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Abstract

Medical visual question answering (MVQA)
requires in-depth understanding of medical im-
ages and questions to provide reliable answers.
We summarize multi-level progressive capabil-
ities that models need to focus on in MVQA:
recognition, details, diagnosis, knowledge,
and reasoning. Existing MVQA models tend
to ignore the above capabilities due to unspe-
cific data and plain architecture. To address
these issues, this paper proposes Multi-level Vi-
sual Language Model (MLeVLM 1) for MVQA.
On the data side, we construct a high-quality
multi-level instruction dataset MLe-VQA via
GPT-4, which covers multi-level questions and
answers as well as reasoning processes from
visual clues to semantic cognition. On the ar-
chitecture side, we propose a multi-level fea-
ture alignment module, including attention-
based token selector and context merger, which
can efficiently align features at different lev-
els from visual to semantic. To better evalu-
ate the model’s capabilities, we manually con-
struct a multi-level MVQA evaluation bench-
mark named MLe-Bench. Extensive exper-
iments demonstrate the effectiveness of our
constructed multi-level instruction dataset and
the multi-level feature alignment module. It
also proves that MLeVLM outperforms exist-
ing medical multimodal large language models.

1 Introduction

Medical visual question answering (MVQA) is an
interdisciplinary problem that combines CV and
NLP which requires deep understanding of med-
ical images and questions to provide reliable an-
swers. Recently, lots of works have constructed
professional MVQA datasets (He et al., 2020; Lau
et al., 2018; Ben Abacha et al., 2021; Liu et al.,

∗ Corresponding author: Yu Huang, hy@pku.edu.cn.
†These authors contributed equally to this work.

1MLeVLM is going to be publicly available at
https://github.com/RyannChenOO/MLeVLM

Level 1
Recognition

Level 2
Details

Level 3
Diagnosis

Level 4
Knowledge

Reasoning Process

Q: What are the main anatomical structures
visible in this image?
A: The main anatomical structures visible in the
image are the heart and both lungs.

Q: How to treat the disease shown
     in the image?

Q: What is the appearance of the heart?
A: The heart shadow significantly increases, and
the ratio of the heart to the chest cavity increases,
exceeding 0.5.

Q: Based on this image, what diseases may the
patient suffer from?
A: The appearance of the heart suggests that the
patient may have dilated cardiomyopathy.

Q: How to treat dilated cardiomyopathy?
A: Usually including conventional drug therapy,
interventional surgery, such as pacemaker
implantation, and surgical treatment.

Reasoning 

Q: How to treat the disease shown in the
image?  Let's think it step by step. 
A: From the chest X-ray image, we can see the
heart and bilateral lungs. The heart shows a
significant enlargement of the heart shadow, an
increase in the ratio of the heart to the chest cavity,
and X-ray shows no pleural effusion. The above
imaging findings suggest dilated cardiomyopathy.
There are three main treatment methods for dilated
cardiomyopathy. The first is conventional drug
therapy, which is also the most important treatment
method. The second is interventional surgery,
which involves pacemaker implantation. The third
is surgical treatment.

Figure 1: An illustration of multi-level reasoning
process in medical visual question answering.

2021). However, limited by the number of parame-
ters, the past VQA models usually focus on a spe-
cific dataset and cannot cover as many scenarios
as possible. With the rapid development of large
language models, multimodal large language mod-
els (MLLMs) have become an important solution
for solving VQA tasks (Liu et al., 2023; Alayrac
et al., 2022; Driess et al., 2023), due to the abundant
number of parameters, large amount of pre-trained
contents and excellent text generation capabilities.
Similarly, by directly substituting the training data,
these general domain methods have been directly
transferred to the medical domain (Li et al., 2023a;
Moor et al., 2023; Tu et al., 2023a).

More challenging than the general domain VQA
is that when doctors conduct MVQA in real sce-
narios (Wu et al., 2022), they first need to focus
on the key parts in the image, and further consider
the detailed information afterward. Based on the
visual clues acquired, they make a diagnosis of the
disease, and then further answer knowledge-based
questions such as how to treat it. We summarize
these progressive capabilities in the following five
aspects: Recognition, Details, Diagnosis, Knowl-
edge and Reasoning. They cover a cascade of
capabilities from low-level vision to high-level se-
mantics, simulating the thought process of a doctor
in answering a medical question. As is illustrated in
Figure 1, for a complex semantic question ( "How
to treat the disease shown in the image?"), obtain-
ing its answer is not straightforward, but involv-
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ing a sequence of implicit complex reasoning or
medical knowledge. That is, recognize the objects
("What are the main anatomical structures visible
in this image?"), extract local details ("What is the
appearance of the heart?"), diagnose based on ac-
quired visual clues ("Based on this image, what
diseases may the patient suffer from?"), consider
knowledge of specific diseases (" How to treat di-
lated cardiomyopathy?"), and finally integrate the
information obtained from the above-mentioned
processes to form a reasoning process.

However, existing MVQA models do not have
the multi-level progressive capabilities and suf-
fer from the following two problems: 1) Unspe-
cific data. The public training data (Moor et al.,
2023) used by the model is often derived from pa-
per crawlers and lacks instruction data for specific
construction, especially for multi-level progressive
capabilities. 2) Plain architecture. Existing multi-
modal large language models usually align visual
features and text features through simple linear lay-
ers (Li et al., 2023a). Since different capabilities
focus on different modal features, it is difficult to
effectively align multimodal feature with a simple
linear layer. Therefore, in this paper, we propose
Multi-level Visual Language Model for MVQA
(MLeVLM), which aims to improve the multi-level
capabilities in medical visual question answering.
On the data side, we first carefully construct a
dataset containing 60K high-quality multi-level in-
structions called MLe-VQA. The dataset covers
multi-level progressive capabilities: recognition,
details, diagnosis, knowledge and reasoning. On
the architecture side, we propose a multi-level fea-
ture alignment module to effectively align features
from visual to semantic. Specifically, it contains an
attention-based token selector that focuses on im-
portant areas and a context merger that fuses visual
details. To better evaluate the model’s capabilities
of different levels, we manually construct a multi-
level evaluation benchmark named MLe-Bench.
Experimental results on the benchmark demon-
strate the effectiveness of our constructed multi-
level instruction dataset and the multi-level feature
alignment module. It also proves that MLeVLM
outperforms existing medical MLLMs.

Our contributions are as follows:

1) We use GPT-4 to carefully construct the multi-
level instruction dataset MLe-VQA. It ensures that
the model can fully get the capabilities of recogni-
tion, details, diagnosis, knowledge and reasoning.

2) We design a multi-level feature alignment
module for MLeVLM including attention-based to-
ken selector and context merger to efficiently align
different levels of features from visual to semantic.

3) We manually construct a multi-level evalua-
tion benchmark called MLe-Bench from existing
public VQA datasets. The results on the bench-
mark demonstrate the effectiveness of our proposed
MLeVLM from both data and architecture sides.

2 Related Work

2.1 Multimodal Large Language Models

Motivated by LLM’s outstanding capabilities, re-
searchers are exploring ways to transfer these ca-
pabilities to the vision domain, developing multi-
modal LLM (Alayrac et al., 2022; Liu et al., 2023;
Chen et al., 2023a; Bai et al., 2023; Ye et al., 2023).
Existing research on MLLMs aims to link visual
encoders with large language models, where the for-
mer is responsible for visual perception and the lat-
ter for semantic understanding. Flamingo (Alayrac
et al., 2022) is one of the earlier works. It uses
a vision encoder to extract visual embeddings, a
vision-language resampler module to connect the
vision encoder to a frozen language model, and
employs multi-layer cross-attention to fuse mul-
timodal inputs. BLIP2 (Li et al., 2023c) uses a
Q-Former to connect the frozen LLM and vision
encoder. MiniGPT-4 (Chen et al., 2023a) freezes
the parameters of the vision encoder and LLM, and
only optimizes a trainable projection matrix to con-
nect the vision and language layers. LLaVA (Liu
et al., 2023) simply uses a linear projection layer
and it freezes the vision encoder then training LLM
during the instruction tuning phase. In contrast,
mPLUG-owl (Ye et al., 2023) trains the vision en-
coder in the pre-training stage while freezing the
LLM to align visual and language embeddings,
and subsequently, in the instruction tuning stage, it
freezes the vision encoder and trains the LLM. Ap-
pendix A.1 and Appendix A.2 show more related
work about construction of the MLLM instruction
dataset and reasoning in MLLM, respectively.

