
Findings of the Association for Computational Linguistics: ACL 2024, pages 4118–4135
August 11-16, 2024 ©2024 Association for Computational Linguistics

On Efficiently Representing Regular Languages as RNNs

Anej Svete Robin Shing Moon Chan Ryan Cotterell
{asvete, chanr, ryan.cotterell}@inf.ethz.ch

Abstract

Recent work by Hewitt et al. (2020) provides an
interpretation of the empirical success of recur-
rent neural networks (RNNs) as language mod-
els (LMs). It shows that RNNs can efficiently
represent bounded hierarchical structures that
are prevalent in human language. This sug-
gests that RNNs’ success might be linked to
their ability to model hierarchy. However, a
closer inspection of Hewitt et al.’s (2020) con-
struction shows that it is not inherently lim-
ited to hierarchical structures. This poses a
natural question: What other classes of LMs
RNNs can efficiently represent? To this end, we
generalize Hewitt et al.’s (2020) construction
and show that RNNs can efficiently represent a
larger class of LMs than previously claimed—
specifically, those that can be represented by a
pushdown automaton with a bounded stack and
a specific stack update function. Altogether,
the efficiency of representing this diverse class
of LMs with RNN LMs suggests novel inter-
pretations of their inductive bias.

https://github.com/rycolab/bpdas

1 Introduction

Neural LMs have demonstrated a human-level
grasp of grammar and linguistic nuance. Yet, a
considerable gap remains between our empirical
observations and our theoretical understanding
of their capabilities. One approach to bridge this
gap is to study what classes of formal languages
neural LMs can efficiently represent. The rationale
behind this object of study is that a neural LM’s
ability to represent a language efficiently suggests
the presence of an inductive bias in the model
architecture that prefers that language over others,
and may make it specifically easier to learn, e.g.,
due to Occam’s razor.

Exploring LMs’ ability to model formal lan-
guages has garnered significant interest in recent
years; see, e.g., the surveys by Merrill (2023) and
Strobl et al. (2023). Investigation into this area has
a particularly long history in the context of RNNs
(McCulloch and Pitts, 1943; Minsky, 1954; Siegel-

y1 y2 ¨ ¨ ¨ yt´4 yt´3 yt´2 yt´1 yt ¨ ¨ ¨¨ ¨ ¨

¨
˝
yt´1

yt´4

y2

˛
‚ h pyătq

p pyt | yătq

softmax pEh pyătq ` uqyt

Figure 1: An illustration of how an RNN can store
information about a fixed number of symbols (in this
case, three) that have appeared in the string yăt. Using
some mechanism, the symbols y2, yt´4, yt´1 have been
selected for determining the continuation of the string
and are stored in h. These symbols are used to compute
the conditional probability of the next symbol yt.

mann and Sontag, 1992).1 For example, a classic
result (Minsky, 1954) states that RNNs are equiva-
lent to finite-state automata (FSAs). How efficiently
an RNN can encode an FSA was studied by Indyk
(1995), who showed that an FSA with statesQ over
an alphabet Σ can be simulated by an RNN with
O

´
|Σ|a|Q|

¯
neurons. This construction is opti-

mal in the sense that there exist FSAs that require
this many neurons to be emulated by an RNN.

Indyk’s (1995) bound presents a worst-case anal-
ysis: It reflects the number of neurons needed for
an adversarially selected FSA. However, it is easy
to construct FSAs that can be encoded with expo-
nentially fewer neurons than the number of states.
Fig. 2 exhibits an n-gram LM that, when encoded
as an FSA, has |Σ|n´1 states, but can still be rep-
resented with O pn log |Σ|q neurons. Building on
this insight, Hewitt et al. (2020) show that an entire
class of languages—Dpb, nq, i.e., the Dyck lan-
guage over b parentheses types with nesting up
to depth n—can be encoded in logarithmic space.
Specifically, even though an FSA that accepts the

1In terms of empirical performance on statistical language
modeling, RNNs constituted the empirical state of the art
until recently (Qiu et al., 2020; Orvieto et al., 2023), and
have, despite the prominence of transformer-based LMs, seen
a resurgence of late (Peng et al., 2023; Orvieto et al., 2023;
Zhou et al., 2023).

4118

asvete@inf.ethz.ch
chanr@inf.ethz.ch
ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/bpdas

ε

a

b

aa

ab

ba

bb

a{0
.9

b{
0
.1

a{0.4

b{0.6

a{0.9

b{0.1

a{0.5

b{0.5

a{0.2
b{0.8

a{0.3
b{0.7

a{0.5

b{0.5

h “
ˆ
a
b

˙

Figure 2: A simplified 3-gram LM over Σ “ ta, bu.
Even though the number of states is exponential in
n, the hidden state of the RNN only has to keep the
n ´ 1 “ 2 symbols of interest, each of which is
represented by rlog2 |Σ|s bits. This is illustrated by the

state ab being represented as h “
ˆ
a
b

˙
.3

Dpb, nq language requires O pbnq states, it can
be encoded by an RNN with O pn log bq neurons,
which is memory-optimal. Attractively, Dpb, nq
languages capture, to some extent, the bounded
nested nature of human language.2

Hewitt et al.’s (2020) result poses an interesting
question: Are all languages that RNNs can
implement efficiently hierarchical in nature? We
show that this is not the case. We revisit Hewitt
et al.’s (2020) construction and demonstrate that
the same optimal compression can be achieved
for a more general class of languages, which
do not necessarily exhibit hierarchical structure.
Stated differently, RNNs do not necessarily encode
hierarchical languages any more compactly than
non-hierarchical ones. To show this, we introduce
probabilistic bounded pushdown automata
(BPDAs), probabilistic pushdown automata
(Abney et al., 1999) whose stack is bounded. The
probabilistic nature of BPDAs furthermore allows
us to go beyond the binary recognition and reason
about classes of language models—probability
distributions over strings—that RNN LMs can
efficiently represent. This is particularly interesting

2Bounded Dyck languages offer a useful framework for
modeling the hierarchical and recursive aspects of human lan-
guage syntax with limited memory. However, they fall short of
capturing the full complexity of human language, which often
includes context sensitivity and ambiguity that may go beyond
the capabilities of a deterministic model of computation.

3For simplicity, the final weights and the binary represen-
tations in the hidden state are omitted.

because it requires the RNN to not only efficiently
encode the transition dynamics of the automaton
but also the string probabilities.4 Thus, we
generalize the result by Hewitt et al. (2020) and
give sufficient conditions for a probabilistic BPDA
to be optimally compressible into an RNN.

The non-hierarchical nature of BPDAs leads
us to contend that the reason some LMs lend
themselves to exponential compression has little
to do with their hierarchical structure. This offers
two intriguing insights. First, it shows that the
inductive biases of RNN LMs might be difficult to
link to a hierarchical structure. Second, it provides
a new perspective on which languages RNNs
efficiently encode, i.e., those representable by
sequential machines with a bounded stack. Such
a machine is illustrated in Fig. 1.

2 Preliminaries

We begin by introducing some core concepts. An
alphabet Σ is a finite, non-empty set of sym-
bols. Its Kleene closure Σ˚ is the set of all
strings of symbols in Σ. The length of the string
y “ y1 . . . yT P Σ˚, denoted by |y| “ T , is the
number of symbols it contains. A language model
p is a probability distribution over Σ˚. Two LMs p
and q are weakly equivalent if p pyq “ q pyq for
all y P Σ˚ and two families of LMs P and Q are
weakly equivalent if, for any p P P , there exists a
weakly equivalent q P Q and vice versa.

Most modern LMs define p pyq as a product of
conditional probability distributions:

p pyq def“ p pEOS | yq
|y|ź

t“1

p pyt | yătq , (1)

where EOS R Σ is a distinguished end-of-string
symbol. We denote Σ

def“ Σ Y tEOSu and use the
notation y P Σ whenever y can also be EOS. Such a
definition is without loss of generality; any LM can
be factorized in this form (Cotterell et al., 2024).
However, not all models expressible as Eq. (1) con-
stitute LMs, i.e., a probabilistic model of the form
given in Eq. (1) may leak probability mass to in-
finite sequences (Du et al., 2023). In this paper,
we assume all autoregressive models are tight, i.e.,
they place probability 1 on Σ˚.

A historically important class of LM are those
that obey the n-gram assumption.

