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Abstract

Direct preference optimization (DPO) is a
successful fine-tuning strategy for aligning
large language models with human preferences
without the need to train a reward model or
employ reinforcement learning. DPO, as
originally formulated, relies on binary prefer-
ence data and fine-tunes a language model to
increase the likelihood of a preferred response
over a dispreferred response. However, not
all preference pairs are equal. Sometimes,
the preferred response is only slightly better
than the dispreferred one. In other cases, the
preference is much stronger. For instance, if
a response contains harmful or toxic content,
the annotator will have a strong preference
for that response. In this paper, we propose
a generalization of DPO, termed DPO with
an offset (ODPO), that does not treat every
preference pair equally during fine-tuning.
Intuitively, ODPO requires the difference
between the likelihood of the preferred and
dispreferred response to be greater than an
offset value. The offset is determined based on
the extent to which one response is preferred
over another. Our experiments on various tasks
suggest that ODPO significantly outperforms
DPO in aligning language models, especially
when the number of preference pairs is limited.

https://github.com/rycolab/odpo

1 Introduction

Reinforcement learning from human feedback
(RLHF) is a key building block in training the most
modern large language models. The algorithm
aligns the language model’s responses to human
preferences (Ouyang et al., 2022; Touvron et al.,
2023; Anil et al., 2023; OpenAI et al., 2023). A typ-
ical implementation of RLHF is as follows. First,
humans compare paired responses from a language
model, i.e., they determine which of the responses
is better, e.g., more helpful or less toxic. Second,
a reward model is trained to give higher rewards
to the responses preferred by humans. Lastly, a
reinforcement learning algorithm is used to update

the model’s parameters to maximize the expected
reward, while not diverging too much from the
model’s initial parameters.

The aforementioned implementation of RLHF,
however, is tedious for two reasons. First, the
reward model is usually a model as large as the
language model itself, which is expensive to
train and store. Second, reinforcement learning
algorithms are known to be very sensitive to the
choice of hyperparameters (Zheng et al., 2023),
and, thus, hard to tune. Therefore, a fruitful line
of work attempts to design alternative simpler
implementations of RLHF (Welleck et al., 2020;
Lu et al., 2022; Zhao et al., 2023).

A highly successful and straightforward alter-
native to RLHF is direct preference optimiza-
tion (DPO; Rafailov et al., 2023). Unlike the con-
ventional implementation of RLHF, DPO does not
train a reward model and sidesteps the use of any
reinforcement learning algorithm. Instead, it fine-
tunes the language model’s weights to maximize
the likelihood of the preference data directly us-
ing the Bradley–Terry model (Bradley and Terry,
1952). Intuitively, each DPO gradient update to the
model’s parameters increases the likelihood of the
preferred response and decreases the likelihood of
the dispreferred response.

However, DPO only takes the ordering between
the model’s responses into account and not the ex-
tent to which one response is preferred over another.
In many settings, the difference in quality between
the two responses is known—either by asking hu-
mans (Stiennon et al., 2020; Touvron et al., 2023)1

or through point-wise scores, e.g., toxicity scores,
sentiment scores, code-based execution scores, etc.
In that context, a natural question is the following:
how can we make use of this information to better
align language models with human preferences?

To answer this question, we propose a new
method, which we term DPO with an offset

1For example, Touvron et al. (2023) ask humans to specify
the extent to which they prefer one output over another, i.e.,
by choosing from: significantly better, better, slightly better,
negligibly better / unsure.
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Figure 1: ODPO takes into account the extent to which one output should be preferred over another. The model
has to put more probability mass on the preferred output compared to the dispreferred output by an offset that is
determined based on how much the winning output is preferred over the losing output.

(ODPO). ODPO is a generalization of DPO that in-
corporates the difference between responses when
modeling preference data. The intuition behind
ODPO is simple; it requires the language model to
increase the likelihood of the preferred responses
compared to the dispreferred responses by an
offset that is determined based on the difference
between their associated reward values. Therefore,
the larger the reward of the preferred response in
comparison to the dispreferred response, the higher
the likelihood needs to be over the likelihood of
the dispreferred response. We further show that
when the offset is set to zero, ODPO is equivalent
to DPO. This process is illustrated in Fig. 1.

In our experiments, we fine-tune language
models of various sizes with DPO and ODPO
and compare the two methods. In cases where a
ground-truth reward function is given, we measure
two competing metrics: (i) the average reward
associated with the generations from the fine-tuned
model, and (ii) the KL divergence between the
language model before and after the fine-tuning.
Based on the results of sentiment and toxicity
control tasks, we observe that ODPO more often
appears on the Pareto frontier of reward and KL
compared to DPO. We then apply ODPO to a
summarization task, where we use the scores
given by humans on a Likert scale to define an
offset between the two summaries. We observe
that on average and across different sampling
temperatures, ODPO results in a higher win rate
over human-written summaries compared to DPO.

2 Preliminaries

Given a prompt x ∈ Σ∗, a language model πθ is
a distribution over the responses y ∈ Σ∗, where Σ
is the alphabet.2 As is standard, we parameterize
the conditional distribution over responses given a

2An alphabet is a finite, non-empty set.

prompt as an autoregressive language model πθ(y |
x) parameterized by θ as,

πθ(y | x) =

πθ(EOS | y,x)
T∏

t=1

πθ(yt | y<t,x),
(1)

where EOS /∈ Σ is a distinguished end-of-sequence
token. To deploy a language model to a down-
stream task, it is usually necessary to additionally
fine-tune it on high-quality data. Given a dataset of
prompts and desired responses (x,y) ∼ DSFT, the
standard fine-tuning objective (to be maximized) is
simply the log-likelihood of DSFT

J ML(θ) = E
(x,y)∼DSFT

[
log πθ(y | x)

]
. (2)

We use πSFT to refer to the language model fine-
tuned with this objective on DSFT.

