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Abstract

There is vivid research on adapting Large Lan-
guage Models (LLMs) to perform a variety of
tasks in high-stakes domains such as healthcare.
Despite their popularity, there is a lack of un-
derstanding of the extent and contributing fac-
tors that allow LLMs to recall relevant knowl-
edge and combine it with presented informa-
tion in the clinical and biomedical domain—a
fundamental pre-requisite for success on down-
stream tasks. Addressing this gap, we use Mul-
tiple Choice and Abstractive Question Answer-
ing to conduct a large-scale empirical study
on 22 datasets in three generalist and three
specialist biomedical sub-domains. Our mul-
tifaceted analysis of the performance of 15
LLMs, further broken down by sub-domain,
source of knowledge and model architecture,
uncovers success factors such as instruction
tuning that lead to improved recall and com-
prehension. We further show that while re-
cently proposed domain-adapted models may
lack adequate knowledge, directly fine-tuning
on our collected medical knowledge datasets
shows encouraging results, even generalising
to unseen specialist sub-domains. We com-
plement the quantitative results with a skill-
oriented manual error analysis, which reveals
a significant gap between the models’ capabili-
ties to simply recall necessary knowledge and
to integrate it with the presented context. To
foster research and collaboration in this field
we share M-QALM—our resources, standard-
ised methodology, and evaluation results—with
the research community to facilitate further ad-
vancements in clinical knowledge representa-
tion learning within language models.

1 Introduction

Recent success in the application of proprietary
large language models in the knowledge-intensive
medical domain (Singhal et al., 2023a,b) has
sparked vivid research interest in applying smaller,
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Figure 1: The landscape of LLM evaluation in the medi-
cal domain with representative evaluation tasks, organ-
ised by Bloom’s taxonomy of learning objectives (bold)
(Bloom, 1956).

more readily available open-source LLMs to various
settings in the clinical and biomedical domains. Ex-
amples of tasks include summarization of clinical
text (Veen et al., 2023), automatic note generation
for physicians (Ben Abacha et al., 2023b), and con-
densation of doctor-patient dialogues (Ben Abacha
et al., 2023a; Toma et al., 2023). More broadly,
open-source LLMs have been adapted to the do-
main to serve as foundational clinical models (Han
et al., 2023; Wu et al., 2023; Toma et al., 2023;
Bolton et al., 2022; Li et al., 2023).

The success of such adaptation is typically es-
tablished by measuring the performance on down-
stream tasks, by means of token overlap or se-
mantic similarity-based metrics (Lin, 2004; Zhang
et al., 2020). To address their inherent weaknesses
(Schlegel et al., 2022; Gatt and Krahmer, 2018), re-
search attempts to incorporate specific dimensions,
such as factuality or faithfulness (Umapathi et al.,
2023). Two important problems remain, however.
Firstly, Natural Language Generation (NLG) evalu-
ation metrics are merely approximations of the phe-
nomena they aim to measure, and their effective-
ness is typically established by the degree of corre-
lation to human judgements of the evaluated criteria
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Dataset Type Size Domain
USMLE (Jin et al., 2021) MCQA 10178/1272/1273 General Medical
MEDMCQA (Pal et al., 2022) MCQA 182822/4183/6150 General Medical
BIOASQ-MCQ (Tsatsaronis et al., 2015; Krithara et al., 2023) MCQA 975/173/123 General Biomedical
HEADQA (Vilares and Gómez-Rodríguez, 2019) MCQA 2657/1366/2742 General Medical
PROCESSBANK (Berant et al., 2014) Context + MCQA 358/77/150 Biological Processes
PUBMEDQA (Jin et al., 2019) Context + MCQA 400/100/500 General Biomedical
MMLU (Hendrycks et al., 2021) MCQA 30/NA/1089 General Medical/Clinical
BIOMRC-Tiny A (Pappas et al., 2020) Context + MCQA NA/NA/30 General Biomedical
BIOMRC-Tiny B (Pappas et al., 2020) Context + MCQA NA/NA/30 General Biomedical
OPHTH (Raimondi et al., 2023; RCOphth, 2022a,b) MCQA NA/NA/92 Ophthalmology
QA4MRE-(Alzheimer’s QA) (Morante et al., 2012) MCQA NA/NA/40 Alzheimer’s Disease
Total Questions across Splits - 197420/7171/12219 -
LIVEQA (Abacha et al., 2017; Ben Abacha and Demner-Fushman, 2019) AQA NA/NA/131 Consumer Health
MEDIQA-ANS (Savery et al., 2020) AQA NA/NA/156 Consumer Health
BIOASQ-QA (Tsatsaronis et al., 2015; Krithara et al., 2023) AQA 4733/697/363 General Biomedical
MASHQA (Zhu et al., 2020) AQA 27728/3587/3493 Consumer Health
MEDQUAD (Ben Abacha and Demner-Fushman, 2019) AQA 14068/981/1358 General Medical
MEDINFO (Ben Abacha et al., 2019) AQA NA/NA/663 Consumer Medication
Total Questions across Splits - 46529/5265/6164 -