4Note the same lower bounds for FSAs do not apply to the
probabilistic case (Svete and Cotterell, 2023b).

4119

Assumption 2.1. The n-gram assumption states
that the probability p pyt | yătq only depends on
n ´ 1 previous symbols yt´1, . . . , yt´n`1:

p pyt | yătq “ p pyt | yt´n`1 ¨ ¨ ¨ yt´1q . (2)

Fig. 2 shows an example of an 2-gram LM. The
weights on the transitions denote the conditional
probabilities of the next symbol given the previous
n ´ 1 “ 2 symbols encoded by the current state.

2.1 Recurrent Neural Language Models
The conditional distributions of recurrent neural
LMs are given by a recurrent neural network.
Hewitt et al. (2020) present results for both
Elman RNNs (Elman, 1990) as well as those
derived from the LSTM architecture (Hochreiter
and Schmidhuber, 1997). Our paper focuses on
Elman RNNs, as they are easier to analyze and
suffice to present the main ideas, which also easily
generalize to the LSTM case.
Definition 2.1. An Elman RNN R “
pΣ, σ,D,U,V,b,ηq is an RNN with the
hidden state recurrence

h0 “ η pt “ 0q (3a)

ht “ σ pUht´1 ` Vrpytq ` bq pt ą 0q, (3b)

where ht P RD is the hidden state at time step t,
η P RD is an initialization parameter, yt P Σ is the
input symbol at time step t, r : Σ Ñ RR is a symbol
representation function, U P RDˆD,V P RDˆR

are parameter matrices, b P RD is a bias vector,
and σ : RD Ñ RD is an element-wise non-linear
activation function. We refer to the dimensionality
of the hidden state, D, as the size of the RNN, and
to each entry of the hidden state as a neuron.

Because ht represents the string consumed by
the RNN, we also use the evocative notation h pyq
to denote the result of the application of Eq. (3b)
over the string y “ y1 ¨ ¨ ¨ yt. An RNN can be used
to specify an LM by using the hidden states to de-
fine the conditional distributions over y given yăt.
Definition 2.2. Let R be an Elman RNN, E P
R|Σ|ˆD and u P R|Σ|. An RNN LM is an LM
whose conditional distributions are defined as

ppy | yătq def“ softmax pEhpyătq ` uqy (4)

for y P Σ,yăt P Σ˚.5 We term E the output
matrix and u the bias vector.

5Throughout the paper, we index vectors and matrices
directly with symbols from Σ. This is possible because of a
trivial bijective relationship between Σ and

“|Σ|‰.

2.1.1 Activation Functions and Precision
An important consideration when analyzing RNN
LM’s ability to compute the probability of a string
y P Σ˚ is the number of bits required to represent
the entries in ht and how the number of bits scales
with the length of the string, |y|. This depends both
on the dynamics of the RNN and the activation
function used (Merrill, 2019) and motivates the
following definition of precision.
Definition 2.3. The precision of an RNN is the
number of bits required to represent h pyq:

ψR pyq def“ max
dPrDs

min
p,qPN,

p
q

“hpyqd
rlog2 ps ` rlog2 qs. (5)

We say that an Elman RNN is of constant precision
if ψR pyq “ O p1q, i.e., if ψR pyq ď C for all y P
Σ˚ and some C P R. It is of unbounded precision
if ψR pyq cannot be bounded by a function of |y|.

Common choices for the nonlinear function σ
in Eq. (3b) are the Heaviside function H pxq def“
1 tx ą 0u, its continuous approximation, the sig-
moid function σpxq def“ 1

1`expp´xq , and ReLU
def“

maxp0, xq. Hewitt et al. (2020) focus on sigmoid
activations as originally presented by Elman (1990).
However, to simply the analysis, they assume that
|x| " 0, such that σ pxq « 0 or σ pxq « 1 since
limxÑ´8 σ pxq “ 0 and limxÑ8 σ pxq “ 1. Con-
cretely, they define a parameter β P R` and assume
σ pxq “ 0 for x ă ´β and σ pxq “ 1 for x ą β.
Restricting to values of x with |x| ą β results in a
constant-precision RNN, equivalent to one with the
Heaviside activation function. Its hidden states live
in t0, 1uD, meaning that they can be interpreted as
binary vectors. The update rule Eq. (3b) can then
be interpreted as a logical operation on the hidden
state and the input symbol (Svete and Cotterell,
2023b). We simplify the exposition by working di-
rectly with H-activated RNNs, which additionally
allows for easy analysis of the RNN’s precision.6

3 Bounded Pushdown Automata

In this section, we present a broad class of LMs
that provide a convenient framework for analyzing
the sufficient conditions for efficient representation
by RNNs: bounded pushdown automata. They
maintain a stack, albeit one that contains at most a
fixed number of symbols.

6Since the Heaviside function can be implemented as a
difference of two ReLU functions (over the integers), all our
constructions work with the ReLU activation function as well,
albeit with networks of twice the size.

4120

Definition 3.1. Anm-bounded pushdown automa-
ton (BPDA) is a tuple pΣ,Γ,m, µ, λ, ρq wherem P
N, Σ is an alphabet of input symbols, Γ is an alpha-
bet of stack symbols, µ : Γďm ˆΣˆΓďm Ñ r0, 1s
is a weighted transition function, λ : Γďm Ñ r0, 1s
is the initial weight function, and ρ : Γďm Ñ r0, 1s
is the final weight function.

The string γ currently stored in the stack is
the BPDA’s configuration. We read γ bottom
to top, e.g., in the stack γ “ γ1γ2 ¨ ¨ ¨ γℓ, γ1 is
at the bottom of the stack, while γℓ is at the
top. We say that the m-bounded stack is empty
if |γ| “ 0 (equivalently, γ “ ε) and full if
|γ| “ m. Sometimes, it will be useful to think of
the bounded stack as always being full—in that
case, if there are ℓ ă m elements on the stack, we
assume that the other m´ ℓ elements are occupied
by a special placeholder symbol ι R Γ; see Fig. 3
for an illustration. We denote Γι

def“ Γ Y tιu.
We call a BPDA probabilistic if the following

two equations hold

ÿ

γPΓďm

λ pγq “ 1 (6a)

ÿ

yPΣ
γ1PΓďm

µ
`
γ, y,γ 1˘ ` ρ pγq “ 1,@γ P Γďm. (6b)

We call a BPDA P “ pΣ,Γ,m, µ, λ, ρq determin-
istic if there exists exactly one γ P Γďm with
λ pγq ą 0 and, for any γ P Γďm and y P Σ, there
is at most one γ 1 P Γďm with µ pγ, y,γ 1q ą 0. For
deterministic BPDAs, we also define:

• ϕ pγ, yq def“ γ 1 for µ pγ, y,γ 1q ą 0 as the func-
tion returning the (deterministic) next config-
uration of the BPDA,

• ω pγ, yq def“ w for w “ µ pγ, y, ϕ pγ, yqq as
the weight of the only y-labeled transition
from γ, and

• φ pyq as the (unique) stack configuration
reached upon reading y.

Runs of a BPDA. A BPDA processes a string
y “ y1 ¨ ¨ ¨ yT P Σ˚ left to right by reading its sym-
bols and changing its configurations accordingly.
It starts with an initial configuration γ0 according
to λ. Then, it updates the stack according to µ for
each symbol in y, resulting in a sequence of stacks
π “ γ0,γ1, . . . ,γT where µ pγt´1, yt,γtq ą 0.
Each such sequence of stacks π is called a run and

y1 y2 ¨ ¨ ¨ yT´1 yT

ι
ι
ι

ι
ι
y1

ι
y2
y1

¨ ¨ ¨
yT´1

yT´2

yT´3

yT
yT´1

yT´2

ωpγ0,y1q ωpγ1,y2q ωpγT´1,yT q ρpγT q

Figure 3: An illustration of how a BPDA can compute
the probability of a string under an n-gram LM.

we will denote all runs of P on y as Π py;Pq. A
probabilistic BPDA P assigns y the probability

P pyq def“ (7)

ÿ

πPΠpy;Pq,
π“γ0,γ1,...,γT

λ pγ0q
«

Tź

t“1

µ pγt´1, yt,γtq
ff
ρ pγT q.

In this sense, probabilistic BPDAs induce distri-
butions over strings and generalize Hewitt et al.’s
(2020) thresholded string acceptance to the proba-
bilistic setting.7 This is illustrated in Fig. 3.