2.2 Medical MLLM

The advancements in generic MLLM have also
contributed to the process of MLLM in the biomed-
ical field (Zhou et al., 2023b; Guo et al., 2023;
Zhou et al., 2023a). A recent work, LLaVA-Med
(Li et al., 2023b) extracts biomedical image-text
pairs from PubMed Central and uses GPT-4 (Ope-
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nAI, 2023) to self-instruct biomedical multimodal
instruction-following data. Utilizing a substantial
amount of image-text pairs, LLaVA is fine-tuned
to align image-text tokens to the biomedical do-
main. Subsequently, the model is trained on the
aforementioned custom dataset, enabling it to per-
form biomedical instructions and various tasks in
a conversational manner. Med-PaLM (Tu et al.,
2023b) fine-tunes and aligns PaLM-E (Driess et al.,
2023) to the biomedical domain, using a multi-task,
multi-modal medical dataset with more than 1 mil-
lion samples for training and evaluation. Based on
the open source OpenFlamingo (Awadalla et al.,
2023) and constructed pre-trained medical data,
Med-Flamingo (Moor et al., 2023) migrates in-
context learning and few-shot learning abilities of
Flamingo to the medical domain. By employing
few-shot prompting, users are allowed to customize
the response format, e.g., to provide rationales
for the given answers, but few-shot multimodal
prompted rationales may not be robust. We list
the relationship between our method and previous
work in Appendix A.3.

3 Construction of Multi-level Dataset and
Benchmark

3.1 Multi-level Capabilities in Medical VQA

Medical visual question answering is a complex
task that requires the understanding of visual clues
and semantic cognition. In tackling such complex
tasks, especially when answering advanced seman-
tic questions, involves an intrinsic requirement for
sequential and progressive reasoning by integrating
observed visual cues. In this paper, we outline the
five progressive capabilities essential for MLLM
in handling MVQA tasks, aiming to simulate the
logical process of a human doctor when responding
to medical visual questions.

1) Recognition. Basic visual perception in-
volves overall observation of images for object
recognition and initial comprehension of funda-
mental features, e.g., basic anatomical structures
and imaging modalities.

2) Details. Further detailed observation requires
the capability to capture subtle features and corre-
lations among objects in the image, e.g., organ size,
color, and tissue properties.

3) Diagnosis. Identifying abnormalities and di-
agnosing diseases from the image requires synthe-
sizing the interpretation of visual clues obtained
above and conducting in-depth analysis through

incorporating external knowledge.
4) Knowledge. Focusing on higher-level

knowledge-related questions regarding the diag-
nosis results, e.g., the treatment and prevention of
diseases, requiring the integration of out-of-image
knowledge to provide recommendations.

5) Reasoning. Reasoning builds on the capabil-
ities of the previous levels. The above four capa-
bilities exhibit a hierarchical relationship and this
progressive question grading structure can be used
to guide MLLM in comprehending the image step
by step, explicitly providing the necessary informa-
tion for the reasoning process.

3.2 MLe-VQA Dataset

Currently there is a lack of multimodal medical
datasets to train an assistant with the aforemen-
tioned capabilities. To fill this gap, we construct
the first comprehensive Multi-level medical VQA
dataset, called MLe-VQA. It consists of medical
images spanning multiple modalities from public
datasets, along with high quality questions and
answers constructed using the GPT-4 and self-
instruction methods. Specifically, the dataset con-
tains 6K images and 60K Q&A pairs. Figure 2
shows an outline of its construction process.

Data Source. To maximise the diversity and
comprehensiveness of our data, we compile about
6K images from multiple public data sources.
More details can be found in the Appendix B.2.
We collect public datasets that provide images
and captions, using the captions of the images
to prompt language-only GPT-4 for generating
question-answer pairs.

Image Selection. Sometimes, image captions
are too short for GPT-4 to generate meaningful
questions and answers. To select clinical images
with rich information, we initially screen out image-
caption pairs where the caption is mainly describ-
ing the patient, and further discard some of the
short-caption images based on the caption length.

GPT-Assisted Multi-level Data Generation.
Given an image caption, we design prompt to make
GPT-4 generate meaningful questions and answers
in a tone as if it could see the image (even though
it only has access to the text). As shown in Figure
2, within the instruction, we devised a base prompt
for a general description to instruct the GPT-4 API
about the specific task requirements. Additionally,
we include a level-specific prompt to define each
level. Building upon this foundation, the GPT-4
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Image Caption
Datasets

PMCVQA

Caption:
Fundus photograph of a patient with sudden vision
deterioration in the left eye showing a large whitish
area in the temporal retina. Although …… 

Caption:
Female patient with angiomyolipoma in the left
kidney. After excluding the interference from renal
sinus and perirenal fat, an India ink artifact …… 

Caption:
Woman with bilateral PI following Staphylococcus
aureus sepsis, 2 years after bilateral 1-stage
exchange. On the right side: reconstruction with ……

Caption:
Man with eroding pancreatic pseudocyst. Color
Doppler sonogram displayed turbulent partial color
flow filling of the lesion (arrow) anteriorly located ……

…………

MIMIC-CXR ROCOMedicat

Prompt:
Please generate questions and corresponding answers
based on the image, forming a progressive chain of
thought. The thinking chain should include four levels
of questions.

Level Specific Prompt 
Level 1: to observe the image roughly……
Level 2: to ask for detailed information……
Level 3: to diagnose diseases……
Level 4: to apply knowledge comprehensively……

Reasoning Prompt 
A step-by-step detailed reasoning process for the
answer to the Level 3/4 question, incorporating your
medical knowledge with findings from Level 1、Level 2
(and Level 3) ……

In-context Learning Examples 
<Caption>:……
Level 1: <Question 1>:…… <Answer 1>:……
Level 2: <Question 2>:…… <Answer 2>:……
Level 3: <Question 3>:…… <Answer 3>:……
Level 4: <Question 4>:…… <Answer 4>:……

(a)

<Caption>: ……

Prompt Design

Level Specific In-context
LearningReasoning

(b)

Level 1 Recognition
Q: Can you identify any structures or lesions
in the image?
A: Yes, there is a lesion indicated by an
arrow, which is in direct……

Level 2 Details 
Q: Where is the lesion located in relation to the surrounding
vasculature?
A: The lesion is located anteriorly and appears to be in
direct continuity with the junction between the……

Level 3 Diagnosis 
Q: Does the image suggest any complications of the
pancreatic pseudocyst?
A: The image suggests the pancreatic pseudocyst may be
eroding into the nearby vascular……

GPT-4
Data Generation

(c)

Level 4 Knowledge
Q: Considering the sonogram findings, what should be the
next step in the management of this patient?
A: Further assessment through cross-sectional imaging like
CT or MRI, consultation with……

Reasoning
Q: Does the image suggest any complications……? Please think
step-by-step to answer the question.
A: The Color Doppler sonogram displays turbulent partial
color flow within the lesion, which indicates active blood flow
within the cystic structure……

GPT-4Experts

Figure 2: An illustration of the process to prompt GPT-4 to generate multi-level instructions.

is prompted to construct reasoning Q&A pairs by
obtaining progressively complex image-related in-
formation. We also manually design several in-
context learning examples for each level to ensure
that the GPT-4 has a clearer understanding of the in-
tent of each level and how to generate high-quality
Q&A pairs based on the captions provided. Refer
to the Appendix E.5 for more detailed examples
of in-context learning. The final statistics of the
dataset are shown in Appendix C.

3.3 MLe-Bench

Evaluating model capabilities at each level is highly
difficult and there is a lack of evaluation bench-
marks. Therefore, we construct MLe-Bench, a
challenging multimodal problem set of total 1,492
questions to assess multi-level capabilities. Specifi-
cally, we invited experts with clinical knowledge to
manually select the questions related to each level
based on existing public medical VQA datasets. Ta-
ble B.3 shows the statistics of the datasets, where
the questions are extracted from the officially di-
vided test set. To make the benchmark more practi-
cal for evaluating MLLM, we rephrase the answers
to be open-ended. This makes the benchmark more
challenging and realistic, as the models have to in-
dependently answer complex questions, rather than
selecting the most reasonable answer choice from
a limited set of choices.

4 Model Architecture

Existing multi-modal large language models usu-
ally align visual features and text features through
simple linear layers. To effectively align features of
different levels from visual to semantic in medical

VQA, we design a multi-level feature alignment
(MLFA) module. Specifically, we add attention-
based token selector and context merger to the
widely used visual encoder and text encoder to
improve the model’s focus on key areas and visual
details. We then use two projectors to map the low-
level visual information and high-level semantic
information into the large language model. The
model architecture is shown in Figure 3.

4.1 Visual Encoder and Text Encoder

The model first processes medical images and
user interaction instructions through a visual en-
coder and a text encoder. For a given image input
I ∈ RH×W×3, we use the pre-trained vision trans-
former to get the visual embedding X ∈ RN×C ,
where N = HW/p2, C represents the number of
embedded channels and p represents the patch size.
For a given user instruction input T , we can gen-
erate text-guided query Qt ∈ RK×D through the
pre-trained text encoder and the resulting visual
embedding X , where K denotes the number of
queries and D denotes the dimension of queries.
We choose Q-Former (Dai et al., 2023) as this cross-
modal text encoder to ensure that Qt contains more
visual clues related to user instructions.

4.2 Attention-based Token Selector

For the visual recognition question, we hope that
the model pays more attention to key areas in the
image. Therefore, we design an attention-based to-
ken selector. Its goal is to estimate the importance
of each image patch based on cross-modal atten-
tion weights and select the most informative part
to represent the whole image. Specifically, for text
query Qt and visual embedding X , we can calcu-
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What anatomical
structure is circled

in the picture?
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Figure 3: The model architecture of MLeVLM, which includes visual encoder, text encoder, the multi-level feature
alignment module composed of the attention-based token selector and the context merger, and the LLM decoder.