Such a fine-tuning approach can be effective
for solving downstream tasks with language mod-
els. However, there is a disparity between the
maximum-likelihood objective and the goal of the
downstream task, which is to leverage the lan-
guage model to generate high-quality responses, as
judged by humans. This misalignment arises partly
because the maximum-likelihood objective, Eq. (2),
fails to distinguish between major and minor er-
rors. For instance, when fine-tuning a language
model to perform summarization, a significant er-
ror might involve hallucination, while a minor one
might involve a failure to employ the appropriate
synonyms (Stiennon et al., 2020). Training with
the maximum-likelihood objective encourages the
model to assign nonzero probability mass to all
responses in DSFT, even those of lower quality.

To address this issue, one can optimize the ex-
pected reward of language model generations in-
stead of using the maximum-likelihood objective.
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Consider a reward function r(x,y), estimated from
quality assessments performed by humans. The
reward function assigns real values to prompt–
response pairs; we will discuss in §3 how such a
reward model can be learned from human feedback.
Our objective is to make sure that the responses
generated by the language model have high quality.
Therefore, we can directly optimize the expected
reward of the responses generated by the language
model,

J RL(θ) = E
x∼D,y∼πθ(·|x)

[
r(x,y)

]
, (3)

where D = {x(n)}Nn=1 is a multiset of prompts. To
prevent reward hacking (Amodei et al., 2016) and
to make sure that we do not diverge too much from
the supervised fine-tuned model πSFT, a regulariza-
tion term is often added to the objective (Stiennon
et al., 2020),

J RL(θ) = E
x∼D,y∼πθ(·|x)

[
r(x,y)

]

− β DKL

[
πθ(y | x) ∥πSFT(y | x)

]
.

(4)

The above objective is optimized using proximal
policy optimization (PPO; Schulman et al., 2017)
or another actor–critic algorithm (Mnih et al., 2016;
Glaese et al., 2022).

3 Reward Modeling

Pointwise Rewards. A key component in
Eq. (4) is the task-dependent reward function
that assigns pointwise real-valued rewards to
each output. In many tasks, learning such reward
functions is straightforward. For example, in
open-ended text generation, a desired attribute
could be the presence of indicators of positive
sentiment in the generated text, while an undesired
attribute could be toxicity. In such cases, the
reward model might take the form of a classifier
that assesses responses based on their sentiment
or toxicity. Similarly, in code generation tasks, the
quality of the code can be automatically evaluated,
providing another straightforward example.

Pairwise Preferences. Learning a point-wise re-
ward function for tasks like summarization or dia-
logue generation is more complex. Judging the ab-
solute quality of a summary can depend on several
factors, e.g., coherence, faithfulness, and concise-
ness, which makes it hard to collect human feed-
back datasets for reward model training. An effec-

tive strategy in such cases is to collect human pref-
erences instead of point-wise judgments (Ziegler
et al., 2020; Wu et al., 2021; Ouyang et al., 2022).
In this setup, humans are shown two (or more) re-
sponses to a prompt x and are asked to select the
response they prefer. Therefore, a datapoint in a hu-
man feedback dataset is a triple (x,yw,yl) ∼ DHF,
where yw is preferred over yl. Given such a dataset,
one needs to learn the point-wise reward function.
It is common to assume that the preference data
can be modeled by a Bradley–Terry model (Bradley
and Terry, 1952),

pBT(yw ≻ yl | x)

=
exp

(
r(x,yw)

)

exp
(
r(x,yw)

)
+ exp

(
r(x,yl)

) (5a)

= σ
(
r(x,yw)− r(x,yl)

)
, (5b)

where σ(x) = 1
1+exp(−x) is the sigmoid function.

Assuming that DHF ∼ pBT, we can train a reward
model rϕ, parameterized by ϕ, as a binary clas-
sifier that maximizes the following log-likelihood

E
[
log σ

(
rϕ(x,yw)− rϕ(x,yl)

)]
, (6)

where the expectation is over (x,yw,yl) ∼ DHF.
Intuitively, the reward function should assign
higher reward values to the responses that are
preferred by humans. The estimated reward
function is then plugged into Eq. (4) to enable
policy estimation.

It is often the case that directly optimizing Eq. (4)
is complex and resource-intensive. Next, we will
elaborate on an alternative method to using RLHF
that has demonstrated comparable or even superior
effectiveness to PPO.

4 Direct Preference Optimization

Rafailov et al. (2023) introduce a method to
avoid reward model training and, thus, to directly
optimize the language model. Their method,
termed direct preference optimization (DPO)
works as follows. The critical observation is that
the optimal solution that maximizes the Eq. (4) is,

π⋆
θ(y | x) = (8)

1

Z(x)
πSFT(y | x) exp

( 1

β
r(x,y)

)
,

where

Z(x) =
∑

y∈Σ∗
πSFT(y | x) exp

( 1

β
r(x,y)

)
, (9)
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LDPO(θ) = − E
(x,yw,yl)∼DHF

[
log σ

(
β log

πθ(yw | x)
πSFT(yw | x) − β log

πθ(yl | x)
πSFT(yl | x)

)]
(7a)

= − E
(x,yw,yl)∼DHF

[
log σ

(
r̂θ(x,yw)− r̂θ(x,yl)

)]
(7b)

LODPO(θ) = − E
(x,yw,yl)∼DHF

[
log σ

(
r̂θ(x,yw)− r̂θ(x,yl)−∆r

)]
(7c)

Note that Z(x) is, in general, difficult to compute
as it involves a sum over a countably infinite set.
Nevertheless, we can write the reward as a function
of π⋆

θ by rearranging the terms,

r(x,y) = β log
π⋆
θ(y | x)

πSFT(y | x) + β logZ(x). (10)

Under the assumption that the preference data
is well-modeled by the Bradley–Terry model
(Eq. (5a)), we substitute the reward in Eq. (6) with
Eq. (10), and formulate the loss function in terms
of the language model parameters. Therefore, we
directly optimize the language model by maximiz-
ing the likelihood of the preference data in Eq. (7b).
In this equation, r̂θ(x,y) = β log πθ(y|x)

πSFT(y|x) is
called the estimated reward. Note that the
intractable normalization factor Z(x) cancels out.