Pushing and popping. We define the transition
function µ as a general function of the stack con-
figuration and the input symbol. As important
special cases, µ can define the standard POP and
PUSH operations. Popping the top of stack τ is per-
formed by transitions of the form pγτ , y,γq with
µ pγτ , y,γq ą 0;

POP pγτ , y,γq def“ µ pγτ , y,γq. (8)

Pushing definitionally increases the size of the
stack, which raises the question of how to han-
dle stack overflows. Rather than simply rejecting
PUSHs that would result in a stack overflow, we
allow a BPDA to discard the bottom of the stack
when pushing; this is easy to specify with the gen-
eral transition function µ. Given the current stack
configuration γ “ γ1 ¨ ¨ ¨ γℓ, we define the weight
of pushing the symbols τ “ γ1

1 ¨ ¨ ¨ γ1
r P Γďm as

PUSH pγ, y,γτ q def“ (9)#
µ pγ, y,γτ q if ℓ` r ď m

µ pγ, y, γℓ`r´m`1 ¨ ¨ ¨ γℓτ q otherwise .
7Hewitt et al.’s (2020) construction focuses on binary

recognition of languages through their notion of truncated
language recognition (cf. Def. A.1 in App. A.1). Specifically,
they show that RNN LMs can assign high enough probabil-
ities to correct continuations of strings while assigning low
probabilities to incorrect continuations.

4121

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

γℓ
...
γ1
ι

...

ι

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

τ r
...
τ1
γℓ
...
γ1
ι
...
ι

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚ m´ℓ´r

m´ℓ

PUSHpγ,y,γτ q

Figure 4: PUSH moves the stack down, discards the
bottom-most elements, and inserts a new top.

This definition is without loss of generality; we
can always define BPDAs that assign transitions
resulting in a stack overflow probability 0. PUSH is
illustrated in Fig. 4.

3.1 Efficiently Representable BPDAs

It is easy to see that there are O p|Γι|mq possible
m-bounded stacks over Γ, defining the number of
configurations a BPDA can be in. Interpreting the
configurations as states of a (probabilistic) FSA,
general constructions of RNN simulating FSAs
mentioned in §1 would require Ω

´
|Σ||Γι|m2

¯

neurons, exponentially many in the size of the
stack (Minsky, 1954; Dewdney, 1977; Indyk,
1995; Svete and Cotterell, 2023a,b). One might,
however, hope to exploit the special structure of
the state space induced by the stack configurations
to come up with more efficient representations.
This motivates the following definition.

Definition 3.2. A BPDA P “ pΣ,Γ,m, µ, λ, ρq is
called C-efficiently representable if there exists a
weakly equivalent RNN LM of size

D ď Crlog2 |Γι|ms “ Cmrlog2 |Γι|s. (10)

Intuitively, Def. 3.2 characterizes efficiently
representable BPDAs as those that can be defined
by an RNN LM with logarithmically many neurons
in the number of configurations. This is a natural
generalization of (efficient) thresholded acceptance
defined by Hewitt et al. (2020) to the probabilistic
(language modeling) setting.8

Def. 3.2 paves the way to a formalization of
LMs efficiently representable by RNN LMs with

8Thresholded acceptance defines string recognition based
on their conditional probabilities. See App. A.1 for details.

BPDAs. However, BPDAs are too rich to be ef-
ficiently representable in general. The following
theorem shows that BPDA LMs are weakly equiv-
alent to LMs induced by probabilistic finite-state
automata, a classic family of computational models
with a well-described relationship to RNNs.

Theorem 3.1. The family of LMs induced by PF-
SAs is weakly equivalent to the family of LMs in-
duced by BPDAs.

Proof. See App. B. ■

Because BPDAs define the same class of LMs as
probabilistic FSAs, they cannot, in general, be rep-
resented more efficiently than with Ω p|Σ||Γι|mq
neurons—a more efficient simulation of general
BPDAs would contradict the known lower bounds
on simulating FSAs (Indyk, 1995; Svete and Cot-
terell, 2023b). This implies that we inevitably must
restrict the class of BPDAs to ensure their efficient
representability. The following definitions will help
us characterize efficiently representable BPDAs.

Vectorial representation of a stack. When con-
necting BPDAs to RNNs, it is useful to think of
the stack as a vector. Setting G

def“ rlog2 |Γι|s,
we define the stack vector function χ : Γďm Ñ
t0, 1umG as

χpγ1 ¨ ¨ ¨ γmq def“

¨
˚̋

Binpγmq
...

Binpγ1q

˛
‹‚P t0, 1umG. (11)

Here, Bin : Γι Ñ t0, 1uG is the binary encoding
function, where we assume that Binpιq “ 0G, the
G-dimensional vector of zeros. More precisely,
let c : Γι Ñ t0, 1, . . . , |Γ|u be a bijection between
Γι and t0, 1, . . . , |Γ|u such that c pιq “ 0. Then
Binpγq is the binary representation of c pγq.

Definition 3.3. A function f : Γďm Ñ Γďm is
stack-affine if there exists a matrix M P RmGˆmG

and a vector v P RmG such that, for all γ P Γďm,
it holds that χpf pγqq “ Mχpγq ` v.

Definition 3.4. A function ζ : Γďm ˆ Σ Ñ Γďm

is K-varied in Σ if there exists a partition Σ “
Σ1 \ ¨ ¨ ¨ \ ΣK such that, for all k “ 1, . . . ,K,
it holds that ζ pγ, yq “ ζ pγ, y1q def“ ζk pγq for all
y, y1 P Σk and γ P Γďm.

Definition 3.5. A function α : Γďm ˆ Σ Ñ
Γďm is Σ-determined if there exists a func-
tion s : Σ Ñ Γ and a family of partitions

4122

prms “ J y
1 \ J y

2 \ J y
3 qyPΣ such that, for all γ P

Γďm, it holds that

α pγ, yqj “

$
’&
’%

γj if j P J y
1

s pyq if j P J y
2

ι if j P J y
3

. (12)

In words, a stack-affine function can be imple-
mented by an affine transformation of the vectorial
representation of the stack, aK-varied function can
be decomposed into K different functions that are
invariant to the input symbol, and a Σ-determined
function changes the stack in a manner that only de-
pends on the input symbol: it either keeps a symbol
the same, replaces it with s pyq, or empties the slot
(inserting the placeholder symbol ι). Importantly,
a Σ-determined function acts independent of the
stack γ.

Lastly, we consider the efficient representation
of next-symbol probabilities. For a deterministic
BPDA P “ pΣ,Γ,m, µ, λ, ρq, we define

p py | γq def“ ω pγ, yq (13a)

p pEOS | γq def“ ρ pγq, (13b)

for γ P Γďm and y P Σ and

p py | yq def“ p py | φ pyqq , (14)

for y P Σ˚ and y P Σ.

Definition 3.6. A deterministic BPDA is
representation-compatible if there exists a matrix
E P R|Σ|ˆmG and a vector u P R|Σ| such that, for
every γ P Γďm, it holds for all y P Σ that

log p py | γq “ softmaxpEχpγq ` uqy. (15)

4 Efficiently Representing BPDAs

The introduced technical machinery allows us to
present our main result.

Theorem 4.1. Let P “ pΣ,Γ,m, µ, λ, ρq be a de-
terministic representation-compatible (cf. Def. 3.6)
BPDA where

µ
`
γ, y,γ 1˘ “

#
ω pγ, yq if γ 1 “ α pζ pγ, yqq
0 otherwise

(16)
for a Σ-determined function α (cf. Def. 3.5) and a
K-varied function (cf. Def. 3.4) ζ where all ζk are
stack-affine (cf. Def. 3.3). Then, P is K-efficiently
representable (cf. Def. 3.2).

This generalizes Hewitt et al.’s (2020) result by
considering the more general class of BPDA LMs,
which includes Dpb, nq LMs as a special case, and
by incorporating the probabilistic nature of LMs.
The requirement for the BPDA to be representa-
tion compatible is crucial for Thm. 4.1; there exist
BPDAs that fulfill all the criteria of Thm. 4.1 but
the one on representation compatibility that are not
efficiently representable by RNN LMs.