Table 1: Overview of M-QALM datasets. Size is presented in terms of train/val/test splits. Manual train/val splits are
created for BIOASQ-MCQ, PROCESSBANK, PUBMEDQA, BIOASQ-QA and MEDQUAD. We use 6 subsets of
the MMLU dataset that pertain to testing clinical and medical knowledge (Singhal et al., 2023a).

(Huang et al., 2021). Secondly, an (offline) evalu-
ation setup is functionally grounded and serves as
a proxy of a real-world application scenario, but
the transferability of insights from functionally-
grounded to application-grounded evaluation is
barely discussed (Doshi-Velez and Kim, 2017).
Taken together, these problems might taint the cred-
ibility of conclusions about the successful adapta-
tion of LLMs drawn from such experiments.

Given such difficulties, we approach the problem
of evaluating LLM adaptation from a complemen-
tary angle. Specifically, we ask: Do LLMs pos-
sess the necessary pre-requisites to succeed in the
clinical and medical domains? Without an estab-
lished theory of how knowledge is acquired and
organised in LLMs, the present work is guided by
the established theories of knowledge acquisition
in humans (Adams, 2015). Typical NLG tasks,
such as summarisation, are higher-level cognitives
that require the understanding of learned knowl-
edge and its application in new contexts (Bloom,
1956). They build on the most fundamental capa-
bility of reading comprehension (Kintsch, 1988):
the construction of a text-base and its integration
with previously acquired background knowledge.
In NLP research, this process is evaluated by open-
book Question Answering (QA), the task of either
generating (abstractive, AQA) or selecting among
presented options (multiple-choice, MCQA) the cor-
rect answer for a question, where potentially not all
necessary information is included in the question or

the presented context. MCQA evaluation does not
suffer from the issues pertaining to NLG metrics, as
performance is established by exact match. Thus,
conclusions obtained from such evaluations tend to
be more robust, if the quality of the benchmark is
sufficient.

Therefore, in this paper we focus on the task of
QA, to evaluate knowledge recall and comprehen-
sion pre-requisites of LLMs for successful adap-
tation to the medical domain. We present an ex-
haustive, publicly available QA benchmark called
M-QALM including 16 MCQA datasets. To enable
future research on NLG-based QA, we complement
M-QALM by 6 high-quality AQA datasets, where
the ground-truth answer is an unconstrained string.
With such a standardized benchmark, we conduct
an extensive evaluation of the capabilities of openly
available general-purpose and medical LLMs, both
“out-of-the-box” and after fine-tuning on M-QALM.
Our findings provide insights into the strengths
and weaknesses of different LLMs across a range of
datasets, question categories and QA tasks. Overall,
we find their performance lacking, both compared
to humans and to proprietary LLMs. Further analy-
sis reveals promising tendencies of domain-specific
pre-training and fine-tuning to bridge this gap and
to generalise to new QA datasets.

2 Related Work

Large open-domain QA benchmarks The avail-
ability of QA datasets from multiple domains and
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sources has enabled the curation of large and di-
verse QA benchmarks (Dua et al., 2019; Fisch et al.,
2019; Talmor and Berant, 2019). Such resource col-
lections enable researchers to perform large-scale
empirical studies to understand how well language
models can generalise to new questions from new
domains or sources, or how fine-tuning can impact
this performance. While multiple studies exist in
the general domain, to the best of our knowledge,
no such large-scale study has been carried out for
QA in the clinical domain. In this paper we aim to
address this gap.

Evaluation in the clinical domain Datasets that
evaluate the lowest-level cognitive task of knowl-
edge recall and reading comprehension in the med-
ical domain have been proposed before (Jin et al.,
2021; Vilares and Gómez-Rodríguez, 2019; Pal
et al., 2022). They feature questions commonly
found in examinations like the US Medical Licens-
ing Exam (USMLE). M-QALM unifies the existing
literature by incorporating licensing exam ques-
tions from diverse regions, such as India and Spain.
We go beyond the scope of the general medical
domain, covering specialist topics such as ophthal-
mology and Alzheimer’s disease.