Details of the context merger are shown on the right.

late the attention weight matrix A through matrix
multiplication:

A =
WqQt × (WxX

T )√
N

, (1)

where Wq and Wx are learnable parameters, A ∈
RK×N . Inspired by (Rao et al., 2021; Jin et al.,
2023), we predict cross-modal feature distribution
π ∈ RN×2 with a lightweight module containing
several MLP layers, where πi = MLP(Ai). By
sampling from the distribution π, we can get a
binary decision mask M ∈ {0, 1}N . To relax the
sampling to be differentiable, we apply the Gumbel-
Softmax trick (Maddison et al., 2016) to π:

π̂i,j =
exp ((log πi,j + gi,j) /τ)∑2
r=1 exp ((log πi,r + gi,r) /τ)

, (2)

where gi,j are i.i.d samples drawn from Gumbel(0,
1) distribution2, τ is the temperature parameter that
controls the smoothness of softmax function. After-
wards, the binary decision mask M can be sampled
from π̂. Through this mask, we can get the selected
key image patches Xs ∈ RP×C and the unselected
context image patches Xc ∈ R(N−P )×C , where P
is the number of selected patches.

4.3 Context Merger
For the visual detail question, the contextual infor-
mation of the image is as important as the key in-
formation in the image. Therefore, we fuse the con-
textual information and key information through

2The Gumbel(0, 1) distribution can be sampled using in-
verse transform sampling by drawing u ∼ Uniform(0,1) and
computing g = − log(− log(u)).

the attention module instead of directly discard-
ing the context. Specifically, our context fusion
module consists of L stacked blocks, similar to the
transformer decoder. Each block contains a causal
self-attention layer, a cross-attention layer and a
feed-forward layer3. The cross-attention layer uses
X ′

c as query, Xs as key and value to achieve con-
text information fusion based on similarity in the
feature space. The fused contextual feature X̄c can
be expressed as:

X̄c = softmax

(
WQX

′
c(WKXs)

T

√
C

)
WV Xs,

(3)
where WQ,WK ,WV are the learnable parame-
ter matrices, and X ′

c is the result of the context
information updated by the causal self-attention
layer. After L-layer blocks, we can get the final
contextual integration feature X̂c. By utilizing the
token selector and context fusion module, we can
dynamically get the key area features and contex-
tual integration features of each image. Through
concatenation, we can obtain the representation of
complete visual features Xv = [Xs, X̂c] ∈ RN×C .

4.4 Text Generation and Training Strategy

We map Xv and Qt to the dimensions of the pre-
trained large language model through two projec-
tors to obtain Ev and Et, respectively:

Ev = WvXv + bv, Et = WtQt + bt, (4)

3Using causal self-attention helps convert 2D raster-
ordered features in the image encoder into sequences with
causal dependencies, improving consistency with textual to-
kens in LLM (Jin et al., 2023).
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Table 1: The results of comparison with previous studies on four capabilities. Best and second-best results are
shown in bold and underline, respectively. Rouge and Score refer to Rouge-L and GPT-score, respectively.

Models
Recognition Details Diagnosis Knowledge Average

Rouge Score Rouge Score Rouge Score Rouge Score Score

Zero-shot with existing medical MLLM

GPT4V (Achiam et al., 2023) 0.242 3.132 0.179 2.942 0.081 3.644 0.127 3.848 3.392
Med-flamingo (Moor et al., 2023) 0.293 1.893 0.286 2.371 0.277 2.278 0.243 2.257 2.200

LLaVA-Med (Li et al., 2023a) 0.335 2.744 0.348 2.621 0.303 3.039 0.296 2.996 2.918

Instruction-tuning with existing MLLM

LLaMa-adapterV2 (Gao et al., 2023) 0.431 2.497 0.411 2.413 0.396 2.722 0.373 2.945 2.644
Minigpt-v2 (Chen et al., 2023a) 0.404 2.743 0.436 2.764 0.402 3.082 0.356 2.983 2.893
mPLUG-Owl (Ye et al., 2023) 0.349 2.613 0.342 2.658 0.321 3.105 0.293 3.059 2.859

Qwen-VL-Chat (Bai et al., 2023) 0.380 2.566 0.432 2.698 0.341 2.881 0.343 2.839 2.746
LLaMA-VID (Li et al., 2023d) 0.429 2.658 0.421 2.606 0.378 3.107 0.358 3.046 2.854

Our methods

MLeVLM (MLFA) 0.434 2.767 0.436 2.802 0.392 3.114 0.364 3.093 2.944
MLeVLM (LoRA) 0.449 2.807 0.437 2.741 0.404 3.118 0.389 3.114 2.945

where Wv,Wt, bv and bt are learnable parameters,
Ev ∈ RN×DLLM , Ev ∈ RK×DLLM , DLLM is the
input dimension of the pretrained large language
model. After linear projection, both the visual in-
formation Ev and the semantic information Et are
converted into the language space. These visual
and semantic tokens can be used in subsequent
LLM to generate answers that respond to user in-
structions.

In order to stimulate the capabilities of LLM
in medical visual question answering as much as
possible, a reasonable training strategy is crucial.
Considering the training cost, we divide the train-
ing process into three stages, namely the medical
modality alignment, the medical instruction-tuning,
and the level instruction-tuning.

Stage I: Medical modality alignment. There is
a gap in the feature space of the pre-trained encoder
and decoder. Therefore, we first need to pre-train
the MLFA module on medical multimodal datasets
to align the encoder and decoder. The data includes
a large number of public medical image classifi-
cation, medical image caption and medical VQA
datasets, with a total of 1,700K samples. Detailed
data sources are shown in Appendix B.1, and de-
tailed instruction templates are shown in Appendix
E.1 and Appendix E.2. During training, we keep
the encoder and LLM weights frozen and only up-
date the parameters of MLFA module. Through
stage I, we can pre-train the encoder and decoder
in medical modality alignment, allowing the model
to initially gain understanding capabilities in the
medical field.

Stage II: Medical instruction-tuning. To en-
sure that the model can follow instructions in di-
verse medical fields, it is necessary to fine-tune
the model with medical instructions. Specifically,
we use the instructions provided by LLaVa-Med
to fine-tune the dataset. LLaVa-Med filters PMC-
15M to obtain 60K samples, and generates multiple
rounds of dialogue through GPT-4, containing rich
medical instructions. During training, we keep the
visual encoder frozen and update the parameters
of the other components. After stage II, the model
has preliminary medical VQA capabilities and can
achieve good zero-shot results on public datasets.

Stage III: Level instruction-tuning. To
improve the multi-level capabilities of medical
MLLM, we add a level instruction-tuning stage.
We use the MLe-VQA dataset to fine-tune the
model, containing 60K samples. We implement
two types of fine-tuning strategies. The first is to
only update the parameters of MLFA layers and
freeze the LLM. The second is to update the pa-
rameters of MLFA layers and use LoRA (Hu et al.,
2021) to fine-tune the LLM parameters. After stage
III, our model can effectively understand question
characteristics of different levels with reasoning
capability.

5 Experiments

5.1 Experimental Setup

Datasets. We use the MLe-Bench introduced in
Section 3.3 for the zero-shot evaluation. The bench-
mark contains a test set of 1,492 samples compiled
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Table 2: Ablation studies on MLe-Bench and the test set of MLe-VQA. Best results are shown in bold. We used
Rouge-L to evaluate the results of each capability automatically.

Dataset Training Strategy Method Seletor Merger Recognition Details Diagnosis Knowledge Average

MLe-Bench

Instruction-tuning

(a) w/o Selector - - 0.349 0.363 0.302 0.287 0.325

(b) w/o Merger ✓ - 0.356 0.367 0.303 0.295 0.330

(c) Ours ✓ ✓ 0.372 0.374 0.315 0.313 0.344

Level-tuning

(d) w/o Selector - - 0.414 0.409 0.392 0.358 0.393

(e) w/o Merger ✓ - 0.428 0.422 0.390 0.367 0.402

(f) Ours ✓ ✓ 0.434 0.436 0.392 0.364 0.407

MLe-VQA

Instruction-tuning

(g) w/o Selector - - 0.385 0.341 0.287 0.256 0.317

(h) w/o Merger ✓ - 0.388 0.348 0.290 0.258 0.321

(i) Ours ✓ ✓ 0.391 0.354 0.295 0.258 0.325

Level-tuning

(j) w/o Selector - - 0.434 0.409 0.352 0.319 0.379

(k) w/o Merger ✓ - 0.442 0.413 0.358 0.320 0.383

(l) Ours ✓ ✓ 0.458 0.429 0.369 0.324 0.395

from 4 public medical VQA datasets. We also
perform held-in experiments on the test set of MLe-
VQA to evaluate the effectiveness of each compo-
nent. Details of both datasets are provided in the
Appendices B.2 and B.3.