Theorem 4.2. There exist deterministic BPDAs
whose transition function µ conforms to the struc-
ture in Eq. (16), but which are not efficiently repre-
sentable for any K independent of |Σ|.
Proof intuition. Consider a BPDA where Γ “ Σ.9

Intuitively, this holds because a BPDA LM defines
exponentially many possible (independently speci-
fied) conditional distributions over the next symbol
given the current stack configuration. For an RNN
LM to be weakly equivalent, it would need to, af-
ter affinely transforming the hidden state (apply-
ing the output matrix and the output bias vector),
match the logits of these distributions. However,
as the logits can in general span the entire |Σ|-
dimensional space, the hidden state h would have
to be of size Ω p|Σ|q to be able to do that, rather
than Km log2 |Σ|, as we have in the case of effi-
cient simulation. See App. C for details. ■

4.1 Known Efficiently Representable Families

Thm. 4.1 offers a very abstract characterization
of (the components of) efficiently representable
BPDAs. Here, we frame this characterization in the
context of two well-known LM families: bounded
Dyck and n-gram LMs.

Proposition 4.1. Representation-compatible LMs
over Dpb, nq are 2-efficiently representable with
m “ n and Γ “ txi| i P rbsu.

Proof. LMs over Dpb, nq define distributions over
strings of well-nested parentheses of b up do depth
n. They work over the alphabet Σ “ txi| i P rbsuY
tyi | i P rbsu. A BPDA modeling an LM over
Dpb, nq only has to define POP and PUSH opera-
tions. Specifically, xi corresponds to a push opera-
tion PUSH pγ, xi,γxiq while yi corresponds to a pop
operation POP pγxi, yi,γq for all i P rbs.10 Since
popping can be performed by shifting all entries

9Examples of such BPDAs are those defining n-gram
LMs.

10This is true because the input-to-stack-symbol function s
here is taken to be the identity function.

4123

on the stack one position up while pushing can
be performed by shifting all entries one position
down (before inserting a new symbol), the BPDA
modeling a Dpb, nq language is stack-affine and 2-
varied with the partition Σ “ ΣPOP \ ΣPUSH where
ΣPOP “ tyi | i P rbsu, ΣPUSH “ txi| i P rbsu. Ad-
ditionally, since each input symbol modifies the
stack in a deterministic way—either it is discarded
(in case of popping) or is added to the top posi-
tion of the stack (in case of pushing)—the BPDA
is Σ-determined. Moreover, since the stack only
ever needs to store the b opening brackets, only
rlog2 pb` 1qs bits are needed to represent each
entry. Altogether, this means that Dpb, nq LMs
are efficiently representable by RNN LMs of size
D “ 2nrlog2 pb` 1qs. ■

Note that the construction presented by He-
witt et al. (2020) results in RNNs of size 2 ¨
2nrlog2 pb` 1qs. This is because they rely on stack
representations that contain the complements of the
symbol encodings. This is not strictly required,
which is interesting since Hewitt et al. (2020) note
a difference in the constant factor between Elman
RNNs and LSTMs. Our construction does away
with this difference; see App. C for details.

Proposition 4.2. Representation-compatible n-
gram LMs are 1-efficiently representable with m “
n ´ 1 and Γ “ Σ.

Proof. Representing an n-gram LM requires com-
puting the probability of every symbol given the
previous n ´ 1 symbols.11 This can be performed
by, at step t, (1) storing the previous n ´ 1 sym-
bols in the bounded stack of size m “ n ´ 1 and
(2) checking the probability of the symbol yt given
the n ´ 1 stored symbols. The required updates to
the bounded stack can easily be performed by the
stack-affine operation of shifting all symbols one
position downward. Since all symbols perform that
action, the function is 1-varied. Furthermore, since
each input symbol induces the same update to the
stack—the insertion of the symbol at the top of the
stack—the BPDA is Σ-determined. This makes n-
gram LMs efficiently representable by RNN LMs
of size D “ pn ´ 1q rlog2 p|Σ| ` 1qs. ■

5 Discussion

This work was motivated by the question of what
classes of LMs beyond those over Dpb, nq can be

11The prefixes at the beginning of the string have to be
appropriately padded.

efficiently represented by RNN LMs, a general-
ization of an open question posed by Hewitt et al.
(2020). We address this with Thm. 4.1, whose
implications we discuss next.

Analyzing LMs with general models of compu-
tation. This work puts the results by Hewitt et al.
(2020) in a broader context of studying the repre-
sentational capacity of RNN LMs not limited to
human language phenomena. Restricting the anal-
ysis to isolated phenomena might not provide a
holistic understanding of the model, its capabili-
ties, and the upper bounds of its representational
capacity. General models of computation provide a
framework for such holistic analysis; besides being
able to provide concrete lower and upper bounds
on the (efficient) representational capacity, the thor-
ough understanding of their relationship to human
language also provides apt insights into the model’s
linguistic capabilities. For example, the simulation
of n-gram LMs shows that RNNs can efficiently
represent representation-compatible strictly local
LMs (Jäger and Rogers, 2012), a simple and well-
understood class of LMs. This provides a concrete
(albeit loose) lower bound on the efficient repre-
sentational capacity of RNNs. Further, we directly
study the efficient probabilistic representational
capacity of RNN LMs rather than the binary ac-
ceptance of strings. This allows for a more natural
and immediate connection between the inherently
probabilistic neural LMs and probabilistic formal
models of computation such as BPDAs.

Inductive biases of RNN LMs. Understanding
neural LMs in terms of the classes of LMs they can
efficiently represent allows us to reason about their
inductive biases. When identifying the best model
to explain the data, we suspect an RNN would pre-
fer to learn simple representations that still effec-
tively capture the underlying patterns, rather than
more complex ones. We note that this is a form
of inductive bias inherent to the model architec-
ture; we do not address other defining aspects of
inductive biases, such as the learning procedure
itself. Understanding such inductive biases can
then, as argued by Hewitt et al. (2020), lead to ar-
chitectural improvements. One can, for example,
design better architectures or training procedures
that exploit these inductive biases, enforce them, or
loosen them if they are too restrictive. In this light,
Thm. 4.1 substantiates that there is nothing inherent
in RNN LMs that biases them towards hierarchi-

4124

cal languages since non-hierarchical ones can be
modeled just as efficiently. Encouraging RNNs to
learn and model cognitively plausible mechanisms
for modeling language might, therefore, require us
to augment them with additional mechanisms that
explicitly model hierarchical structure, such as a
stack (DuSell and Chiang, 2023). Thm. 4.1 also
indicates that hierarchical languages might not be
the most appropriate playground for studying the
inductive biases of RNNs. For example, isolating
the hidden state recurrence to the POP and PUSH
operations disregards that, unlike a stack, an RNN
can look at and modify the entire hidden state when
performing the update; POP and PUSH operations
are limited to modifying of the top of the stack.

Inductive biases and learnability. A defining
aspect of an inductive bias is its effect on the learn-
ing behavior. While we do not discuss the learn-
ability of bounded stack LMs by RNN LMs, we
underscore the importance of this factor for a full
understanding of inductive biases. Both theoretical
and empirical insights are required; they provide an
exciting avenue for future work, one which we see
as deserving of its own treatment. More broadly,
the inductive biases of a particular neural model
rely on various aspects beyond the architecture,
including the learning objective, the training algo-
rithm, and features of the training data such as its
ordering and size. With this in mind, we note that
our results in no way suggest that RNNs are any
worse at modeling hierarchical languages than non-
hierarchical ones. The results merely provide a first
step towards a more thorough understanding of the
inductive biases and suggest that studies striving to
understand RNNs’ learning behavior should look
beyond hierarchical languages.

On the connection to human language. Our
paper was motivated by the question of whether
RNNs can efficiently represent languages be-
yond Dpb, nq, which models hierarchical structures
prominent in human language. Interestingly, our
exploration of a broader class of efficiently repre-
sentable LMs revealed that n-gram LMs, another
class of models useful for studying human lan-
guage processing, are also efficiently representable
(Bickel et al., 2005; Shain et al., 2020; Wang
et al., 2024). This suggests a compelling inter-
pretation: While RNNs may not naturally prefer
hierarchical languages, our extended framework
associates them with a more extensive range of

human-relevant languages. This opens new av-
enues for understanding the inductive biases of
RNNs and their connection to human language, en-
couraging further theoretical and empirical studies
on the specific facets of human language that ef-
ficiently representable BPDAs can represent and
that RNNs are adept at modeling.