Simply put, Eq. (7b) requires the estimated re-
ward for the preferred response to be larger than
the estimated reward for the dispreferred response.
A strong assumption behind the DPO’s loss is that
the preference data is well-modeled by a Bradley–
Terry model. However, the Bradley–Terry model
only tells us the probability that one response is
preferred over another, and not the extent to which
this preference will hold. To enhance DPO, we will
introduce our modification to DPO, which gener-
alizes DPO and introduces an offset between the
responses in its loss function.

5 DPO with an Offset

The intuition behind ODPO is simple: we want the
estimated reward for the preferred response to be
larger than the estimated reward for the dispreferred
response, by an offset that is a function of the actual
reward differences assigned to the two responses.
To begin our exposition of ODPO, we first discuss
the connection between the Bradley–Terry model
and Gumbel random variables, which we then use
to construct the loss function for ODPO.

Theorem 1. Let yw and yl be two responses
to a prompt x, and let r̂θ(x,yw) and r̂θ(x,yl)

be their associated estimated rewards. Finally,
let Rw ∼ Gumbel(r̂θ(x,yw), 1) and Rl ∼
Gumbel(r̂θ(x,yl), 1) be Gumbel random vari-
ables. Then, we have,

P(Rw −Rl > 0) = pBT(yw ≻ yl | x)
= σ(∆r̂θ), (11)

where pBT(yw ≻ yl | x) is a Bradley–Terry
model Eq. (5a) parameterized by r̂θ(x,yw) and
r̂θ(x,yl), and ∆r̂θ

def
= r̂θ(x,yw) − r̂θ(x,yl) is

the difference between the estimated rewards.

Proof. The proof is simple and follows directly
from the Gumbel-max trick (Maddison and Tarlow,
2017). See App. A for details. ■

Theorem 2. Let yw and yl be two responses for a
prompt x. Given a desired offset ∆r between the
responses’ reward values,

P
(
Rw −Rl > ∆r

)
= σ(∆r̂θ −∆r). (12)

where ∆r̂θ
def
= r̂θ(x,yw)− r̂θ(x,yl).

Proof. The difference between two independent
Gumbel variables Rw ∼ Gumbel(r̂θ(x,yw), 1)
and Rl ∼ Gumbel(r̂θ(x,yl), 1) follows the lo-
gistic distribution. Therefore, the probability of
the difference between the noisy estimated rewards
being greater than ∆r is,

P
(
Rw −Rl > ∆r

)
= 1−F

(
∆r

)
, (13)

where F(·) is the CDF for logistic distribution. The
mean of this distribution is ∆r̂θ , and the variance
is 1. Substituting the CDF in Eq. (13) with its
definition,

P
(
Rw −Rl > ∆r

)
= 1−F(∆r) (14a)

=
1

2
− 1

2
tanh

(1
2
(∆r −∆r̂θ)

)
(14b)

=
1

2
− 1

2

(
2σ(∆r −∆r̂θ)− 1

)
(14c)

= 1− σ(∆r −∆r̂θ) (14d)

= σ(∆r̂θ −∆r). (14e)

■
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(a) |DHF| = 5000, 100% of the points
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(b) |DHF| = 7500, 66% of the points
on the Pareto front belong to ODPO.
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(c) |DHF|=10000, 100% of the points
on the Pareto front belong to ODPO.

Figure 2: Steering generated movie reviews towards positive sentiment. Points on the Pareto front are highlighted
with a black border. We observe that in all 3 settings, most (if not all) points on the Pareto front belong to ODPO.

Similar to DPO, we then maximize the likeli-
hood of the preference data, as shown in Eq. (7c).
Intuitively, minimizing the above loss function en-
forces the estimated reward for the preferred re-
sponse yw to be higher than yl by the offset ∆r.
Comparing Eq. (7b) and Eq. (7c), when ∆r = 0,
ODPO will be equivalent to DPO.

Designing ∆r. We choose to model the offset
as a monotonically increasing function f(·) of the
difference between the scores associated with the
responses:

∆r = α f
(
score(x,yw)− score(x,yl)

)
. (15)

where α is a hyperparameter that controls the ex-
tent to which an offset should be enforced. When
α = 0, ODPO becomes equivalent to DPO. In tasks
where a ground-truth reward model r(·) is given
we set score(·) = r(·). In other tasks, one can use
the quality scores given by humans to responses as
score (see §6.3), or ask humans directly for the dif-
ference between the quality of the responses (Tou-
vron et al., 2023). We ablate f in §7.1 and α in §7.2.

Connection to Softmax Margin. We now show
how ODPO is connected to softmax margin (Gim-
pel and Smith, 2010). The idea behind the softmax
margin is to augment the softmax with a cost func-
tion, such that high-cost responses get penalized
more heavily. For two responses per prompt, we
maximize

E
(x,yw,yl)

[
log σ

(
∆r̂θ − cost(yw,yl)

)]
. (16)

Importantly, the cost function is by definition a non-
negative function. Therefore, ODPO loss Eq. (7c)
is only equivalent to softmax-margin loss if we
restrict ∆r ≥ 0.