Merics. Previous works typically employ accu-
racy as evaluation metric, which scoring all avail-
able answers of the datasets to calculate classi-
fication accuracy. Since the ground truth of the
benchmark has been rephrased, we follow (Li et al.,
2023a) to employ Rouge-L (Lin, 2004) as auto-
matic metrics. Additionally we follow (Zheng et al.,
2023) to adopt BLEU (Papineni et al., 2002) and
Sentence Similarity (Zhang et al., 2019) for auto-
matic evaluation. To bridge the gap of traditional
metrics, we follow LLaVA-Med (Li et al., 2023a)
to use GPT-API for scoring. For different levels
we set different evaluation prompts with a overall
score on a scale of 0 to 5, where a higher score indi-
cates better overall performance. Detailed prompts
are provided in the Appendix E.6.

Implementation Details. We instantiate the
model with the pre-trained EVA-G (Fang et al.,
2023) for visual encoder and Q-Former (Dai et al.,
2023) for text encoder. We choose Vicuna-7B
(Chiang et al., 2023) as the default large language
model. See Appendix D for more details.

5.2 Comparison with Existing Methods

We perform comparative experiments of our
method with existing medical MLLMs (Moor et al.,
2023; Li et al., 2023a) and general MLLMs (Gao
et al., 2023; Chen et al., 2023a; Ye et al., 2023; Bai
et al., 2023; Li et al., 2023d). For existing medical
MLLMs, we perform zero-shot testing on MLe-
Bench directly. For general MLLM, we reproduce

their models according to our full three-stage train-
ing strategy in Section 4.4 for a fair comparison.
We use Rouge-L and GPT-score to evaluate the re-
sults of each capability. The experimental results
are shown in Table 1. More results for traditional
metrics are provided in the Appendix F.1.

From Table 1, we can observe that our methods
achieve best evaluation results in all capabilities.
This proves that MLeVLM is currently the best
MVQA model in terms of four capabilities: Recog-
nition, Details, Diagnosis and Knowledge. The
model fine-tuned by Lora gets the best Rouge re-
sults on four levels and the best average GPT-score.
Compared to the state-of-the-art open-source med-
ical MLLM, our methods outperform in both text
similarity and semantic correctness. Our methods
also have better results compared to the MLLMs we
reproduced. Since these methods are completely
fine-tuned using the same data and only the model
architecture is different, it suggest that our pro-
posed model architecture is superior.

We also show the experimental results of using
GPT4V to test directly on MLe-Bench. Based on
the experimental results in the table below, it can be
seen that although the API scoring of GPT4V will
be higher than the existing MLLM model, none of
the capabilities scored more than 4 points. In ad-
dition, the mean score for GPT4V was only 3.392.
This proves that MLe-Bench is challenging and
suitable for the existing 7B scale MLLM model for
medical VQA evaluation.

5.3 Ablation Studies

We conduct ablation experiments on MLe-bench
and the test set of MLe-VQA. Results are shown
in Table 2. The contrasting model w/o Selector
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Question
Are the soft tissue densities in the left hilum equivalent in size to the
soft tissue densities in the right hilum?

Ground Truth
The soft tissue densities in the left hilum are not equivalent in size to
the soft tissue densities in the right hilum.

Med-flamingo

This is a chest radiograph of a patient.

LLaVA-Med

The soft tissue densities in the left hilum are not equivalent in size to the soft tissue densities in
the right hilum.

MLeVLM

No, the soft tissue densities in the left hilum are not equivalent in size to those in the right
hilum.

Question
How to treat the disease located on the lower left of lung in this
image?

Ground Truth
The disease located on the lower left of the lung should be treated
with medical therapy and supportive therapy.

Med-flamingo

The disease was located on the lower left of lung.

LLaVA-Med
I'm sorry, but I cannot provide specific medical advice or treatment recommendations. It is
important to consult a healthcare professional for a thorough evaluation and proper diagnosis of the
underlying cause of the disease in the lower left lung.

MLeVLM

Treatment for the disease on the lower left lung may include antibiotics, antifungal medications,
or surgical intervention, depending on the specific cause and severity of the condition.

Question
Does the patient have brain tumor? Please formulate your answer in a
logical, stepwise fashion.

Ground Truth

The patient has brain tumor.

Med-flamingo

There is a large, heterogeneous brain tumor.

LLaVA-Med

The patient has a history of brain tumor, but it has been stable for 10 years.

MLeVLM

The MRI image shows a large mass in the left frontal lobe, which is indicative of a brain tumor.
The presence of a tumor in the brain can lead to various symptoms and complications, such as
seizures, neurological deficits, and cognitive impairment. The tumor's location in the frontal lobe
suggests that it could be affecting the patient's cognitive function, motor skills, or other higher-
order brain functions.

(a) Case on capability of Details (b) Case on capability of Knowledge (c) Case on capability of Reasoning

Figure 4: Case studies on questions of different levels and reasoning capability.

discards token selector in the full model, and the
contrasting model w/o Merger discards the context
merger in the full model4. We reproduce the two
models according to the training strategy in Section
4.4, and only fine-tune the MLFA layer during level
instruction-tuning.
Ablation of Attention-based Token Selector.
Comparing methods (d) and (e), it can be found
that the metric of Recognition improves from 0.414
to 0.428. This indicates that token selector works
in recognising the key areas. Similar conclusions
can be found on instruction-tuning stage and the
test set of MLe-VQA. This proves that the selector
works in both stages.
Ablation of Context Merger. Comparing methods
(e) and (f), it can be found that the metric of Details
improves from 0.422 to 0.436. This indicates that
integrating contextual information through context
merger can assist models in recognizing visual de-
tails. Comparable findings have been observed in
both the instruction-tuning stage and the test set of
MLe-VQA, demonstrating the effectiveness of the
merger across different stages.
Ablation of Level-tuning. Comparing methods (c)
and (f), the model’s capabilities at all four levels are
significantly improved by adding level-tuning, in-
dicating the validity of our constructed MLe-VQA.

Methods (c) and (f) achieve the relative best met-
rics, both in the instruction-tuning stage and in the
level-tuning stage. This proves that our complete
model can be adequately adapted to multi-level
MVQA. Similar conclusions can be found on the
test set of MLe-VQA. This proves that our model
can be adapted to data with different distributions.

5.4 Analysis of Reasoning Capability

Since reasoning involves a long chain of thought
process, we employ GPT and human evaluation
to systematically evaluate the performance in rea-

4Since the context merger is highly bound to the token se-
lector, while discarding the token selector, the context merger
is discarded together.

Table 3: The results of human evaluation on MLe-Bench.

Method Relevant Correct Complete Coherent Explainable

Med-flamingo 2.26 1.13 1.32 1.22 1.35

LLaVA-Med 4.18 2.50 3.69 3.80 3.63

Ours(Instruction-tuning) 3.84 2.50 4.20 4.30 4.20

Ours(Level-tuning) 4.29 2.72 4.57 4.50 4.38

Med-flamingo Med-LLaVA MLeVLM 
 w/o level-tuning

MLeVLM
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

2.278

1.910

3.0393.090
2.980

2.697

3.114
3.175

Diagnosis Reasoning

Med-flamingo Med-LLaVA MLeVLM 
 w/o level-tuning

MLeVLM
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

2.257
2.160

2.9963.004
2.881

2.713

3.0933.118

Knowledge Reasoning
without Reasoning with Reasoning

Figure 5: Comparison with existing medical MLLMs in
reasoning capability. Use GPT-score for evaluation.

soning. The results of GPT-score are presented in
Figure 5, including the scores of reasoning on Di-
agnosis and Knowledge at MLe-Bench. The com-
parison methods include Med-flamingo, LLaVA-
Med, and MLeVLM without level-tuning. It
can be observed that: 1) By adding reasoning
prompts, scores increased for LLaVA-Med and
MLeVLM while decreased for Med-flamingo and
MLeVLM w/o level-tuning. This suggests that
LLaVA-Med and MLeVLM have reasoning capa-
bility and MLeVLM’s reasoning capability comes
from level-tuning; 2) On both levels of reasoning,
MLeVLM’s average scores improved by 0.061 and
0.025, respectively, which is higher than LLaVA-
Med, demonstrating better reasoning capability.
More analysis can be found in Appendix F.2.

In the course of human evaluation, annotators
are required to grade each rationale on the crite-
ria of Relevance, Correctness, Completeness, Co-
herence, and Explainability. Noted that although
LLaVA-Med achieve decent results in terms of Rel-
evant and Correct, its performance is poor than
MLeVLM (both with and without level-tuning) in
other aspects. In addition, after level tuning, our
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method significantly surpass other methods across
all aspects of human evaluation, which is more
valuable for interpretable studies in the medical
field.

6 Qualitative Analysis

Case Study on Different Levels. To compare the
capabilities between MLeVLM and existing medi-
cal MLLMs, we conduct case study on questions
of different levels. Plot (a) of Figure 4 shows the
models’ answers to the detail-based questions. It
can be seen that both LLaVA-Med and MLeVLM
generate correct answers, while Med-flamingo has
errors in its answers. Plot (b) of Figure 4 shows the
models’ answers to the knowledge-based questions.
MLeVLM can effectively give the treatment sug-
gestions, while the other models can’t. More case
studies in the Appendix G.2 demonstrate that our
model can have greater multi-level capabilities.