A new interpretation of Elman RNN recurrence.
As detailed by the construction in the proof of
Thm. 4.1, the core principle behind the efficient
representation lies in the utilization of different
parts of the hidden state as placeholders for rele-
vant symbols that have occurred in the context; see
also Fig. 1. This suggests that a natural interpreta-
tion of the languages efficiently representable by
Elman RNNs: Those recognized by an automaton
that keeps a memory of a fixed number of elements
that have occurred in the string so far.

Relation to other classes of formal languages.
Striving to make the results as general as pos-
sible motivates the connection of bounded stack
languages to other well-understood classes of lan-
guages. Since bounded stack languages are a par-
ticular class of finite-state languages, a natural
question is how they relate to the existing sub-
regular languages. Those have in the past been
connected to various aspects of human language
(Jäger and Rogers, 2012) and the representational
power of convolutional neural LMs (Merrill, 2019)
and transformers (Yao et al., 2021). At first glance,
efficiently representable BPDAs do not lend them-
selves to a natural characterization in terms of
known classes of sub-regular languages, but we
plan on investigating this further in future work.

6 Conclusion

We build on Hewitt et al.’s (2020) results and show
that RNNs can efficiently represent a more general
class of LMs than those over bounded Dyck lan-
guages. Concretely, we introduce bounded stack
LMs as LMs defined by automata that keep m se-
lected symbols that have occurred in the string so
far and update the memory using simple update
mechanisms. We show that instances of such LMs
can be represented by RNN LMs in optimal space.
This provides a step towards a more holistic grasp
of the inductive biases of RNN LMs.

4125

Limitations

We conclude by discussing some limitations of
our theoretical investigation and point out some
ways these limitations can be addressed. We first
touch on the universality of the result implied by
Thm. 4.1. While we provide a new, more gen-
eral, class of languages efficiently representable
by RNNs and discuss the implications of this re-
sult, we do not provide an exact characterization
of RNNs’ efficient representational capacity. In
other words, we do not provide tight lower and
upper bounds on the complexity of the languages
that can be efficiently represented by RNNs. The
lower bound of strictly local languages that can
be encoded using parameter sharing is relatively
loose (Dpb, nq languages are much more complex
than strictly local languages) and the upper bound
remains evasive. This is because we do not char-
acterize the relation of bounded stack languages to
other classes of languages, such as sub-regular lan-
guages. Determining precise bounds is further com-
plicated by the unavoidable fact that the efficient
representational capacity of RNNs also depends
on the parameterization of the specific probabil-
ity distributions formal models of computation can
represent, as made clear by Thm. 4.2. Establishing
more concrete bounds is therefore a challenging
open problem that is left for future work.

We note that all our results are also specifically
tailored to Elman RNNs with the specific update
rule from Eq. (3b). However, the results naturally
generalize to the LSTM architecture in the
same way that Hewitt et al.’s (2020) original
constructions do.

Ethics Statement

The paper provides a way to theoretically analyze
language models. To the best of the authors’
knowledge, this paper has no ethical implications.

Acknowledgements

Ryan Cotterell acknowledges support from the
Swiss National Science Foundation (SNSF) as part
of the “The Forgotten Role of Inductive Bias in
Interpretability” project. Anej Svete is supported
by the ETH AI Center Doctoral Fellowship. We
thank the reviewers for their insightful comments
and suggestions.

References
Steven Abney, David McAllester, and Fernando Pereira.

1999. Relating probabilistic grammars and automata.
In Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics, pages 542–
549, College Park, Maryland, USA. Association for
Computational Linguistics.

Steffen Bickel, Peter Haider, and Tobias Scheffer. 2005.
Predicting sentences using n-gram language models.
In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in
Natural Language Processing, pages 193–200, Van-
couver, British Columbia, Canada. Association for
Computational Linguistics.

Nadav Borenstein, Anej Svete, Robin Shing Moon
Chan, Josef Valvoda, Franz Nowak, Isabelle Augen-
stein, Eleanor Chodroff, and Ryan Cotterell. 2024.
What languages are easy to language-model? a
perspective from learning probabilistic regular lan-
guages. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), Bangkok, Thailand. Asso-
ciation for Computational Linguistics.

Haw-Shiuan Chang and Andrew McCallum. 2022. Soft-
max bottleneck makes language models unable to
represent multi-mode word distributions. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8048–8073, Dublin, Ireland. Association
for Computational Linguistics.

Ryan Cotterell, Anej Svete, Clara Meister, Tianyu Liu,
and Li Du. 2024. Formal aspects of language model-
ing. arXiv preprint 2311.04329.

A. K. Dewdney. 1977. Threshold matrices and the state
assignment problem for neural nets. In Proceedings
of the 8th SouthEastern Conference on Combina-
torics, Graph Theory and Computing, pages 227–
245, Baton Rouge, La, USA.

Li Du, Lucas Torroba Hennigen, Tiago Pimentel, Clara
Meister, Jason Eisner, and Ryan Cotterell. 2023. A
measure-theoretic characterization of tight language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9744–9770, Toronto,
Canada. Association for Computational Linguistics.

Brian DuSell and David Chiang. 2023. The surpris-
ing computational power of nondeterministic stack
RNNs. arXiv preprint 2210.01343.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Yiding Hao, William Merrill, Dana Angluin, Robert
Frank, Noah Amsel, Andrew Benz, and Simon
Mendelsohn. 2018. Context-free transductions with
neural stacks. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 306–315, Brussels,
Belgium. Association for Computational Linguistics.

4126

https://doi.org/10.3115/1034678.1034759
https://aclanthology.org/H05-1025
https://doi.org/10.18653/v1/2022.acl-long.554
https://doi.org/10.18653/v1/2022.acl-long.554
https://doi.org/10.18653/v1/2022.acl-long.554
http://arxiv.org/abs/2311.04329
http://arxiv.org/abs/2311.04329
https://ci.nii.ac.jp/ncid/BA16515546?l=en
https://ci.nii.ac.jp/ncid/BA16515546?l=en
https://doi.org/10.18653/v1/2023.acl-long.543
https://doi.org/10.18653/v1/2023.acl-long.543
https://doi.org/10.18653/v1/2023.acl-long.543
http://arxiv.org/abs/2210.01343
http://arxiv.org/abs/2210.01343
http://arxiv.org/abs/2210.01343
https://doi.org/https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.18653/v1/W18-5433
https://doi.org/10.18653/v1/W18-5433

John Hewitt, Michael Hahn, Surya Ganguli, Percy
Liang, and Christopher D. Manning. 2020. RNNs
can generate bounded hierarchical languages with
optimal memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1978–2010, Online. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

P. Indyk. 1995. Optimal simulation of automata by
neural nets. In STACS 95, pages 337–348, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Gerhard Jäger and James Rogers. 2012. Formal lan-
guage theory: Refining the Chomsky hierarchy. Phi-
los Trans R Soc Lond B Biol Sci, 367(1598):1956–
1970.

S. C. Kleene. 1956. Representation of events in nerve
nets and finite automata. In C. E. Shannon and J. Mc-
Carthy, editors, Automata Studies. (AM-34), Volume
34, pages 3–42. Princeton University Press, Prince-
ton.

Samuel A. Korsky and Robert C. Berwick. 2019.
On the computational power of RNNs. CoRR,
abs/1906.06349.

Warren S. McCulloch and Walter Pitts. 1943. A logical
calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–
133.

William Merrill. 2019. Sequential neural networks as
automata. In Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges,
pages 1–13, Florence. Association for Computational
Linguistics.

William Merrill. 2023. Formal languages and the NLP
black box. In Developments in Language Theory:
27th International Conference, DLT 2023, Umeå,
Sweden, June 12–16, 2023, Proceedings, page 1–8,
Berlin, Heidelberg. Springer-Verlag.

William Merrill, Ashish Sabharwal, and Noah A. Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843–856.

William Merrill and Nikolaos Tsilivis. 2022. Extract-
ing finite automata from RNNs using state merging.
arXiv preprint arXiv:2201.12451.

William Merrill, Gail Weiss, Yoav Goldberg, Roy
Schwartz, Noah A. Smith, and Eran Yahav. 2020.
A formal hierarchy of RNN architectures. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 443–459,
Online. Association for Computational Linguistics.

