian detection via constructing versatile
pedestrian knowledge bank. Pattern Recognition,
153:110539.

Shraman Pramanick, Guangxing Han, Rui Hou, Sayan
Nag, Ser-Nam Lim, Nicolas Ballas, Qifan Wang,
Rama Chellappa, and Amjad Almahairi. 2023. Jack
of all tasks, master of many: Designing general-
purpose coarse-to-fine vision-language model. arXiv
preprint arXiv:2312.12423.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748–8763. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-
chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang
Chen, Feng Yan, et al. 2024. Grounded sam: As-
sembling open-world models for diverse visual tasks.
arXiv preprint arXiv:2401.14159.

Mark Sandler, Andrey Zhmoginov, Max Vladymyrov,
and Andrew Jackson. 2022. Fine-tuning image trans-
formers using learnable memory. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12155–12164.

Aleksandar Shtedritski, Christian Rupprecht, and An-
drea Vedaldi. 2023. What does clip know about a red
circle? visual prompt engineering for vlms. arXiv
preprint arXiv:2304.06712.

1132

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card
https://openai.com/contributions/gpt-4v
https://openai.com/contributions/gpt-4v


Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8317–8326.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

InternLM Team. 2023. Internlm: A multilin-
gual language model with progressively enhanced
capabilities. https://github.com/InternLM/
InternLM-techreport.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. Advances in neural
information processing systems, 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex-
pert for pretrained language models. arXiv preprint
arXiv:2311.03079.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng
Chen, Liang Liao, Annan Wang, Chunyi Li, Wenxiu

Sun, Qiong Yan, Guangtao Zhai, et al. 2023. Q-
bench: A benchmark for general-purpose founda-
tion models on low-level vision. arXiv preprint
arXiv:2309.14181.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023a. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. arXiv preprint arXiv:2310.11441.

Lingfeng Yang, Yueze Wang, Xiang Li, Xinlong Wang,
and Jian Yang. 2023b. Fine-grained visual prompting.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023a.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Haowei
Liu, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou.
2023b. mplug-owl2: Revolutionizing multi-modal
large language model with modality collaboration.
arXiv preprint arXiv:2311.04257.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. 2024. Ferret: Refer and
ground anything anywhere at any granularity. In
The Twelfth International Conference on Learning
Representations.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Hao Zhang, Feng Li, Xueyan Zou, Shilong Liu, Chun-
yuan Li, Jianwei Yang, and Lei Zhang. 2023a. A
simple framework for open-vocabulary segmentation
and detection. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages
1020–1031.

Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao
Xu, Linke Ouyang, Zhiyuan Zhao, Shuangrui Ding,
Songyang Zhang, Haodong Duan, Hang Yan, et al.
2023b. Internlm-xcomposer: A vision-language
large model for advanced text-image comprehension
and composition. arXiv preprint arXiv:2309.15112.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie
Li, Jianfeng Gao, and Yong Jae Lee. 2023. Segment
everything everywhere all at once. arXiv preprint
arXiv:2304.06718.

1133

https://github.com/InternLM/InternLM-techreport
https://github.com/InternLM/InternLM-techreport
https://openreview.net/forum?id=l6R4Go3noz
https://openreview.net/forum?id=2msbbX3ydD
https://openreview.net/forum?id=2msbbX3ydD