6 Experiments

In this section, we empirically compare the perfor-
mance of ODPO with DPO across different tasks.
We refer the reader to App. C for the computational
budget used for conducting the experiments.

6.1 Sentiment Control

In this experiment, we steer generations of
GPT2-Large (Radford et al., 2019) model towards
positive sentiment. Following the experimen-
tal setup in (Rafailov et al., 2023), we fine-tune
GPT2-Large on the train split of IMDB dataset
(Maas et al., 2011) until convergence. This gives
us the SFT checkpoint πSFT.

Reward Model. We use a state-of-the-art binary
sentiment classifier3 with sentiments {POS, NEG}
as the reward model. Concretely if the sentiment
of the response is negative, we set r(x,y) to
1 − p(NEG | ·), and if the sentiment is positive
r(x,y) = 1 + p(POS | ·), where p is given by the
classifier. For notational ease, we show r(x,y)
with r(y).

Bootstraping the Preference Data. DPO, as
opposed to RLHF, only works on top of preference
data. Therefore, in tasks that a ground-truth reward
model is given, the preference data needs to be
bootstraped. We follow Rafailov et al. (2023)
to bootstrap the preference dataset (DHF) from
point-wise rewards. Given the reward function,
which in this experiment is given by the sentiment
classifier, and a dataset of prompts that are prefixes
of movie reviews, we proceed as follows. First,

3Specifically, we use https://huggingface.co/
lvwerra/distilbert-imdb.
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(a) |DHF| = 8000, 100% of the points
on the Pareto front belong to ODPO.
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(b) |DHF| = 9000, 100% of the points
on the Pareto front belong to ODPO.
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(c) |DHF| = 10000, 57% of the points
on the Pareto front belong to ODPO.

Figure 3: Steering generations away from toxic content. We highlight points on the Pareto front with a black border.
We observe that, especially when the size of the dataset is small, ODPO manages to reduce the toxicity better than
DPO while not diverging too far from the SFT model.

for each prompt x ∈ D, M responses are sampled
from the language model πSFT(· | x)4 to form a
multiset Yx = {yi}Mm=1,5 where ym is the mth

response generated for prompt x. Next, for each
i ̸= j ∈ {1, . . . ,M} a tuple (x,yw,yl) is added
to DHF if r(yi) ̸= r(yj), where

(yw,yl) =

{
(yi,yj) if r(yi) > r(yj)

(yj ,yi) if r(yi) < r(yj)
. (17)

While DPO only uses the order of responses’
rewards, with ODPO we further use the reward
model to determine the offset between the two
responses and set ∆r = log

(
r(yw) − r(yl)

)
.

Following Eq. (15), this is equivalent to choosing
f(·) as the log function and setting α = 1.

We vary the KL regularization term β in
{0.1, 0.2, . . . , 1}∪{1, 2, 3, 4, 5}6 and sample from
the fine-tuned language model πθ two times with
two different random seeds. This gives us 28 differ-
ent samples for each method. We use these samples
to approximate the average probability of the gen-
erations having positive sentiment as well as the
KL divergence between the fine-tuned model πθ
and the initial model πSFT. Ideally, we want not to
diverge too much from the SFT policy, while gen-
erating movie reviews with a positive sentiment.

To capture the tradeoff between the KL diver-
gence and achieved reward, we evaluate the two

4One can also compare the responses generated by the
model with human written responses (Stiennon et al., 2020).

5In this experiment, we generate two responses per prompt.
6Within the range of 0 to 1, increased resolution is neces-

sary due to considerable variance in results. However, within
the range of 1 to 5, the points are closely clustered, therefore,
we increase the step size when covering this range.

methods based on the Pareto frontier of achieved re-
ward and KL divergence. Concretely, we report the
percentage of points on the Pareto set that belong
to each method. We compare the performance of
ODPO and DPO in 3 different settings by varying
the number of data points in the preference dataset,
i.e., |DHF|. As depicted in Fig. 2, in all experimen-
tal setups, ODPO is more effective in generating
more samples with positive sentiment, while not di-
verging too far from πSFT.7 The difference between
the two methods is more pronounced with smaller
datasets, i.e., when |DHF| = 5000.8

6.2 Toxicity Control

In this task, our goal is to reduce the toxicity of
the generations. We use GPT-neo-2.7b (Black
et al., 2021)9 as the SFT checkpoint, πSFT. We
adversarially sample the prompts from REALTOXI-
CITYPROMPTS (Gehman et al., 2020), where we
sample 10000 prompts that have toxicity scores of
more than 0.3. We generate two preference pairs
from πSFT for each prompt and compute their re-
wards using a toxicity classifier.10 Similar to the
previous experiment, we choose the offset as the
log scaled differences between the rewards of pre-
ferred and dispreferred responses.

7Further experiments comparing SLiC-HF and ODPO
show the same trends App. D.

8When using more data, e.g., |DHF| = 10000, we observe
the positive sentiment probability gets closer to the maximum
value 1., while this comes at the cost of diverging too much
from πSFT; we see an order of magnitude larger DKL with
|DHF| = 10000 compared to |DHF| = 7500.

9Specifically, we use https://huggingface.co/
EleutherAI/gpt-neo-2.7B.

10We use https://huggingface.co/facebook/
roberta-hate-speech-dynabench-r4-target.
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(b) ∆r = log r(yw)− log r(yl), 63%
of points on Pareto front belong to
ODPO.
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(c) ∆r = r(yw) − r(yl), 91%
of points on Pareto front belong to
ODPO.

Figure 4: Investigating the effect of the offset formulation on the performance of ODPO. Scaling the offset with a
log function helps achieve the highest reward values without diverging too much from the SFT model.