Marvin Lee Minsky. 1954. Neural Nets and the Brain
Model Problem. Ph.D. thesis, Princeton University.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. 2023. Resurrecting recurrent neural net-
works for long sequences.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng
He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon,
Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Kr-
ishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito,
Xiangru Tang, Bolun Wang, Johan S. Wind, Stansi-
law Wozniak, Ruichong Zhang, Zhenyuan Zhang,
Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
Zhu. 2023. RWKV: Reinventing RNNs for the trans-
former era. arXiv preprint arXiv:2305.13048.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao,
Ning Dai, and XuanJing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Cory Shain, Idan Asher Blank, Marten van Schijndel,
William Schuler, and Evelina Fedorenko. 2020. fmri
reveals language-specific predictive coding during
naturalistic sentence comprehension. Neuropsycholo-
gia, 138:107307.

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, page 440–449, New
York, NY, USA. Association for Computing Machin-
ery.

Lena Strobl, William Merrill, Gail Weiss, David Chiang,
and Dana Angluin. 2023. Transformers as recogniz-
ers of formal languages: A survey on expressivity.
arXiv preprint arXiv:2311.00208.

Anej Svete and Ryan Cotterell. 2023a. Efficiently rep-
resenting finite-state automata with recurrent neural
networks. arXiv preprint arXiv:2310.05161v3.

Anej Svete and Ryan Cotterell. 2023b. Recurrent neu-
ral language models as probabilistic finite-state au-
tomata. arXiv preprint arXiv:2310.05161.

Anej Svete, Franz Nowak, Anisha Mohamed Sahabdeen,
and Ryan Cotterell. 2024. Lower bounds on the
expressivity of recurrent neural language models.

Shaonan Wang, Jingyuan Sun, Yunhao Zhang, Nan Lin,
Marie-Francine Moens, and Chengqing Zong. 2024.
Computational models to study language processing
in the human brain: A survey.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Inter-
national Conference on Learning Representations.

Shunyu Yao, Binghui Peng, Christos Papadimitriou,
and Karthik Narasimhan. 2021. Self-attention net-
works can process bounded hierarchical languages.

4127

https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/10.1145/103516.103523
https://dl.acm.org/doi/10.1145/103516.103523
https://doi.org/10.1098/rstb.2012.0077
https://doi.org/10.1098/rstb.2012.0077
https://doi.org/doi:10.1515/9781400882618-002
https://doi.org/doi:10.1515/9781400882618-002
http://arxiv.org/abs/1906.06349
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.1007/978-3-031-33264-7_1
https://doi.org/10.1007/978-3-031-33264-7_1
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
http://arxiv.org/abs/2201.12451
http://arxiv.org/abs/2201.12451
https://doi.org/10.18653/v1/2020.acl-main.43
https://www.proquest.com/docview/301998727?parentSessionId=tt6FtxLC54LAeBn4iwlPCmf7YomIxumldfOoWkNvHtM%3D
https://www.proquest.com/docview/301998727?parentSessionId=tt6FtxLC54LAeBn4iwlPCmf7YomIxumldfOoWkNvHtM%3D
http://arxiv.org/abs/2303.06349
http://arxiv.org/abs/2303.06349
http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2305.13048
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432
http://arxiv.org/abs/2311.00208
http://arxiv.org/abs/2311.00208
http://arxiv.org/abs/2310.05161v3
http://arxiv.org/abs/2310.05161v3
http://arxiv.org/abs/2310.05161v3
http://arxiv.org/abs/2310.05161
http://arxiv.org/abs/2310.05161
http://arxiv.org/abs/2310.05161
http://arxiv.org/abs/2405.19222
http://arxiv.org/abs/2405.19222
http://arxiv.org/abs/2403.13368
http://arxiv.org/abs/2403.13368
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292

In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3770–3785, Online. Association for Computational
Linguistics.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui,
Tiannan Wang, Zhenxin Xiao, Yifan Hou, Ryan Cot-
terell, and Mrinmaya Sachan. 2023. RecurrentGPT:
Interactive generation of (arbitrarily) long text. arXiv
preprint arXiv:2305.13304.

4128

http://arxiv.org/abs/2305.13304
http://arxiv.org/abs/2305.13304

A Related Work

This work is part of the ongoing effort to better apprehend the theoretical representational capacity of
LMs, particularly those implemented with RNNs (Merrill, 2023). The study of the representational
capacity of RNNs has a long history (see, e.g., McCulloch and Pitts, 1943; Minsky, 1954; Kleene, 1956;
Siegelmann and Sontag, 1992; Hao et al., 2018; Korsky and Berwick, 2019; Merrill, 2019; Merrill et al.,
2020; Hewitt et al., 2020; Merrill et al., 2022; Merrill and Tsilivis, 2022; Svete and Cotterell, 2023b; Svete
et al., 2024, inter alia). Minsky (1954), for example, showed that binary-activated RNNs are equivalent to
(deterministic) finite-state automata: They can represent any finite-state language and can be simulated by
deterministic finite-state automata. Minsky’s construction of an RNN simulating a general deterministic
FSA was extended to the probabilistic—language modeling—setting by Svete and Cotterell (2023b).12

Recently, increased interest has been put on the efficient representational capacity of LMs and their
inductive biases. To emulate a deterministic probabilistic FSA A with states Q over the alphabet Σ,13

Minsky’s (1954) construction requires an RNN of size O p|Σ||Q|q. This was improved by Dewdney
(1977), who established that a general FSA can be simulated by an RNN of size O

´
|Σ||Q|3{4¯

, and

further by Indyk (1995), who lowered this bound to O
´

|Σ|a|Q|
¯

. The latter was also shown to be
optimal for general (adversarial) FSAs. The starting point of this work, Hewitt et al. (2020), was the first
to show the possibility of exponentially compressing a specific family of finite-state languages, namely
the bounded Dyck languages. This provides an exponential improvement over the general FSA simulation
results. In this work, we generalize this result to a more general class of languages, aiming to gain a more
thorough understanding of the mechanisms that allow exponential compression with RNNs. As shown by
Thm. 4.1, a possible candidate for the mechanism enabling exponential compression might be the notion
of a bounded stack.

A.1 Relation to Hewitt et al.’s (2020) Notion of Language Recognition
A crucial difference in our approach to that of Hewitt et al. (2020) is the direct treatment of language
models rather than binary languages. The notion of recognition of binary languages by RNNs (or any other
neural LM) can be somewhat tricky, since the LM assigns a probability to each string in the language,
not just a binary decision of whether the string is in the language. To reconcile the discrepancy between
the discrete nature of formal languages and the probabilistic nature of (RNN) LMs, Hewitt et al. (2020)
define the so-called truncated recognition of a formal language.

Definition A.1. Let Σ be an alphabet and α P R`. An LM p is said to recognize the language L Ď Σ˚
with the threshold α if for every y “ y1 . . . yT P L, it holds for all t P rT s that

p pyt | yătq ą α and p pEOS | yq ą α. (17)

In words, a language L is recognized by p if p assigns sufficiently high probability to all allowed
continuations of (sub)strings in L.14

The notion of truncated recognition allows Hewitt et al. (2020) to talk about the recognition of binary
languages by RNNs and design RNNs efficiently representing bounded Dyck languages. In contrast to
our results, they do not consider the exact probabilities in their constructions—they simply ensure that
the probabilities of valid continuations in their constructions are bounded from below by a constant and
those of invalid continuations are bounded from above by a constant. While this results in interesting
insights and reusable mechanisms, as we showcase here, it is not clear how to generalize this approach to
languages more general than the structured Dyck languages. Taking into account the exact probabilities

12Unlike binary FSAs, where non-determinism does not add any expressive power, non-deterministic probabilistic FSAs
are more expressive than their deterministic counterparts. This is why, although Minsky’s (1954) construction only considers
deterministic FSAs, it shows the equivalence of RNNs to all FSAs. The same cannot be said about the probabilistic setting,
where the equivalence holds only for the deterministic case. The relationship between RNN LMs and general probabilistic FSAs
is addressed in Svete et al. (2024).

13See App. B.1 for a formal definition of a PFSA.
14In contrast to p pyq, which necessarily diminishes with the string length, the conditional probabilities of valid continuations

are bounded from below.