A COCO Classes for Panoptic Color Map

COCO Panoptic Classes

person bicycle car motorcycle
airplane bus train truck

boat traffic light fire hydrant stop sign
parking meter bench bird cat

dog horse sheep cow
elephant bear zebra giraffe
backpack umbrella handbag tie
suitcase frisbee skis snowboard

sports ball kite baseball bat baseball glove
skateboard surfboard tennis racket bottle
wine glass cup fork knife

spoon bowl banana apple
sandwich orange broccoli carrot
hot dog pizza donut cake

chair couch potted plant bed
dining table toilet tv laptop

mouse remote keyboard cell phone
microwave oven toaster sink
refrigerator book clock vase

scissors teddy bear hair drier toothbrush
banner∗ blanket∗ bridge∗ cardboard∗

counter∗ curtain∗ door∗ floor-wood∗

flower∗ fruit∗ gravel∗ house∗

light∗ mirror∗ net∗ pillow∗

platform∗ playingfield∗ railroad∗ river∗

road∗ roof∗ sand∗ sea∗

shelf∗ snow∗ stairs∗ tent∗

towel∗ wall-brick∗ wall-stone∗ wall-tile∗

wall-wood∗ water∗ window-blind∗ window∗

tree∗ fence∗ ceiling∗ sky∗

cabinet∗ table∗ floor∗ pavement∗

mountain∗ grass∗ dirt∗ paper∗

food∗ building∗ rock∗ wall∗

rug∗

∗: Object class that is not classified as ‘thing’ (countable) but ‘stuff’ (uncountable)
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B Grounding-level Image Understanding

RefCOCO RefCOCO+ RefCOCOg

Model val testA testB val testA testB val test

Shikra-7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19
Ferret-7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76
VistaLLM-7B 88.10 91.50 83.00 82.90 89.80 74.80 83.60 84.40
Qwen-VL-7B 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48
CogVLM-Grounding-17B 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79
CoLLaVO-7B 87.34 91.08 82.39 80.87 86.36 73.20 82.44 82.33

Table 4: Comparing object grounding performances of Shikra (Chen et al., 2023c), Ferret (You et al., 2024),
VistalLLM (Pramanick et al., 2023), Qwen-VL (Bai et al., 2023), CogVLM-Grounding (Wang et al., 2023), and
CoLLaVO on several object grounding benchmarks: RefCOCO, RefCOCO+, and RefCOCOg (Kazemzadeh et al.,
2014). Even though CoLLaVO did not use object grounding dataset (RefCOCO) in training phase, CoLLaVO
shows comparable zero-shot object grounding performances, compared with (no zero-shot) other models specifically
targeting object grounding task trained with RefCOCO grounding dataset.

C Zero-shot Vision Language Datasets used in Evaluation

• GQA (Hudson and Manning, 2019) is a visual question answering dataset comprising real-world
images annotated with scene graphs. It tackles the issue of semantic compositionality by utilizing
semantic representations of scenes and questions. It encompasses 22 million questions covering a
wide array of images, each associated with structured representations of image objects, attributes,
and relations.

• SQA-IMG (Iyyer et al., 2017), a subset of the ScienceQA (SQA) dataset that includes image context,
comprises 10,332 multiple-choice questions sourced from elementary and high school science
education materials, covering diverse sub-fields. A majority of the questions in the SQA dataset
are accompanied by supplementary lectures (83.9%) and detailed explanations (90.5%), enriching
understanding with broader knowledge and specific reasoning for correct answers.

• TextVQA (Singh et al., 2019) is a large-scale complex benchmark to analyze and understand text
embedded within images in order to respond to associated questions. This involves integrating
textual information present within images and reasoning over it to provide answers. The dataset
comprises 28,408 images sourced from OpenImages, accompanied by 45,336 questions and 453,360
corresponding ground truth answers.

• POPE (Li et al., 2023d) serves as a polling-based binary classification query dataset, tailored to
assess object hallucination challenges within VLMs. It comprises three distinct subsets, i.e., random,
popular, and adversarial, each crafted using varied sampling techniques, resulting in a total of 8,910
entries.

• MME (Fu et al., 2023) is introduced as a novel comprehensive benchmark aimed at assessing
the performance of VLMs by measuring both perception and cognition abilities across 14 sub-
tasks. To mitigate potential data leakage issues associated with public datasets, all annotations for
instruction-answer pairs are manually designed.