Case Study on Reasoning Capability. We also
conduct the case study on reasoning capability. Plot
(c) of Figure 4 shows the reasoning capability of
the models. It can be seen that LLaVA-Med and
Med-flamingo have the correct answers but lack
the correct reasoning process. MLeVLM gives a
detailed and reliable progressive reasoning process
while ensuring the correct answer. More examples
in the Appendix G.2 can demonstrate the strong
reasoning capability of MLeVLM compared to the
existing medical MLLMs.

7 Conclusion

In this paper, we summarize the multi-level pro-
gressive capabilities of medical visual question
answering based on real scenarios for the first
time. We propose MLeVLM, optimized in terms of
both data and architecture. Extensive experiments
based on our manually constructed multi-level eval-
uation benchmark, MLeBench, demonstrate that
MLeVLM is the best performing medical MLLM
at present. Meanwhile, case studies and human
evaluation experiments demonstrate that MLeVLM
exhibits great progressive reasoning capability.

Limitations

For the multi-level question-answer generation ap-
proach used in constructing the MLe-VQA, it is
capable of generating only the questions on the ba-
sis of the image captions. Consequently, its scope

is bound by the given captions, limiting the infor-
mation available for question and answer genera-
tion. Additionally, despite that we have carefully
crafted prompts and in-context examples, GPT-4
may prone to language hallucinations, therefore it
might generate incorrect answers. Generally, more
trustworthy language models are desired for self-
instruct data generation.

Ethics Statement

MLeVLM is built upon a Large Language Model,
inheriting the original language hallucinations of
the LLM, e.g., it may produce harmful and coun-
terfactual responses. Moreover, machines are im-
perfect, so a potential risk is that the model may
misinterpret user input or make inaccurate predic-
tions. In high-stakes medical environments, such
errors could prove harmful or even dangerous. Re-
searchers and developers should be aware of the
potential harms that may arise from the use and
misuse of MLLMs in medical settings, and should
implement both automated (e.g., setting stringent
thresholds for diagnostic suggestions) and human
(e.g., training to ensure staff awareness of potential
system fallibilities) safeguards. We hereby declare
that the MLe-VQA dataset we have released is
made available solely for research purposes. Fur-
thermore, our data collection method align with the
terms of use and adhere to the intellectual property
and privacy rights of the original authors.
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A More Related Work

A.1 Construction of the MLLM instruction
dataset

A series of researches further enhance MLLMs
by focusing on data quality and data diversity in
the pre-training and fine-tuning phases. LLaVA
inputs captions and bounding boxes into GPT-4
to construct the instruction dataset. Instead of in-
putting a picture, this method only inputs human-
labeled text into the model and lets it imagine
that it has seen the picture to constrain the final
generated instructions and responses to get the
LLaVA-Instruct-150K dataset. InstructBLIP (Dai
et al., 2023), starting from BLIP-2, further col-
lects more diverse datasets based on the LLaVA-
Instruct-150K dataset to produce instruction tuning
data. To build a large-scale high-quality image-text
pair data, ShareGPT4V (Chen et al., 2023b) passes
100K images through GPT-4 to generate complex
captions. A pre-trained caption model is fine-tuned
with these high-quality captions, and 1.2 million
images are passed through the fine-tuned caption
model to generate complex captions in order to
build a sizeable ShareGPT4V dataset. Monkey
(Li et al., 2023e) incorporates multiple generators
to automatically generate multi-level description
generation for images.

A.2 Reasoning in MLLM
The success of rationales in unimodal reasoning
(Kojima et al., 2022; Rubin et al., 2021; Wei et al.,
2022) motivates a growing body of researches to
leverage rationales to enhance both reasoning ca-
pabilities and interpretability in multimodal rea-
soning. The pioneering work (Lu et al., 2022)
first presents ScienceQA, a large-scale multimodal
Q&A dataset where annotations include both the
answers to questions and the corresponding ratio-
nals. MMCoT (Zhang et al., 2023b) proposes a
two-stage framework that separates rationale gen-
eration and answer inference, the first stage is the
rationale generation stage, where the model gener-
ates the rationals based on the input text and images,
and the second stage integrates all the information
obtained to generate the final answer. Then, (Wang
et al., 2023) employs different strategies for tasks
of different difficulty. It utilizes a zero-shot instruc-
tion to generate CoT rationals as teaching data for
simple tasks. For complex tasks, it decompose
them into sub-problems through zero-prompting to
construct teaching data and mixing different train-

ing data for model fine-tuning. In order to im-
prove the generalization of the generated rational
in out-of-distribution data, DDCoT (Zheng et al.,
2023) generates rationals by zero-shot prompting
to take advantage of the intrinsic generative power
of LLM, which prompting LLM to decompose the
input problem into sub-problems and acquiring cor-
responding sub-answers. The obtained information
will be integrate into auxiliary information to gen-
erate rationales by prompting LLM. The problem
statements combined with the rationales are served
as inputs for zero-shot prompting or fine-tuning to
improve the reasoning abilities.

A.3 Relationship with Previous Works

Compared with previous work (Moor et al., 2023;
Li et al., 2023a), our approach is not a direct mi-
gration of multimodal large language model from
general domain. We focus on improving the multi-
level progressive capabilities in medical VQA. On
the data side, we carefully construct instruction
datasets to allow models with multi-level capabili-
ties and progressive reasoning. On the architecture
side, we use multilevel feature alignment module
instead of simple linear layers. This ensures that
the model can focus on multilevel capabilities from
visual to semantic.

B Data Source

B.1 Data Source for Medical Modality
Alignment

We use multimodal medical data containing three
types of tasks as the data source for the first stage
of medical modality alignment. It contains a total
of 1,710K Q&A samples. The details of the data
source are shown in Table 4.

Table 4: Data Source for Medical Modality Alignment.

Task Datasets Samples

Diagnosis MedMINIST (Yang et al., 2023),etc. 762,615

Image Caption Medicat (Subramanian et al., 2020),etc. 761,641

VQA PMCVQA (Zhang et al., 2023a),etc, 186,033

B.2 Data Source for MLe-VQA

We select 4 biomedical caption datasets as data
sources, including ROCO (Pelka et al., 2018),
Medicat (Subramanian et al., 2020), MIMIC-CXR
(Johnson et al., 2019) and PMCVQA (Zhang et al.,
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(a) Level 1 Recognition. (b) Level 2 Details.

(c) Level 3 Diagnosis. (d) Level 4 Knowledge.

Figure 6: The visualization of the root noun-verb pairs for the questions in MLe-VQA.

2023a). We filter high-quality caption data and use
them to construct MLe-VQA with multi-level capa-
bilities. The details of the data source are shown in
Table 5. The MLe-VQA dataset is split into train-
ing, validation, and test splits with 53024, 3514,
and 3431 Q&A samples, respectively.

B.3 Data Source for MLe-Bench

We use four common biomedical VQA datasets
as data sources, including PathVQA (He et al.,
2020), VQA-RAD (Lau et al., 2018), VQA-Med
(Ben Abacha et al., 2021) and Slake (Liu et al.,
2021). We construct MLe-Bench by careful man-
ual selection and the details are shown in Table 6.
The test of reasoning capability is performed on
Diagnosis and Knowledge.

C Data Analysis

Figure 6 provides a visualization of the root noun-
verb pairs for the questions in MLe-VQA. The
visualization results reveal that the questions cor-
responding to each rank focus well on their own
ranks and also demonstrates the diversity of the

questions. Figure 7 shows several examples of
MLe-VQA. The results of the comparison with the
current medical VQA dataset are shown in Table
7. Based on the statistical results it can be seen
that our constructed MLeVQA contains the richest
modality and the most question-answer pairs. With
the rephrasing ability of GPT-4 and the rich data
sources, the question types of MLeVQA are more
diverse than other medical VQA datasets.

The MLe-VQA contains the following advan-
tages:

1) Laborious manual labelling are avoided by
using the latest GPT-4 for automated construction;

2) The construction based on GPT-4 provides a
rich diversity and complexity of instructions, which
is more conducive to the instruction fine-tuning
stage;

3) Obtain more fine-grained medical VQA data
through clear definitions of levels and provide rea-
soning process based on progressive relationships,
reducing hallucination generation.
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Level 1 Recognition
Q: Can you identify any structures or lesions in the image?
A: Yes, there is a lesion indicated by an arrow, which is in
direct continuity with the junction between the splenic and
portal vein.

Level 2 Details 
Q: Where is the lesion located in relation to the surrounding vasculature?
A: The lesion is located anteriorly and appears to be in direct continuity with the
junction between the splenic and portal vein.

Level 3 Diagnosis 
Q: Does the image suggest any complications of the pancreatic pseudocyst?
A: Yes, the image suggests the pancreatic pseudocyst may be eroding into the
nearby vascular structures such as the splenic or portal vein.

Level 4 Knowledge
Q: Considering the sonogram findings, what should be the next step in the
management of this patient?
A: Further assessment through cross-sectional imaging like CT or MRI,
consultation with gastroenterology, and possibly intervention to address the
pseudocyst are the next steps.