4129

allows us to consider a more general class of languages, for example, n-gram LMs. When applicable,
thresholding the exact probabilities from our construction in the manner described by Def. A.1 allows
us to reconstruct the construction of Hewitt et al. (2020), meaning that our results provide a convenient
generalization of theirs.

B Finite-state Automata and Bounded Stack Languages

The main part of the paper discussed the connection of LMs representable by BPDAs and RNNs. BPDA
LMs, however, are a particular class of finite-state LMs, and we discuss this connection in more detail here.

B.1 Probabilistic Finite-state Automata
We begin by more formally defining the notion of probabilistic finite-state automata (PFSAs). Probabilistic
finite-state automata are a well-understood real-time computational model.

Definition B.1. A probabilistic finite-state automaton (PFSA) is a 5-tuple pΣ, Q, δ, λ, ρq where Σ is an
alphabet, Q is a finite set of states, δ Ď Qˆ Σ ˆ Rě0 ˆQ is a finite set of weighted transitions where we

write transitions pq, y, w, q1q P δ as q
y{wÝÝÑ q1,15 and λ, ρ : Q Ñ Rě0 are functions that assign each state

its initial and final weight, respectively. Moreover, for all states q P Q, δ, λ and ρ satisfy
ř

qPQ λ pqq “ 1,
and

ř

q
y{wÝÝÑq1Pδ

w ` ρ pqq “ 1.

We next define some basic concepts. A PFSA A “ pΣ, Q, δ, λ, ρq is deterministic if
|tq | λ pqq ą 0u| “ 1 and, for every q P Q, y P Σ, there is at most one q1 P Q such that

q
y{wÝÝÑ q1 P δ with w ą 0. Any state q where λ pqq ą 0 is called an initial state, and if ρ pqq ą 0, it is

called a final state. A path π of length N is a sequence of subsequent transitions in A, denoted as

q1
y1{w1ÝÝÝÑ q2

y2{w2ÝÝÝÑ q3¨ ¨ ¨qN yN {wNÝÝÝÝÑ qN`1. (18)

The yield of a path is s pπq def“ y1 . . . yN . The prefix weight rw of a path π is the product of the transition
and initial weights, whereas the weight of a path additionally has the final weight multiplied in. In
symbols, this means

rwpπq def“
Nź

n“0

wn, (19) wpπq def“
N`1ź

n“0

wn, (20)

with w0
def“ λpq1q and wN`1

def“ ρpqN`1q. We write ΠpAq for the set of all paths in A and we write
ΠpA,yq for the set of all paths in A with yield y. The sum of weights of all paths that yield a certain
string y P Σ˚ is called the stringsum, given in the notation below

A pyq def“
ÿ

πPΠpA,yq
w pπq . (21)

The stringsum gives the probability of the string y.

B.2 Bounded-stack Probabilistic Finite-state Automata
The main text presented bounded stack LMs as LMs defined by BPDAs. While the specification with
respect to bounded stacks is enough to connect them to RNN LMs, we can also investigate weakly
equivalent PFSAs, establishing an explicit connection to this well-studied class of computational models.
This relationship is characterized by the following theorem.

Theorem 3.1. The family of LMs induced by PFSAs is weakly equivalent to the family of LMs induced by
BPDAs.

Proof. (ðù). It is easy to see that any BPDA defines a PFSA: Since the set of possible bounded
stack configurations is finite and µ simply defines transitions between the finitely many configurations,

15We further assume a pq, y, q1q triple appears in at most one element of δ.

4130

y1 y2 ¨ ¨ ¨ yt´4 yt´3 yt´2 yt´1 yt ¨ ¨ ¨¨ ¨ ¨

¨
˝
yt´1

yt´4

y2

˛
‚

¨
˝

yt
yt´1

yt´4

˛
‚PUSH

¨
˝

Binpyt´1q
Binpyt´4q
Binpy2q

˛
‚

¨
˝

Binpytq
Binpyt´1q
Binpyt´4q

˛
‚HpUh`VJytK`bq

q q1yt

Bounded stack RNN

PFSA

Figure 5: An illustration of how one can think of BPDA LMs as being represented by three different mechanisms: a
BPDA, a black-box PFSA, and an RNN.

one can think of the BPDA as defining transitions between the finitely many states represented by the
configurations.

(ùñ). Let A “ pΣ, Q, δ, λ, ρq be a PFSA. We define the weakly equivalent BPDA P “
pΣ,Γ,m, µ, λP , ρPq with Γ “ Q, m “ 1, λP “ λ, ρP “ ρ, µ pq, y, q1q “ δ pq, y, q1q for all q, q1 P Q
and y P Σ. By noting that there is a trivial bijection between the stack configurations and the states of
the PFSA as well as between the two transition functions, it is easy to see that the BPDA P is weakly
equivalent16 to the PFSA A. ■

The interpretation of BPDA LMs in terms of three mechanisms—a stack modification function, an
RNN, and a bounded-stack PFSA—is illustrated in Fig. 5, which shows the three update mechanisms in
action on the same string.

C Proofs

This section contains the proofs of the theorems stated and used in the paper.

C.1 Emulating Stack Updates
This section contains the proof of Thm. 4.1. In many ways, it resembles the original exposition by Hewitt
et al. (2020) but is presented in our notation and with the additional generality of BPDAs. Some aspects
are also simplified in our framework (for example, we do not have to scale the inputs to the activation
functions).

On the use of the Heaviside activation function. The proof below relies on the use of the Heaviside
activation function. As mentioned in §2.1, due to the relationship between ReLU and H, the same results
hold for ReLU-activated RNNs as well. More precisely, it is easy to show that

H piq “ ReLU piq ´ ReLU pi´ 1q (22)

for all i P Z.17 All our results therefore map to the setting of ReLU-activated RNNs, but might require
hidden states of twice the size to store the results of ReLU piq and ReLU pi´ 1q.18 Interestingly, the

16In fact, one could also prove strong equivalence.
17The restriction to the integers is enough since we are considering finite-precision RNNs.
18These two values can then be combined at the next step of the computation before being used as H piq.

4131

duplication of the size of the hidden state is not required for the same reason as in Hewitt et al. (2020); they
use hidden states of size 2KmG (in our notation) to store the logarithmic encodings and their complements.
This is required since it allows for an easier explicit determination of next-symbol probabilities. We do
not require that. Notice that the binary complement x of a vector x P t0, 1uD is its affine transformation
x “ 1D ´ x. Thus, the transformation x ÞÑ x can be absorbed into the affine transformation Ex ` u.19

Theorem 4.1. Let P “ pΣ,Γ,m, µ, λ, ρq be a deterministic representation-compatible (cf. Def. 3.6)
BPDA where

µ
`
γ, y,γ 1˘ “

#
ω pγ, yq if γ 1 “ α pζ pγ, yqq
0 otherwise

(16)

for a Σ-determined function α (cf. Def. 3.5) and a K-varied function (cf. Def. 3.4) ζ where all ζk are
stack-affine (cf. Def. 3.3). Then, P is K-efficiently representable (cf. Def. 3.2).

Proof. The proof of Thm. 4.1 requires us to show that the RNN recurrence (cf. Eq. (3b)) can (i) implement
the update mechanisms implementing the stack update mechanism of the BPDA and (ii) encode the same
next-symbol probabilities as the BPDA. We do that by defining the appropriate recurrence and input
matrices U and V, the bias vector b, and the output parameters E and u. We also use one-hot encodings
of input symbols y, which we denote with JyK. More precisely, for a bijection h : Σ Ñ r|Σ|s, we define
the entries of JyK P t0, 1u|Σ| as

JyKi
def“ 1 ti “ h pyqu (23)

for i P r|Σ|s
The condition Eq. (16) can be equivalently expressed as the requirement that (the deterministic) P

defines the next-stack configuration function ϕ of the form

ϕ pγ, yq “ α pζ pγ, yq , yq (24)

for a Σ-determined function α and a K-varied function ζ where all ζk are stack-affine. Definitionally, it
thus holds for all ζk that

χpζk pγ, yqq “ χpζk pγqq “ Mkχpγq ` vk (25)

for some matrix Mk P RmGˆmG and vk P RmG. We now define κ : Σ Ñ rKs as the function that maps
a symbol y P Σ to the index of the set y belongs to in the partition of Σ. That is, we define

κ pyq def“ k if y P Σk, (26)

where Σ “ Σ1 \ . . .\ ΣK is the partition defined by the K-varied function ζ. Then, we have that

ϕ pγ, yq “ α
`
ζκpyq pγq , y˘ “ α

´
Mκpyqχpγq ` vκpyq, y

¯
(27)

This motivates the following implementation of ϕ with the RNN recurrence:

1. Divide the hidden state h into K copies, one of those containing the vectorial representation of the
actual stack (cf. Eq. (11)).