We vary the KL regularization term β ∈
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}11 and sample from
the fine-tuned model πθ. We evaluate the sam-
ples based on their average toxicity probabilities
and the KL divergence between πθ and πSFT.

We observe that ODPO significantly outper-
forms DPO when using a dataset of size 8000 or
9000, where all the points on the Pareto front are
from ODPO in Fig. 3. Concretely, in those two
setups, DPO fails to meaningfully reduce the toxic-
ity of the generations, as the toxicity scores are all
close to the toxicity scores of generations from πSFT

(shown with a dashed horizontal line). However,
ODPO manages to significantly reduce the toxicity
of the generations, cutting it almost by half. As we
increase the size of the dataset, the performance of
DPO gets closer to ODPO.

6.3 Summarization

Next, we test our method on a summarization task,
where we directly use the scores given by humans
to the pair of summaries for designing the offset.
We use REDDIT TL;DR dataset collected by Stien-
non et al. (2020). We take the subset of this dataset
that is assessed by humans for quality using a 7-
point Likert scale.12 For each of the two summaries
of a given Reddit post, we add a datapoint to DHF

if the overall quality score of one is greater than
the other. Moreover, we set the offset between the
two summaries as the log difference between their

11For β > 0.5, we observe that no toxicity reduction com-
pared to the SFT model; therefore, for this experiment we only
test β ≤ 0.5.

12More specifically, we take the posts under
relationships and relationship_advice subreddits.
For more details regarding the datasets used refer to App. B.

0 0.25 0.5 0.75 1

0.3

0.4

0.5

0.6

ODPO DPO SFT

Sampling temperature

W
in
 ra
te

Figure 5: Win rates of generations from models
fine-tuned with DPO and ODPO against human-written
summaries. On average, ODPO achieves a higher win
rate—significantly so in temperatures 0 and 0.5.

associated scores by humans.
The supervised fine-tuned model (πSFT) is a

GPTJ-6B (Wang and Komatsuzaki, 2021) model
that is fine-tuned on human-written forum post
summaries.13 We further fine-tune this model
with DPO and ODPO on DHF.14 We use GPT-4
to compare the generations from the fine-tuned
models against the reference summary written by
humans, as GPT-4 judgments have been shown to
strongly correlate with human judgments (Rafailov
et al., 2023). See App. E for the prompt used for
the evaluation.

We use 100 test prompts and sample from the
fine-tuned models with different temperatures. The

13Specifically, we use https://huggingface.co/
CarperAI/openai_summarize_tldr_sft

14Following Rafailov et al. (2023), we set β = 0.5 for both
methods.
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win rates of different methods against human writ-
ten summaries are reported in Fig. 5. We observe
that both DPO and ODPO improve upon the SFT
model. At lower temperatures, i.e., 0, 0.25, 0.5,
both methods are on average preferred over human-
written summaries. These results are consistent
with the results reported in (Rafailov et al., 2023).

Importantly, across all sampling temperatures,
the average win rate of ODPO is higher than DPO.
Specifically, in temperatures 0 and 0.5 ODPO
significantly outperforms DPO. We further per-
form a head-to-head comparison between DPO and
ODPO and observe that the win rate of ODPO
over DPO is [51, 50, 62, 48, 57] at temperatures
[0, 0.25, 0.5, 0.75, 1.] respectively. For qualitative
results refer to App. F.

7 Ablation Studies

In this section, we investigate and ablate certain
design decisions that were made in the experiments.
Specifically, we investigate the effect of the offset
hyperparameter α, and the scaling function f(·) on
the performance of ODPO.

7.1 Ablating the Scaling Function

In our experiments, we scaled the reward difference
between the preferred and dispreferred responses
with a log function. To better understand the effect
of this scaling function, we compare it to two other
alternatives, (i) using the reward difference without
scaling, i.e., setting f(·) to the identity function,
and (ii) using the difference between log of reward
values as the offset.

We repeat the movie review generation experi-
ment, where the goal is to generate movie reviews
with a positive sentiment. For computational effi-
ciency, we choose |DHF| = 5000. We vary β be-
tween {0.1, 0.2, . . . , 0.9} ∪ {1, 2, 3, 4, 5} and fine-
tune πθ with the aforementioned offsets.

The results are depicted in Fig. 4. Overall,
ODPO outperforms DPO with all three choices
of the offset. However, there exist some notable
differences between the three offsets. Scaling the
offset with the log function makes the model not
diverge too far from πSFT, while achieving high re-
wards: While the models trained with log scaled
offset (left plot) achieve high rewards (around 0.8)
with KL of 0.4, models without log scaling reach to
0.8 rewards only when the KL between πθ and πSFT

is around 1 (right plot). Scaling each reward value
separately lies somewhere in between (middle plot).

3 4 5
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.2

0.4

0.6

0.8

1
α

Figure 6: Ablating alpha values for movie review gener-
ation. The offset is set to ∆r = α log

(
r(yw)− r(yl)

)
.

The highest rewards are associated with models trained
with α = 1, while smaller α leads to lower DKL.

7.2 Ablating the Offset Hyperparameter
In the previous experiment, we set α = 1. To
understand the effect of enforcing an offset in the
loss function we experiment with different values
of α. Repeating the movie review experiment, we
vary α ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0} and set
the offset to ∆r = α log

(
r(yw) − r(yl)

)
. Note

that when α = 0 ODPO loss is exactly equal to
DPO loss. After fine-tuning πθ on a dataset of size
7500 with the ODPO loss Eq. (7c) (with β = 0.5),
we sample from the models two times with two dif-
ferent random seeds and report the results in Fig. 6.

We observe that higher values of α can lead to
higher reward values at the expense of diverging
from the SFT model. Lower values of α on average
lead to lower reward values. On the Pareto front
of the Fig. 6, points with the highest rewards are
associated with models trained with α = 1, while
points with lower DKL are fine-tuned with smaller
α values.