Reasoning
Q: Does the image suggest any complications of the pancreatic pseudocyst? Please
think step-by-step to answer the question.
A: The Color Doppler sonogram displays turbulent partial color flow within the
lesion, which indicates active blood flow within the cystic structure. This,
combined with the anterior location and continuity with the venous junction,
suggests that the pseudocyst is eroding and forming a fistula with the nearby
vessels, likely the splenic or portal vein. Such an erosion is consistent with the
complications of pancreatic pseudocysts.

Level 1 Recognition
Q: What can be seen in the fundus photograph?
A: There is a large whitish area in the temporal retina
indicated by black arrows.

Level 2 Details 
Q: What is the significance of the whitish area in the temporal retina?
A: The whitish area likely represents pathology within the retina.

Level 3 Diagnosis 
Q: What condition does the whitish area on the fundus photograph suggest?
A: The whitish area on the fundus photograph suggests a choroidal infarction.

Level 4 Knowledge
Q: Based on the findings, what might be the underlying cause of the choroidal
infarction?
A: Possible underlying causes of choroidal infarction could include vascular
occlusion, vasculitis, or embolic events.

Reasoning
Q: What should be the management plan for the patient given the confirmed
diagnosis? Observe the image then logically construct a step-by-step response.
A: Choroidal infarction typically results from an interruption in the vascular
supply, which could be due to an embolic event, atherosclerosis, or other vascular
disorders. The patient's management plan should focus on systemic assessment
for vascular risk factors and local treatment to the eye to address the immediate
problem of the infarct and prevent further complications.

Level 1 Recognition
Q: What feature in the image is used to help identify the
angiomyolipoma?
A: An India ink artifact is used to highlight the presence of
the mass.

Level 2 Details 
Q: What does the India ink artifact indicate?
A: The India ink artifact indicates the clear outline of the mass against the
adjacent kidney tissue.

Level 3 Diagnosis 
Q: What do the features in the angiomyolipoma suggest about its nature?
A: The presence of thick-walled blood vessels suggests that the angiomyolipoma is
a benign renal hamartoma composed of blood vessels, muscle, and fat.

Level 4 Knowledge
Q: Considering the patient has an angiomyolipoma, what considerations should be
taken for management?
A: Management should include regular imaging to monitor the size of the
angiomyolipoma, assessment for symptoms of pain or bleeding, and evaluation for
associated conditions like tuberous sclerosis complex.

Reasoning
Q: Does the angiomyolipoma have any characteristics that could indicate
malignancy? Let's think it step by step.
A: The angiomyolipoma is identified by its characteristic fat content and the
presence of thick-walled blood vessels, as observed in the image. The sharp
demarcation by the India ink artifact suggests a clear separation from the
surrounding renal parenchyma, which is typical of non-invasive masses. Given that
angiomyolipomas are generally benign and composed of a mixture of fat, muscle,
and blood vessels, the observed features align with this diagnosis rather than a
malignant process.

Figure 7: Several examples of MLe-VQA.

Table 5: Data Source for MLe-VQA, including multi-level capabilities sample counts.

Dataset Recognition Details Diagnosis Knowledge Reasoning Total

ROCO (Pelka et al., 2018) 5,242 5,130 4,278 4,839 9,117 28,606
Medicat (Subramanian et al., 2020) 2,037 2,003 1,722 1,897 3,619 11,278
PMCVQA (Zhang et al., 2023a) 2,013 1,988 1,658 1,868 3,526 11,053
MIMIC-CXR (Johnson et al., 2019) 1,614 1,600 1,386 1,523 2,909 9,032

Total 10,906 10,721 9,044 10,127 19,171 59,969

Table 6: Data Source for MLe-Bench, including multi-
level capabilities sample counts.

Dataset Recognition Details Diagnosis Knowledge Total

Slake 61 92 69 56 278
VQA-RAD 195 88 152 83 518
PathVQA 140 76 156 53 425
VQA-Med 72 92 62 45 271

Total 468 348 439 237 1,492

D More Implementation Details

We instantiate the model with the pre-trained EVA-
G5 (Fang et al., 2023) for visual encoder and Q-
Former6 (Dai et al., 2023) for text encoder. We
choose Vicuna-7B7 (Chiang et al., 2023) as the de-
fault large language model. The blocks of context
merger are 3 by default. We train all models with
4*A800s. We pretrain our model on Stage I for 1
epoch with a learning rate of 2e-5 and a batch size
of 32, and fine-tune on Stage II for 3 epochs with a
learning rate of 1e-5 and a batchsize of 4. Finally,
we fine-tune the model on Stage III for 2 epoch
with a learning rate of 2e-5 and a batchsize of 16.
Following LLaVa, we use the Adam optimizer with
no weight decay and a cosine learning rate with a

5https://github.com/baaivision/EVA
6https://github.com/salesforce/LAVIS
7https://huggingface.co/lmsys/vicuna-7b-v1.5

warmup ratio of 3%. Details of the training process
are shown in Table 8.

E Instructions and Prompts

E.1 Instructions for Image Classification

To make the image classification task more suitable
for the VQA model, we design 10 question instruc-
tion templates and 7 answer templates (Yin et al.,
2023) when performing medical modality align-
ment. The templates are shown in Figure 9. They
present the same meaning with natural language
variance.

E.2 Instructions for Image Caption

To make the image caption task more suitable for
the VQA model, we design 10 instruction templates
(Li et al., 2023a) when performing medical modal-
ity alignment. The instructions are shown in Figure
10. They present the same meaning with natural
language variance.

E.3 Instructions for Reasoning

To enrich the instructions for the reasoning process,
we design 10 instructions to inspire the model for
reasoning. The instructions are shown in Figure
11. They present the same meaning with natural
language variance.
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Table 7: Comparisons with Other Medical VQA Datasets.

Dataset Images QA Pairs Number of Images for Different Modalities

Slake 642 14K CT 282; MRI 181; X-ray 179.
VQA-RAD 315 3.5K Head axial CT/MRI 104; X-ray 107; Abdominal axial CT 104.
PathVQA 4998 32K All pathology images.
VQA-Med 2000 36K All endoscopy images.

MLe-VQA 5352 60K Xray 1854; CT 1558; MRI 1201; Ultrasound 364; PET 161; Angiogram
78; Pathology 25; Endoscopy 16; Ophthalmic Imaging 15; Others 95.

Table 8: Training Details.

Stage Para. Batchsize LR Epochs GPU Hours

Stage I 228 M 32 2e-5 1 144
Stage II 7,072 M 4 1e-5 3 72
Stage III (MLFA) 228 M 16 2e-5 2 24
Stage III (Lora) 388 M 16 2e-5 2 30

E.4 Prompts for MLe-VQA Generation

Figure 12 shows our prompts for generating the
MLe-VQA dataset using GPT-4. The prompts in-
clude clear definitions of the different levels, rea-
soning prompts, and in-context learning examples.

E.5 In-context Learning Examples

Figure 13 shows one of our manually labeled in-
context learning examples, including the caption
for input images, expected multi-level questions
and answers, and progressive reasoning processes.
The output is in standard JSON format.

E.6 Prompts for GPT-assisted Evaluation

Motivated by (Li et al., 2023a; Liu et al., 2023), we
leverage GPT-score to quantify the model response
to a question. Specifically, We craft specific evalu-
ation prompts for each capability, informing GPT
of the focus of each level, as is shown in Figure
14. We then feed the question, ground truth and
the generated model response to the GPT-3. Each
response generated by the model receives an evalu-
ation score from GPT, ranging from 0 to 5, where
a higher score indicates better overall performance.
Each sample is input into GPT three times, and the
average score is taken as the final score to ensure
stability of the results. Finally, we calculate the
average score obtained by each model across all
questions as the score for each model.

F More Experimental Results

F.1 Comparison on More Traditional Metrics

We conduct comparative experiments on more tra-
ditional metrics, including BLEU and Sentence
Similarity. The results are shown in Table 9. It
can be seen that MLeVLM fine-tuned with Lora
achieves excellent results in evaluation. Among
them, it achieves the best similarity in the recogni-
tion and diagnosis categories, and the best BLEU
in the recognition and knowledge categories. Com-
pared with existing medical MLLMs, the tradional
metrics of MLeVLM show strong competitiveness.

F.2 More Analysis of Reasoning Capability

We provide additional analysis on the assessment
of the model’s reasoning ability. We perform rea-
soning on the test set of MLe-VQA and automate
the evaluation using traditional metrics based on
the ground truth generated by GPT-4. The exper-
imental results are shown in Table 10. It can be
seen that the reasoning results generated by our
model is higher than that of other models on the
traditional metrics, proving that it has a more effec-
tive reasoning capability. The ablation results leads
to the conclusion that the reasoning capability of
the model comes from the level instruction-tuning
on Stage III.

G More Qualitative Analysis

G.1 Token Visualization

To better demonstrate the effect of our proposed
token selector, we conducted visualization experi-
ments. The experimental results are shown in Fig-
ure 8. For a given image and question, our attention-
based token selector can get the tokens selected by
the model as key information. We have labeled the
key information with red circles in the figure, and
we can find that our token selector can effectively
recognize these areas. By selecting these key to-
kens, the model can effectively answer questions
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Table 9: The results of comparison with previous studies on four capabilities. Best and second-best results are
shown in bold and underline, respectively. BLEU and Sim. refer to BLEU-1 and Sentence Similarity, respectively.