• MMBench, MMBench-Chinese (Liu et al., 2023f) establish a comprehensive evaluation framework
spanning multiple modalities. These frameworks encompass around 3000 multiple-choice questions
addressing 20 distinct capability dimensions in both English and Chinese languages. An innovative
approach is introduced through the integration of ChatGPT into the evaluation process.
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• MM-Vet (Yu et al., 2023) is a multi-modal assessment benchmark that assesses a broad range of
capabilities essential for handling real-world scenarios, such as solving mathematical problems or
interpreting visual humor. The dataset consists of 187 images collected from diverse online platforms
and presents 205 questions, each requiring the application of one or more capabilities for an answer.
These questions vary in type and necessitate open-ended responses of varying lengths.

• Q-Bench (Wu et al., 2023) evaluates VLMs across three dimensions relevant to low-level vision:
perception, description, and assessment. To assess perception, the framework utilizes 2,990 diverse
images, each accompanied by a human-generated question focusing on its low-level attributes. For
evaluating VLMs’ description regarding low-level information, human-labeled textual descriptions
for 499 images are utilized, alongside a comparison pipeline involving GPT. Additionally, the
framework assesses VLMs’ visual quality assessment abilities, aiming to align with human opinion
scores.

• MathVista (Lu et al., 2023) assesses VLMs’ mathematical reasoning ability within visual contexts,
with 6,141 examples sourced from 28 existing multimodal datasets on mathematics. MathVista
provides a comprehensive evaluation platform, requiring meticulous visual comprehension and
compositional reasoning, posing challenges even to state-of-the-art foundational models.

• AI2D (Kembhavi et al., 2016), or AI2 Diagrams, is a dataset comprising over 5,000 grade school
science diagrams. It includes comprehensive annotations of constituents and relationships, along
with rich syntactic parses and over 15,000 corresponding multiple-choice questions.

• SEED-IMG (Li et al., 2023b) comprises a subset of SEED-Bench, focusing on the image modality.
The original SEED-Bench includes 19,000 multiple-choice questions with precise human annotations,
covering 12 evaluation dimensions, including comprehension of both image and video modalities.

• HallusionBench (Liu et al., 2023a) introduces a comprehensive benchmark tailored for evaluating
image-context reasoning abilities. It prioritizes nuanced comprehension and interpretation of visual
information. The benchmark consists of 346 images accompanied by 1129 expert-crafted questions,
enabling a quantitative analysis of model response tendencies, logical consistency, and diverse failure
modes.

D Vision Language Models used in Evaluation

• BLIP2 (Li et al., 2023c) introduces Q-Former that serves as an intermediary between frozen unimodal
models, extracting pertinent visual features from a frozen image encoder and providing them to a
frozen large language model to generate text.

• InstructBLIP (Dai et al., 2023) presents a vision-language instruction tuning framework designed
to address the challenges of generalizing to diverse tasks, through a systematic study involving 26
datasets transformed into instruction tuning format across 11 task categories.

• Shikra (Chen et al., 2023c) proposes a unified model designed for referential dialogue tasks, which
encompass various vision-language tasks such as VQA, image captioning, and location-related tasks
like referring expression comprehension and PointQA.

• IDEFICS (Laurençon et al., 2023) introduces a curated web-scale dataset comprising 141 million
multimodal English web documents, each containing associated images and text, totaling 353M
images and 115B tokens. They aim to provide full multimodal documents preserving the natural
context of images within web pages.

• Qwen-VL, Qwen-VL-Chat (Bai et al., 2023) introduces Qwen-VL series, a collection of highly
performant and versatile vision-language models based on Qwen language model. They support
multiple languages and handling of multi-image inputs, and fine-grained visual understanding
capabilities.
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• MiniGPT-4 (Zhu et al., 2023) presents a vision-language model that combines Vicuna with freezed
pre-trained vision components of Q-Former from BLIP2, aiming to replicate the exceptional capa-
bilites demonstrated by GPT-4.