8 Related Work

In this section, we review alternative methods to
RLHF for aligning language models to human pref-
erences.

Sequence-Level Contrastive Methods. The in-
tuition that is shared by these methods is simple:
they encourage the language model πθ to assign
more probability mass to the preferred response
compared to the dispreferred response(s). Zhao
et al. (SLIC; 2023) employ a rank calibration loss
that requires log πθ(yw | x) to be greater than
log πθ(yl | x), by an offset δ. Importantly, in their
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formulation δ is a hyperparameter and does not de-
pend on the the responses yw,yl. Similarly, Yuan
et al. (RRHF; 2023) uses a ranking loss without
the offset. While intuitive, the objective that con-
trastive losses are optimizing for, and its connection
to the RLHF objective (maximizing the expected
reward) is unclear.

DPO and Variants. DPO proposes an alterna-
tive method to optimize the regularized expected
rewards without using RL algorithms. Importantly,
DPO shares the objective with conventional meth-
ods for RLHF (Stiennon et al., 2020), but the op-
timization is done without training a separate re-
ward model nor using RL algorithms. Since the
introduction of DPO, several follow-up studies at-
tempted to improve DPO along different dimen-
sions. To prevent DPO from overfitting to the pref-
erence dataset, Azar et al. (2023) introduce Iden-
tity Preference Optimization (IPO). IPO replaces
the unbounded function of preference probabilities
in DPO loss formulation with the bounded iden-
tity function. Ethayarajh et al. (2023) propose a
method called Kahneman-Tversky Optimisation
(KTO) that dispenses the need for paired prefer-
ence data altogether. KTO’s loss function relies on
unpaired examples that are labeled either as “good”
or “bad”. Zhou et al. (2024) suggest another variant
of DPO specifically for multi-objective alignment.

Our Approach. ODPO attempts to solve another
shortcoming of DPO, which is to treat every pref-
erence pair equally and not take into account the
extent to which the two responses differ from each
other. ODPO’s loss requires the estimated reward
for the preferred response to be larger than the dis-
preferred response by an offset that depends on the
difference between the quality of the responses.

9 Conclusion

We propose ODPO, a generalization of DPO for
aligning language models with human preferences.
Just as with DPO, ODPO does not rely on a pre-
trained reward model and does not require an RL
algorithm. However, in contrast to DPO, ODPO
does not treat every preference pair equally and in-
corporates the extent to which one response should
be preferred over another in its loss function. Ex-
periments on a variety of tasks suggest that ODPO
is more effective than DPO in aligning language
models to human preferences.

Limitations

Human Preference Data. Not all datasets with
human feedback contain judgments regarding the
extent to which one response is preferred over an-
other. In our experiments, we focused on tasks and
datasets where we had either access to such infor-
mation or point-wise reward functions. The results
presented in the paper provide strong motivation to
ask humans to indicate their degree of preference
when collecting human feedback data.

Offset values. Deciding how to scale offset val-
ues can depend on the task. In this study, we ex-
perimented with offsets based on Likert scores and
classifier probabilities. We defer extending ODPO
to different tasks for future work.

Ethical Considerations

We foresee two main ethical concerns regarding
the use of direct preference optimization and, in
general, any RLHF method for aligning language
models with human preferences. First, as with
DPO and other RLHF methods, malicious actors
can use ODPO to steer the responses to generate
harmful or toxic content. However, we must note
that we foresee no particular reason for DPO to be
more suitable for malicious use cases compared
to DPO or other RLHF methods. Second, reward
functions might inherit unwanted biases from
the datasets that they were trained on. Therefore,
fine-tuning to increase the expected reward can
then inject such biases into the language models’
generations. We view ODPO as a fine-tuning
strategy that can work with any given reward
function or preference dataset. Therefore, as we
develop more accurate and less biased reward
functions, or find more inclusive ways of collecting
human feedback, less unwanted bias will propagate
to the fine-tuning process.
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A Proof of Thm. 1

Theorem 1. Let yw and yl be two responses to a prompt x, and let r̂θ(x,yw) and r̂θ(x,yl) be their
associated estimated rewards. Finally, let Rw ∼ Gumbel(r̂θ(x,yw), 1) and Rl ∼ Gumbel(r̂θ(x,yl), 1)
be Gumbel random variables. Then, we have,

P(Rw −Rl > 0) = pBT(yw ≻ yl | x)
= σ(∆r̂θ), (11)

where pBT(yw ≻ yl | x) is a Bradley–Terry model Eq. (5a) parameterized by r̂θ(x,yw) and r̂θ(x,yl),
and ∆r̂θ

def
= r̂θ(x,yw)− r̂θ(x,yl) is the difference between the estimated rewards.

Proof. We define a random variable I as,

I
def
= argmax

l,w
{Rl, Rw} (18)

To prove the theorem, it suffices to prove,

P(I = w) =
exp

(
r̂θ(x,yw)

)

exp
(
r̂θ(x,yw)

)
+ exp

(
r̂θ(x,yl)

) (19)

For ease of notation, we define gr̂w
def
= Gumbel(r̂θ(x,yw), 1), r̂w

def
= r̂θ(x,yw), and r̂l

def
= r̂θ(x,yl).