Models
Recognition Details Diagnosis Knowledge

BLEU Sim. BLEU Sim. BLEU Sim. BLEU Sim.

Zero-shot with existing medical MLLM

Med-flamingo (Moor et al., 2023) 0.264 0.478 0.235 0.497 0.237 0.476 0.186 0.433
LLaVA-Med (Li et al., 2023a) 0.283 0.612 0.308 0.609 0.256 0.668 0.236 0.571

Instruction-tuning with existing MLLM

LLaMa-adapterV2 (Gao et al., 2023) 0.392 0.634 0.418 0.632 0.391 0.695 0.324 0.613
Minigpt-v2 (Chen et al., 2023a) 0.300 0.605 0.304 0.590 0.263 0.665 0.230 0.565
mPLUG-Owl (Ye et al., 2023) 0.377 0.643 0.414 0.636 0.368 0.698 0.310 0.597

Qwen-VL-Chat (Bai et al., 2023) 0.357 0.621 0.407 0.629 0.311 0.663 0.303 0.577
LLaMA-VID (Li et al., 2023d) 0.394 0.654 0.392 0.625 0.339 0.680 0.319 0.610

Our methods

MLeVLM (MLFA) 0.403 0.653 0.408 0.627 0.298 0.626 0.313 0.602
MLeVLM (LoRA) 0.409 0.654 0.357 0.599 0.365 0.699 0.339 0.604

Table 10: The results of comparison with other MLLMs
on reasoning capability. Best results are shown in bold.
LT refers to Level-tuning.

Models
Level 3 Reasoning Level 4 Reasoning

BLEU Rouge Sim. BLEU Rouge Sim.

LLaVA-Med 0.245 0.223 0.579 0.270 0.222 0.606

LLaMa-adapterV2 w/o LT 0.189 0.205 0.502 0.189 0.191 0.518

LLaMa-adapterV2 0.249 0.223 0.526 0.256 0.218 0.556

QwenVL-Chat w/o LT 0.227 0.223 0.573 0.232 0.216 0.593

QwenVL-Chat 0.282 0.252 0.576 0.274 0.233 0.596

MLeVLM w/o LT 0.234 0.232 0.575 0.266 0.224 0.600

MLeVLM 0.286 0.261 0.592 0.281 0.243 0.611

in the visual recognition and visual details.

Image Questions Answers Select Tokens

Can you identify any 
surgical procedures 
that this patient has 
undergone?

Yes, the patient has undergone 
bilateral total hip 
arthroplasty, as indicated by 
the presence of prosthetic 
components in both hips.

What is indicated by 
the white arrows in the 
image?

The white arrows point to 
dilated and tortuous vessels in 
the periphery of the nodule in 
the neck of the patient.

Figure 8: Visualization of the token selector. The key
information are labeled with red circles.

G.2 More Cases

We show more cases demonstrating the multi-level
capability and progressive reasoning of MLeVLM.
The results are shown in Figures 15 and 16. It
can be seen that for detail and diagnostic ques-
tions, MLeVLM can answer the results correctly.
It shows a higher level of detail comprehension
and diagnostic capabilities than Med-flamingo and

LLaVA-Med. For more modal images, such as
colonoscopy and pathology images, MLeVLM can
also demonstrate outstanding inference. Other ex-
isting multimodal medical models do not succeed
in progressive reasoning.

H Details on Human Evaluation

Motivated by (Zheng et al., 2023), for each VQA
problem, the evaluators are provided with the im-
age, the question and the correct answer. Eval-
uators are asked to score the rationales gener-
ated by LLaVA-Med (Li et al., 2023a), Med-
flamingo(Moor et al., 2023), and our method in
five aspects:(1) Relevance: the relevance of the
answer to the question; (2) Correctness: the accu-
racy of reasoning and answer; (3) Completeness:
whether the reasoning fully explains the answer;
(4) Coherence: the coherence and smoothness of
the entire reasoning process; (5) Explainability: the
provision of clear and understandable step-by-step
reasoning enabling others to comprehend. The rat-
ing scale ranges from 0 to 5. We select 50 rationales
from Diagnosis and Knowledge at MLe-Bench, re-
spectively, for a total of 100 samples. We recruit
clinician evaluators with at least one year of clin-
ical experience as medical professionals for the
evaluation. All evaluations are conducted indepen-
dently by three evaluators. Finally, we average the
scores for each aspect of each rationale, resulting
in overall scores.
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"Can you identify the object in this image?"
"Based on the image's features, what could be the potential category label for this image?"
"What label would you assign to this image based on the object's shape and size?"
"According to the model's prediction, what is the label assigned to this image?"
"Can you provide the category label for this image based on the object's color and texture?"
"What label do you think best describes the image's content?"
"Based on the image's context, what category label would you assign to it?"
"Can you suggest any alternate labels for this image based on its content and features?"
"What is the most suitable category label for this image based on its shape, size, and context?"
"According to the model's classification, what is the category label assigned to this object?"

"Upon close inspection of the image, it can be concluded that the majority of the objects in the
image fall under the {C} category."
"Through extensive analysis of the image, it can be confidently stated that the image belongs to
the {C} category."
"After careful examination of the image, it has been determined that the majority of the
objects in the image can be classified as belonging to the {C} category."
"Based on a detailed examination of the image, it can be concluded that the image primarily
consists of objects that fall under the {C} category."
"After closely analyzing the image, it has been determined that the main subject of the image
belongs to the {C} category."
"Based on a thorough evaluation of the image, it can be confidently stated that the image is
dominated by objects that fall under the {C} category."
"The image can be classified as {C} based on a close analysis of the objects and their
characteristics."

Instructions for Image Classification

Answer Templates

Figure 9: Instruction and anwer templates for image classification.

"Describe the following image in detail." 
"Provide a detailed description of the given image." 
"Give an elaborate explanation of the image you see." 
"Share a comprehensive rundown of the presented image." 
"Offer a thorough analysis of the image." 
"Explain the various aspects of the image before you." 
"Clarify the contents of the displayed image with great detail." 
"Characterize the image using a well-detailed description." 
"Break down the elements of the image in a detailed manner." 
"Walk through the important details of the image." 

Instructions for Image Caption

Figure 10: Instruction templates for image caption.

"Please think step-by-step to answer the question." 
"Let's think it step by step." 
"Let's analyze it piece by piece to answer the question." 
"Let's break down the question and examine the image to
respond logically." 
"Observe the image then logically construct a step-by-step
response." 
"Reason through the image then answer systematically." 
"Analyze the visual cues in the image then build your answer
progressively." 
"Construct your answer in steps." 
"Please formulate your answer in a logical, stepwise fashion." 
"Please systematically articulate your response." 

Instructions for Reasoning

Figure 11: Instruction templates for reasoning.
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Please generate questions and corresponding answers based on the image, forming a progressive chain
of thought. The thinking chain should include four levels of questions.

Level 1 questions are for testing the ability to observe the image roughly to gain basic information and
identify objects.
Level 2 questions, based on the objects identified in Level 1, ask for detailed information in the
image, testing the ability to observe visual details.
Level 3 questions are for testing the ability to diagnose diseases.
Level 4 questions test the ability to apply knowledge comprehensively. The questions must be based on
this image.

Please provide three parts in your output:
1) The corresponding thought chain questions and answers;
2) A step-by-step detailed reasoning process for the answer to the Level 3 question, incorporating
your medical knowledge with findings from Level 1 and Level 2;
3) A step-by-step detailed reasoning process for the answer to the Level 4 question, incorporating
your medical knowledge with findings from Level 1、Level 2 and Level

Always pose and answer questions as if you are directly looking at the image and ignore the age
information mentioned in the image. Provide two questions for each level. You can only return a
dictionary, and the format of the dictionary should strictly follow the example below:

Prompting GPT-4 to generate medical visual instruction-following data

Figure 12: Prompts for MLe-VQA generation.
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<Image>: "A female with genital tuberculosis undergoing hysterosalpingography shows beaded
appearance in both the right and left fallopian tubes, accompanied by bilateral tubal obstruction
(arrows). The uterine cavity contour is mildly irregular."