2. Depending on the input symbol y P Σ, perform the appropriate affine transformation h ÞÑ Mκpyqh`
vκpyq.

3. Apply the Σ-determined function α.

19Interestingly, the recognition of bounded Dyck languages does not require the duplication of the hidden state size even when
we use ReLU activation function. This is because whenever the network inserts a symbol on the stack (the only place where the
Heaviside function behaves differently compared to the ReLU in the proof of Thm. 4.1), the slot where the symbol is inserted is
already empty. Thus, the values of the stack encoding stay P t0, 1u, which means that they do not require the clipping performed
by the ReLU function.

4132

We thus define, for the (single) initial configuration of P , γ0,

η “ h0
def“

¨
˚̊
˚̋

χpγ0q
0mG

...
0mG

˛
‹‹‹‚P t0, 1uKmG, (28)

which encodes the initial configuration. In general, we will write

h “

¨
˚̋

h1

...
hK

˛
‹‚P t0, 1uKmG. (29)

We will say that the hidden state h satisfies the single-copy invariance if at most one of the components
h1, . . . ,hK is non-zero. This completes step 1.

To implement steps 2 and 3 we proceed as follows. To perform the K different stack-affine functions,
we define the parameters

U
def“

¨
˚̋

M1 ¨ ¨ ¨ M1

...
. . .

...
MK ¨ ¨ ¨ MK

˛
‹‚P RKmGˆKmG (30a)

b
def“

¨
˚̋

v1

...
vK

˛
‹‚ P RKmG. (30b)

We also define the input matrix V as

V
def“ `

rpy1q ¨ ¨ ¨ rpy|Σ|q
˘ P RKmGˆ|Σ| (31)

where, for y P Σ, we write

rpyq “

¨
˚̋

rpyq1
...

rpyqK

˛
‹‚P RKmG, (32)

and define

rpyqk def“
#
z pyq if k “ κ pyq
´1mG otherwise

, (33)

where finally

z pyqj “

$
’&
’%

0G if j P J y
1

2Binps pyqq ´ 1G if j P J y
2

´1G if j P J y
3

, (34)

for j P rms. Here, 1G is the G-dimensional vector of ones.
We now show that the parameters defined above simulate the stack update function ϕ correctly. Let

y P Σ˚, γ def“ φ pyq, and y P Σ. Furthermore, assume (by an inductive hypothesis) that h satisfies
the single-copy invariance and that the non-zero component of h contain χpγq. We want to show that
h1 def“ H pUh ` VJyK ` bq (1) satisfies the single-copy invariance, and (2) that the non-zero copy in h1
contains exactly the encoding χpϕ pγ, yqq. Because of the single-copy invariance of h and the definition
of U, we see that

Uh ` b “

¨
˚̋

M1h ` v1

...
MKh ` vK

˛
‹‚. (35)

4133

We now note that, for ζk to be a valid stack-affine function, it has to hold that Mkh ` vk P t0, 1umG.
Now, let k P rKs. We distinguish two cases:

• k “ κ pyq. Then
VJyK “ rpyqκpyq “ z pyq . (36)

This results in the entries

H
´
Mκpyqh ` rpyqκpyq ` vκpyq

¯
j

“ H
´
Mκpyqh ` z pyq ` vκpyq

¯
j

(37a)

“ H
ˆ´

Mκpyqh ` vκpyq
¯
j

` z pyqj
˙
. (37b)

We further consider three cases

– j P J y
1 . Then

H
ˆ´

Mκpyqh ` vκpyq
¯
j

` z pyqj
˙

“ H
ˆ´

Mκpyqh ` vκpyq
¯
j

` 0G

˙
(38a)

“
´
Mκpyqh ` vκpyq

¯
j

(38b)

– j P J y
2 . Then

H
ˆ´

Mκpyqh ` vκpyq
¯
j

` z pyqj
˙

“ H
ˆ´

Mκpyqh ` vκpyq
¯
j

` 2Binps pyqq ´ 1G

˙
(39a)

“ Binps pyqq (39b)

This follows from the fact that 2Binps pyqq ´ 1G contains the value 1 wherever Binps pyqq
is 1 and the value ´1 elsewhere, masking out the entries in the vector that are not active in
Binps pyqq.

– j P J y
3 . Then

H
ˆ´

Mκpyqh ` vκpyq
¯
j

` z pyqj
˙

“ H
ˆ´

Mκpyqh ` vκpyq
¯
j

´ 1G

˙
(40a)

“ 0G (40b)

• k ‰ κ pyq. Then
VJyK “ rpyqk “ ´1mG, (41)

resulting in
Mkh ` rpyqk ` vk “ Mkh ´ 1mG ` vk, (42)

whose entries are ď 0. This directly implies that

H
´
Mkh ` rpyqk ` vk

¯
“ 0mG, (43)

masking the kth component of h1.

Examining Eqs. (38b), (39b) and (40b) reveals that these results cover the three conditions of Σ-determined
function α. Moreover Eq. (43) shows that the update rule preserves the single-copy invariance: All but
the κ pyqth component of the hidden state are masked to 0. Summarizing, this shows that the RNN
parametrized with the parameters U,V, and b correctly implements the stack update function ϕ.

To extend this to the probabilistic setting, we use the assumption that P is representation-compatible.
By definition, P then defines next-symbol probabilities p py | yq where

log p py | φ pyqq “ softmax
`
E1χpφ pyqq ` u1˘

y
(44)

4134

for some matrix E1 P R|Σ|ˆmG and u1 P R|Σ|. The first part of the proof shows that h pyq contains exactly
one copy of χpφ pyqq. We use that fact and define

E
def“ `

E1 ¨ ¨ ¨ E1˘ P R|Σ|ˆKmG (45a)

u
def“ u1 P R|Σ|, (45b)

which will result in the softmax-normalized RNN computing identical next-symbol probabilities to those
computed by P . This means that R and P are weakly equivalent.

■

C.2 On the Impossibility of Efficiently Representing All BPDA LMs
Theorem 4.2. There exist deterministic BPDAs whose transition function µ conforms to the structure in
Eq. (16), but which are not efficiently representable for any K independent of |Σ|.
Proof. The reason behind this is intuitive—the |Σ|m next-symbol probability distributions defined by a
BPDA LM can be completely arbitrary and might not lend themselves to a compact parametrization with
matrix multiplication (cf. Def. 3.6). This is why the proof of Thm. 4.1 relies heavily on specific families of
BPDA LMs that are particularly well-suited for efficient representation by RNN LMs through parameter
sharing. More formally, this is a special case of the softmax bottleneck (Yang et al., 2018; Chang and
McCallum, 2022; Borenstein et al., 2024): The notion that the representations h pyq P RD defining an
LM whose conditional logits span a d-dimensional subspace of R|Σ| must be of size D ě d. Because
BPDAs can in general define full-rank distributions whose logits span R|Σ|, there exist BPDAs for which
it has to hold that D ě |Σ|. Any such BPDA is not efficiently representable; |Σ| ď D ď Cm log2 |Σ|
would require C ě |Σ|

m log2 |Σ| , which is not constant in |Σ|. ■

Connection to the result by Hewitt et al. (2020). The impossibility result from Thm. 4.2 of course
includes distributions over bounded Dyck languages as well. That is, a general distribution over a bounded
Dyck language may not be efficiently represented by an RNN LM. This does not contradict the results
from Hewitt et al. (2020)—the LMs considered by Hewitt et al. (2020) form a particular family of LMs
that are efficiently representable by Elman RNN LMs. Intuitively, this is because of two reasons:

1. In their construction, the probability of the next symbol only depends on the top of the stack. As such,
many stack configurations (and thus RNN hidden states) result in the same next-symbol probability
distribution, allowing for more efficient encoding.

2. Hewitt et al. (2020) are only interested in recognizing binary languages, which means that they only
consider LMs that assign sufficiently large probabilities to the correct continuations of the input
string. Exact probabilities under the language model are not important.

4135