Then, consider the following manipulation

P(I = w) = E
m∼gr̂w

[
P(Rl < m)

]
(20a)

=

∫ +∞

−∞
gr̂w(m) exp

(
− exp(r̂l −m)

)
dm (20b)

=

∫ +∞

−∞
exp

(
r̂w −m− exp(r̂w −m)

)
exp

(
− exp(r̂l −m)

)
dm (20c)

=

∫ +∞

−∞
exp(r̂w) exp(−m) exp

(
− exp(−m)

(
exp(r̂w) + exp(r̂l︸ ︷︷ ︸

:=Z

)
))

dm (20d)

= exp(r̂w)

∫ +∞

−∞
exp(−m) exp

(
−Z exp(−m)

)
dm (20e)

=
exp(r̂w)

exp(r̂w) + exp(r̂l)
. (20f)

■

B Datasets Statistics

We used the following datasets for either fine-tuning or prompting language models, which is consistent
with the intended use case of the datasets. All the datasets are in English. We refer to the corresponding
papers for data collection and postprocessing procedures, as well as the demographics of human annotators.

Sentiment Control. We train the SFT model on the train set of IMDB dataset (Maas et al., 2011), which
consists of 25000 movie reviews. For fine-tuning with DPO and ODPO, we sample 10000 prompts from
the train set and use the language model to generate continuations. For evaluation, we sample 256 prompts
from the test set of IMDB dataset.

Toxicity Control. We sample 10000 prompts for fine-tuning and 256 for evaluation from REALTOXICI-
TYPROMPTS (Gehman et al., 2020). The dataset is released under Apache-2.0 license.
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|DHF| = 5000 |DHF| = 7500 |DHF| = 10000

Method DKL(πθ∥πSFT) ↓ Reward ↑ DKL(πθ∥πSFT) ↓ Reward ↑ DKL(πθ∥πSFT) ↓ Reward ↑
SLiC 0.55[0.52, 0.56] 0.71[0.71, 0.72] 3.56[3.24, 3.88] 0.81[0.81, 0.82] 209.42[85.94, 333.7] 0.85[0.84, 0.86]
DPO 0.39[0.37, 0.4] 0.72[0.71, 0.73] 4.13 [3.42, 5.27] 0.83 [0.82, 0.84] 32.32 [27.57, 36.68] 0.86 [0.85, 0.86]
ODPO 0.35[0.32, 0.39] 0.76[0.75, 0.78] 3.09[2.43, 4.04] 0.87[0.87, 0.88] 18.73[12.15, 29.65] 0.89[0.88, 0.89]

Table 1: Comparing ODPO to SLiC-HF on sentiment control task. In all 3 experimental setups ODPO achieves
lower KL values and higher rewards compared to SLiC.

Summarization. We take 20000 posts under relationships and relationship_advice subreddits
in REDDIT TL;DR dataset (Stiennon et al., 2020) and 100 posts for evaluation. The dataset is released
under a modified MIT license.

C Computational Budget

For sentiment control experiments, a single fine-tuning and evaluation run takes approximately 20 minutes
on 2 rtx_4090 GPUs. For toxicity control experiments, a single fine-tuning and evaluation run takes
approximately 2 hours on 2 a100_40gb GPUs. For the summarization task, a single fine-tuning and
evaluation run takes approximately 15 hours on 2 a100_80gb GPUs. Notably, the reported runtimes are
the same for DPO and ODPO, and there is no extra computation cost for ODPO compared to DPO.

D Comparison to SLiC-HF

We compare DPO and ODPO to SLiC-HF (Zhao et al., 2023) on the sentiment control task. Following
Zhao et al. (2023), we set the margin hyperparameter to 1 for SLiC and β to 0.5 for DPO and ODPO. We
observe that none of the SLiC runs end up on the Pareto frontier of KL divergence and reward. We report
the mean values and 0.9 confidence intervals for DKL(πθ || πSFT) and reward in Tab. 1 for 3 dataset sizes.

E GPT-4 Evaluation Prompt for the Summarization Task

Following Rafailov et al. (2023) we use the prompt below to evaluate the win rates of generated summaries
against human-written summaries.
Which of the following summaries does a better job of summarizing the most important

points in the given forum post, without including unimportant or irrelevant details?
A good summary is both concise and precise.

Post:
<post>
Summary A:
<summary_a>
Summary B:
<summary_b>
FIRST provide a one-sentence comparison of the two summaries, explaining which you

prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice.
Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

F Qualitative Results
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Post We have been dating for two and a half months, but we were friends in
high school. We are both divorced, but her kids’ dad takes them maybe
one day a week. By their bedtime she’s too tired to stay up for time for
herself. I have more free time because I only have my kids for half the
time.
What can I say to her to help her get over the mentality she has to take
care of all her problems alone? I’m willing to invest whatever it takes
because we get along so well. Ask me any info that I may have left out.

DPO Summary dating with benefits is giving my girlfriend anxiety and a mentality of
taking care of her problems alone even though she said she wanted
a relationship, not a one-man show. Do I need a break-up? Ask me
anything.

ODPO Summary Girl is tired when hanging out with me. What can I say to her to help her
get over the mentality she has to take care of all her problems alone? We
get along so well. Any info that I may have mentioned/left out.

Judgment Summary A [DPO] brings up unnecessary details and confusion while
Summary B [ODPO] is concise, straightforward and better delivers the
post’s message.

Table 2: An example of two summaries sampled with temperature 1, and its corresponding judgment from GPT-4.
Summaries are shown to the model in random order and are tagged with A or B. For clarity, we add the method in
brackets.
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Post I don’t really have a question or anything. I just need to vent and maybe
reach out to those who have been in similar situations.
My sister told me yesterday that she’s pregnant. At first I was thrilled.
But then reality hit me. *I can’t have children.*
I’m so happy for my sister and my brother-in-law, I really am. But they
weren’t planning on having children for at least a few more years. My
sister’s never really wanted to be a mom. Me, on the other hand, have
always lived for it. As a kid when people asked what I want to be when I
grow up, I always said, "a mom."
But, 3 years ago I found out I can never have children. I was devastated
but have tried to tough it out, tried to believe it isn’t true for years. I’m in
a serious relationship and we’re planning on getting married in a little
over a year and starting to **try** having kids immediately, but we will
probably end up adopting. While adopting is wonderful and that thought
excites me, I still so badly want to be pregnant one day.
My sister being pregnant is like a kick in the side. A reminder that I’ll
never be pregnant. I don’t want to be around her, I don’t want to be happy
for her. I’m jealous. I don’t know how to deal with this. I never expected
to feel anger towards my sister for getting pregnant. But really, how am I
expected to feel about this?
I would never dare tell my sister or anyone else in my family how I feel
about this. I wouldn’t want to upset anyone and I really don’t want to be
selfish and make this about me. It’s just so hard.