<Answer>:{"Level 1": [{"Question": "What are the main anatomical structures visible in this image?",
"Answer": "The main anatomical structures visible in the image are the uterus, fallopian tubes, and the
surrounding pelvic area."}, {"Question": "What imaging technique was used in this image?", "Answer":
"This image was obtained through salpingography, which is a specialized X-ray examination."},
{"Question": "What structures do the arrows in the image point to?", "Answer": "The arrows in the
image point to the bilateral fallopian tubes."}], "Level 2": [{"Question": "How does the appearance of
the fallopian tubes pointed to by the arrows look?", "Answer": "The fallopian tubes exhibit a beaded
appearance. The 'beaded' appearance is characterized by uneven expansion and constriction along the
length of the fallopian tubes. This is an abnormal appearance, suggesting inflammation and obstruction
of the fallopian tubes and implying potential structural issues."}, {"Question": "Is the contour of the
uterine cavity normal?", "Answer": "The contour of the uterine cavity is mildly irregular, which may
indicate abnormalities within the uterine cavity."}], "Level 3": [{"Question": "Based on this image, what
do you think the patient may be suffering from?", "Answer": "The beaded appearance of the fallopian
tubes and bilateral fallopian tube blockage suggest the possibility of genital tuberculosis."}], "Level 4":
[{"Question": "What conditions other than tuberculosis can lead to similar findings in salpingography?",
"Answer": "In addition to tuberculosis, similar findings in salpingography can be caused by conditions
such as endometriosis, pelvic inflammatory diseases, and previous surgical scars."}, {"Question": "What
are the common symptoms of female genital tuberculosis?", "Answer": "The severity and duration of
the condition vary from person to person. Some patients may have no symptoms at all, while others
may experience noticeable symptoms, primarily including: (1) Infertility; (2) Menstrual irregularities:
early stages may involve heavy menstruation, while later stages may lead to scanty or absent periods,
often diagnosed at an advanced stage; (3) Lower abdominal discomfort, worsened during menstruation;
(4) During active tuberculosis, general symptoms like fever, night sweats, fatigue, loss of appetite, and
weight loss may occur."}], "Inference": [{"Level 3": "From the salpingography image, we see the uterus
and fallopian tubes. The fallopian tubes exhibit a beaded appearance and bilateral fallopian tube
blockage as indicated by the arrows. This beaded appearance is a characteristic sign of genital
tuberculosis, where infection leads to inflammation and scarring of the fallopian tubes. Therefore, the
combination of these radiological findings strongly suggests genital tuberculosis as a diagnosis."},
{"Level 4": "Based on the salpingography image, we see the uterus and fallopian tubes exhibiting a
beaded appearance and bilateral fallopian tube blockage. This suggests genital tuberculosis, a condition
known to cause inflammation and scarring in the female reproductive system. However, other conditions
such as endometriosis, pelvic inflammatory diseases, and previous surgical scars can also lead to similar
findings. Therefore, while tuberculosis is a possible diagnosis, other possibilities must also be
considered. Diagnosis can be assisted by the patient's clinical symptoms,clinical symptoms of female
genital tuberculosis include (1) infertility; (2) menstrual irregularities, which may involve heavy
menstruation in the early stages and scanty or absent periods in advanced cases; (3) lower abdominal
discomfort, aggravated during menstruation; (4) during active tuberculosis, general tuberculosis
symptoms like fever, night sweats, fatigue, loss of appetite, and weight loss may occur. The severity
and duration of the condition vary from person to person, with some patients having no symptoms and
others experiencing noticeable symptoms."}]}

In-context Learning Example

Figure 13: An in-context learning example.

Based on a medical image, the following question is posed:
Question: {question}
The reference answer to the question is: {answer}
The generated answer by AI assistant is: {pred}
Based on the reference answer, evaluate whether the generated answer is consistent with the
meaning expressed in the reference answer. The score should be an integer between 0 and 5,
where higher scores indicate greater consistency with the reference answer. If the generated
answer expresses the meaning contained in the reference answer or is relevant to it, it should
be scored appropriately. However, points should be deducted if the generated answer
fabricates content related to images or produces content that contradicts medical common
sense. Do not provide any other output text or explanations. Only provide a Python dictionary
string. For example, your answer should be like this: {'score': }

Prompting ChatGPT to evaluate QAs of Level 1

Based on a medical image, the following question is posed:
Question: {question}
The reference answer to the question is: {answer}
The generated answer by AI assistant is: {pred}
Based on the reference answer, evaluate this generated answer from the following aspects: (1)
Accuracy of detail description; (2) Completeness of the overall detail description. Please give an overall
score for the generated answer based on the true answer, incorporating your medical knowledge and
text comprehension skills, and focusing on the ability to describe details. The score should be an
integer between 0 to 5, with higher scores indicating better detail description. In this evaluation,
focus on the ability to describe visual details, including but not limited to color, shape, size, number,
properties, etc., with more detailed descriptions being better. The priority in the evaluation is
accuracy over completeness. Do not provide any other output text or explanations. Only provide a
Python dictionary string. For example, your answer should be like this: {'score': }

Prompting ChatGPT to evaluate QAs of Level 2

Based on a medical image, the following question is posed:
Question: {question}
The reference answer to the question is: {answer}
The generated answer by AI assistant is: {pred}
Based on the reference answer, evaluate whether the generated answer is consistent with the
meaning expressed in the reference answer. The score should be an integer between 0 and 5,
where higher scores indicate greater consistency with the reference answer. If the generated
answer expresses the meaning contained in the reference answer or is relevant to it, it should
be scored appropriately. However, points should be deducted if the generated answer
fabricates content related to images or produces content that contradicts medical common
sense. Do not provide any other output text or explanations. Only provide a Python dictionary
string. For example, your answer should be like this: {'score': }

Prompting ChatGPT to evaluate QAs of Level 3

Based on a medical image, the following question is posed:
Question: {question}
The reference answer to the question is: {answer}
The generated answer by AI assistant is: {pred}
Based on the reference answer, evaluate this generated answer from the following aspects: (1)
Accuracy; (2) Relevance to the question;(3) Helpfulness; (4) Knowledge richness. Note that in this
evaluation process, the true answer is only for reference. The generated answer does not have to be
exactly the same as the true answer. The generated answer can be richer than the true answer, but a
good generated answer should not contradict the facts described in the true answer. You need to use
your medical knowledge comprehensively for evaluation and give an overall score for the generated
answer. The score is an integer ranging from 0-5. The higher the score, the better the generated
answer. Do not provide any other output text or explanations. Only provide a Python dictionary string.
For example, your answer should be like this: {'score': }

Prompting ChatGPT to evaluate QAs of Level 4

Figure 14: Prompts for GPT-assisted evaluation of different levels.
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Question
How can the distribution in this image be described?

Ground Truth

The distribution in the image can be described as micronodular.

Med-flamingo

This is a chest radiograph of a patient.

LLaVA-Med

The distribution in this chest X-ray image can be described as diffuse.

MLeVLM

The distribution in this chest X-ray image can be described as diffuse, which means that the
abnormalities or findings are spread out and not concentrated in a specific area.

Question
Are there any abnormalities in the image?

Ground Truth

Ulcerative colitis.

Med-flamingo

There are no abnormalities in the image.

LLaVA-Med

The image shows a normal endoscopic appearance of the gastroesophageal junction and esophagus.
There are no visible abnormalities in the image.

MLeVLM

Yes, there are abnormalities in the image. The gross appearance of the specimen shows a large
mass with a central cavity and a surrounding rim of mucin.

Figure 15: More cases on details and diagnosis.

Question
What is glioblastoma? Observe the image then logically construct a
step-by-step response.

Ground Truth
Glioblastoma is a densely cellular tumor with necrosis and pseudo-
palisading of tumor cell nuclei along the edge of the necrotic zone.

Med-flamingo

Glioblastoma is a malignant glia.

LLaVA-Med

Glioblastoma is a highly aggressive and malignant type of brain tumor that arises from glial cells,
which are supportive cells in the brain.

MLeVLM

Glioblastoma is a highly aggressive and malignant type of brain tumor that arises from glial cells in
the brain. It is characterized by rapid growth, invasiveness, and resistance to treatment, making
it a formidable challenge in cancer management. The presence of a glioblastoma in the image
indicates a significant medical condition that requires prompt diagnosis and treatment.

Question
Is the lung healthy? Let's break down the question and examine the
image to respond logically.

Ground Truth

The lung is not healthy.

Med-flamingo

The lung is healthy.

LLaVA-Med

Yes, the lung appears to be healthy in the image.

MLeVLM

The presence of a large mass in the left lung, along with the absence of pleural effusion, suggests
a lung mass rather than a pleural effusion. The mass could be due to various causes, such as
infection, inflammation, or malignancy.

Question
Does this image show foam cell? Construct your answer in steps.

Ground Truth

The image shows foam cells.

Med-flamingo

Yes.

LLaVA-Med

Yes, the image shows a foam cell. The foam cells are characterized by their central lipid core
surrounded by a lining of macrophages.

MLeVLM

The image shows a histological section of a liver biopsy, which reveals the presence of foam cells.
Foam cells are a characteristic feature of non-alcoholic fatty liver disease (NAFLD), a condition
where fat accumulates in the liver without alcohol consumption.

Question
Does this image show skin, neurofibromatosis? Let's think it step by
step.

Ground Truth

The image shows skin with neurofibromatosis.

Med-flamingo

This is an image of a skin biopsy.

LLaVA-Med

Yes, the image shows skin and neurofibromatosis. Neurofibromatosis is a genetic disorder that
causes tumors to form on nerve tissue.

MLeVLM

The image shows a skin biopsy with a characteristic feature of neurofibromatosis, which is the
presence of a cavernous hemangioma. Neurofibromatosis is a genetic disorder that affects the
growth and development of nerve tissue, leading to the formation of benign tumors and other
abnormalities. The presence of a cavernous hemangioma in the skin is a typical finding in
neurofibromatosis, and its identification in the biopsy supports the diagnosis.

Figure 16: More cases on reasoning capability.
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