SELP: A Semantically-Driven Approach for Separated and Accurate Class Prototypes in Few-Shot Text Classification

Wenxin Liang, Tingyu Zhang, Han Liu, Feng Zhang


Anthology ID:
2024.findings-acl.579
Volume:
Findings of the Association for Computational Linguistics: ACL 2024
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Lun-Wei Ku, Andre Martins, Vivek Srikumar
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
9732–9741
Language:
URL:
https://preview.aclanthology.org/fix-sig-urls/2024.findings-acl.579/
DOI:
10.18653/v1/2024.findings-acl.579
Bibkey:
Cite (ACL):
Wenxin Liang, Tingyu Zhang, Han Liu, and Feng Zhang. 2024. SELP: A Semantically-Driven Approach for Separated and Accurate Class Prototypes in Few-Shot Text Classification. In Findings of the Association for Computational Linguistics: ACL 2024, pages 9732–9741, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
SELP: A Semantically-Driven Approach for Separated and Accurate Class Prototypes in Few-Shot Text Classification (Liang et al., Findings 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/fix-sig-urls/2024.findings-acl.579.pdf