DPO Summary I have a sister who’s pregnant and I feel immensely jealous and sad and I
don’t know how to deal with my feelings. I don’t want to have children.

ODPO Summary My sister is pregnant and I’m jealous and sad even though I’m happy for
her and I would love to be pregnant one day. I don’t know how to feel. I
really just want to vent.

Judgment Summary A [ODPO] better captures the overall emotion, situation, and
dilemma of the original post, while Summary B [DPO] falsely claims
that the poster does not want children, which contradicts the information
provided in the original post.

Table 3: An example of two summaries sampled with temperature 0.75, and its corresponding judgment from GPT-4.
Summaries are shown to the model in random order and are tagged with A or B. For clarity, we add the method in
brackets.
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Post We have been dating for two and a half months, but we were friends in
high school. We are both divorced, but her kids’ dad takes them maybe
one day a week. By their bedtime she’s too tired to stay up for time for
herself. I have more free time because I only have my kids for half the
time.
What can I say to her to help her get over the mentality she has to take
care of all her problems alone? I’m willing to invest whatever it takes
because we get along so well. Ask me any info that I may have left out.

DPO Summary My girlfriend has to take care of her kids and her problems because she
doesn’t have time to do anything for herself. How can I help her?

ODPO Summary My girlfriend of two months is constantly tired from taking care of her
kids. How can I help her get over the mentality she has to take care of
everything alone?

Judgment Summary B [ODPO] is more concise and accurate as it mentions the
key point about the poster wanting to help his girlfriend overcome her
mentality of taking care of everything by herself, compared to Summary
A [DPO] which does not convey this aspect clearly.

Table 4: An example of two summaries sampled with temperature 0.5, and its corresponding judgment from GPT-4.
Summaries are shown to the model in random order and are tagged with A or B. For clarity, we add the method in
brackets.
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Post I am currently in college and I met this wonderful girl. We have gone
on a few dates and everything appeared to be going great. She wanted
to taking things quite slow because she was getting over a recent ex
boyfriend.
However when I met her roommate she brought up that this girl has a
boyfriend who has been acting rather shady towards her. He goes to
another college and he has been spending the night "on the couch" at this
other girls place frequently. He also has recently been posting on her
wall and now I’m rather confused.
I know something is up but I really don’t know how to handle this. I
would really like to be straight forward with her but she seems dodgy
whenever I do. I really am beginning to over think things and I almost
feel like I was just there to shove in his face.
I really hate this situation because I feel like I could have a legitimate
relationship with this girl.

DPO Summary Met a girl who has a boyfriend who is spending the night at her place
frequently. She has been posting on his wall and I feel like she is hiding
something. I don’t know how to proceed.

ODPO Summary met girl, she has a boyfriend who is acting shady towards her, she wants
to take things slow, I’m confused as to what is going on.

Judgment Summary A [ODPO] provides more accurate information about the
situation, specifically pointing out that the girl wants to take things
slow, and expresses the poster’s confusion more effectively, whereas,
Summary B [DPO] provides false information about the girl posting on
the boyfriend’s wall.

Table 5: An example of two summaries sampled with temperature 0.25, and its corresponding judgment from GPT-4.
Summaries are shown to the model in random order and are tagged with A or B. For clarity, we add the method in
brackets.
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Post My best friend and I have been friends for around 5 years now? She and
her boyfriend has been together for a few years alr too. She is the kind
of person who always put relationship over friendship, and because she’s
my best friend, I understand her and never said anything.
I understand when she stop replying me for days when she stays over
at her boyfriend’s house. I understand when she ask me to leave early
because she wanted to spend time with her boyfriend. I understand when
she said I’m not allowed to be in contact with her boyfriend.(One time
she got angry and ignored me for a month because I called her boyfriend
to come over when they had a fight)
I’m really okay with her being like this. Her boyfriend is an important
part of her life and I can accept that. But recently, I can’t even get a
reply from her. Her text replies are always short and cold. We go to
different schools so I don’t get to talk/see her everyday. I’m always the
one looking for a topic to talk about with her. She only comes looking
for me if she and her boyfriend has a fight and she needed somebody to
talk to or when her boyfriend is too busy to talk or go out with her.
I had confronted her about it, but she said that it’s not like that, she didn’t
mean to make me feel this way. But after that it’s always back to the
same situation and I always end up feeling used and neglected.
Any advice?

DPO Summary My best friend doesn’t reply me anymore and I feel like she doesn’t care
about me anymore. She always put her boyfriend over me. I’m okay
with her being like this, but I’m not okay with feeling like she doesn’t
care about me anymore. Any advice?

ODPO Summary Best friend of 5 years doesn’t reply to my texts anymore and always puts
her boyfriend over me. I feel like she doesn’t care about me anymore.
Any advice?

Judgment Summary B [ODPO] is preferred as it encapsulates all the necessary
details more concisely and accurately without any unnecessary repetition.

Table 6: An example of two summaries generated with greedy decoding, and its corresponding judgment from
GPT-4. Summaries are shown to the model in random order and are tagged with A or B. For clarity, we add the
method in brackets.
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