• MiniGPT-v2 (Chen et al., 2023b) is designed to effectively handle multiple vision-language tasks by
employing a task-oriented instructiom training scheme, through three training stage and utilization
of higher-resolution images.

• Otter (Li et al., 2023a) addresses the gap between DeepMind Flamingo by employing OpenFlamingo
and multi-modal in-context instruction tuning (MIMIC-IT) dataset.

• LLaVA (Liu et al., 2023c,b) first introduces the concept of visual instruction tuning, extending
language only instruction tuning to vision language instruction tuning to develop a general-purpose
visual assistant.

• LLaVA-XTuner (Contributors, 2023) is a tool to fine-tune LLaVA to achieve general-purpose model.

• mPLUG-Owl (Ye et al., 2023a) introduces a modularized training paradigm for large multi-modal
language models capable of supporting multiple modalities simultaneously. Inspired by modulariza-
tion concepts, their method integrates pre-trained language models, visual knowledge modules, and
visual abstractor modules to achieve effective alignment between images and text.

• mPLUG-Owl2 (Ye et al., 2023b) features a modularized network design to handle both modality
collaboration and interference. They introduce shared functional modules to promote collaboration
and a modality-adaptive module to manage different modalities effectively.

• ShareGPT4V (Chen et al., 2023d) argues that current Large multi-modal models face sub-optimal
modality alignment due to the lack of high-quality image-text pairs. To address this issue, they
collected high-quality captions on a larger scale in two phases. This effort led to the creation of the
ShareGPT4V dataset, comprising 100K GPT4-Vision generated captions and 1.2M captions crafted
by their caption model.

• CogVLM (Wang et al., 2023) handles challenges of the lack of direct equivalence between visual and
textual input spaces. They introduce a trainable visual expert to the language model, where it allows
for the retention of natural language processing capabilities while enhancing visual understanding
abilities.

• Intern-XC (Zhang et al., 2023b) is trained to generate long-form content interleaved with contextually
relevant images, based on a multilingual vision-language dataset comprising over 11M semantic
concepts collected from public websites, thereby enhancing vision-language interactions.

• MM-GPT (Gong et al., 2023) fine-tune OpenFlamingo using comprehensive datasets of image
and text instructions to conduct multi-turn image-text dialogues more closely aligned with human
preferences. A perceiver resampler is used for efficient visual information extraction and gated
cross-attention layers for image-text interactions.
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E Detail of POPE dataset for Hallucination

Types Metrics LLaVA MiniGPT-4 MM-GPT mPLUG-Owl InstructBLIP Shikra CoLLaVO

A
dv

er
sa

ri
al Accuracy 49.7 65.2 50.0 50.7 72.1 83.1 86.8

Precision 49.6 61.2 50.0 50.3 65.1 85.6 96.3
Recall 99.1 82.9 100. 99.3 95.1 79.6 76.5

F1-Score 66.3 70.4 66.7 66.8 77.3 82.5 85.2

R
an

do
m

Accuracy 50.4 49.7 50.1 54.0 88.6 86.9 87.4
Precision 50.2 78.2 50.1 52.1 84.1 94.4 98.1

Recall 99.1 82.2 100. 99.6 95.1 79.3 76.2
F1-Score 66.6 80.1 66.7 68.4 89.3 86.2 85.8

Po
pu

la
r Accuracy 49.9 69.7 50.0 50.9 82.8 84.0 87.6

Precision 49.9 65.9 50.0 50.5 76.3 87.6 98.0
Recall 99.3 81.9 100. 99.4 95.1 79.2 76.8

F1-Score 66.4 73.0 66.7 66.9 84.7 83.2 86.1

Table 5: Measuring four metrics: Accuracy, Precision, Recall, F1-score on three types of question answering to
evaluate hallucination of vision language models: Adversarial, Random, and Popular in POPE.
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