Beyond factual recall and comprehension, Fries
et al. (2022) collected a unified bio-medical
benchmark, featuring NLP primitives such as
sentence(-pair) classification or entity recognition
and linking. Aiming at higher, more task-specific
cognitives, Singhal et al. (2023a) introduced Mul-
tiMedQA, including HealthSearchQA, which re-
quires models to generate high-quality free-form
answers. Similarly, He et al. (2023) introduced
a multi-domain benchmark for evaluating gener-
ation and classification capabilities on a diverse
set of in-hospital downstream tasks. Other re-
searchers looked to evaluate the quality and fac-
tuality of generation (Umapathi et al., 2023) and
synthesised general-purpose medical instructions
(Fleming et al., 2023). Our work is complementary,
because we evaluate knowledge recall and compre-
hension as a pre-requisite of higher-level cognitive
tasks, such as understanding and application—the
focus of previously discussed works.

3 M-QALM Datasets

The primary goal of M-QALM is to develop a com-
prehensive, open-source repository of medical QA
datasets to assess the recall of medical knowledge
in LLMs. To obtain such a collection, we perform

an exhaustive literature and resource search using
the terms “clinical OR medical”, “Question An-
swering OR QA” and include a dataset or resource
if it satisfies the following criteria: (i) The lan-
guage is English, as medical documents are usually
written in English, even in non-English-speaking
countries; (ii) The questions and answers are on
general, specialist, or consumer-facing medical top-
ics; (iii) The resource is openly available without
restrictive licensing or data agreements; (iv) The re-
source evaluates the task of MCQA or AQA; (v) The
ground truth is collected or reviewed by domain
experts.

The result is M-QALM—a comprehensive collec-
tion of 22 datasets designed to thoroughly evaluate
the clinical knowledge of LLMs. Table 1 gives an
overview of the collected MCQA and AQA datasets,
including task formulation, size and domain. Refer
to the Appendix for further details on each dataset.

Knowledge source categorization The MCQA

datasets within the M-QALM benchmark cover a
diverse range of medical domains. To be able to per-
form fine-grained analysis of both the topics cov-
ered in these datasets as well as model performance,
we categorise the MCQA datasets into eleven high-
level categories, representing different facets of
medical knowledge. To do so, we leverage avail-
able meta-data from the source datasets MEDM-
CQA, HEADQA, MMLU and BIOASQ-MCQ.
We categorize the PROCESSBANK, PUBMEDQA
and BIOMRC datasets into a distinct twelfth
Within Context category, as the relevant knowl-
edge is presented in the context. USMLE and
QA4MRE lack the necessary meta-data, thus we
train a BioBERT-based classifier (Lee et al., 2019)
to assign questions into one of the eleven elicited
categories using the labels from the other datasets.
The classifier achieves 71.56% (micro-)averaged
F1 score on a held-out test set, which we deem
sufficient.

Table 4 shows that nearly half of all questions
(47%) fall into the Basic and Life Sciences
and General Medicine category. Diagnostic
Sciences, Women’s and Children’s Health
and Pharmacology and Anesthesia account for
a further 30% of questions.

4 Empirical Evaluation

We investigate how well existing, open-source
LLMs are able to recall clinical knowledge and inte-
grate it into a given context in order to succeed on
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our benchmark. Specifically, we focus on perfor-
mance in the zero-shot setting, and after fine-tuning
on M-QALM training portions.
In the Zero-shot setting:
• RQ1. How well do open-source LLMs recall nec-

essary clinical knowledge when they are tested
on M-QALM?

• RQ2. Does open-domain instruction fine-tuning
of LLMs improve their ability to do so?

• RQ3. Does domain-specific fine-tuning improve
performance on M-QALM?

In the Fine-tuned setting:
• RQ4. Does finetuning on M-QALM improve per-

formance on unseen data from datasets seen dur-
ing training?

• RQ5. Does fine-tuning improve performance on
unseen M-QALM datasets?

4.1 Study Setup

To seek evidence for RQs 1-3 empirically, we eval-
uate several LLMs and their instruction-tuned ver-
sions on the test splits of M-QALM in zero-shot1

manner. To answer RQ4 and RQ5, we fine-tune
LLMs on the training portion of M-QALM and eval-
uate on test splits of datasets both seen and unseen
during training. We complement our evaluation
with additional automated and manual error anal-
yses to identify causes for model successes and
failures.

Models: To assess the zero-shot capabilities
of models (RQ1 and RQ2), we include a di-
verse array of open-source decoder-only models
with parameter scales ranging from 3B-13B. We
use models from MPT and MPT-Instruct (7B) (Mo-
saicML, 2023), Falcon and Falcon-Instruct (7B)
(Almazrouei et al., 2023), LLaMA 1 (7B and 13B)
(Touvron et al., 2023a), LLaMA 2 and LLaMA 2-chat
(7B and 13B) (Touvron et al., 2023b). In addition
to these models, we also use two instruction fine-
tuned encoder-decoder models: Flan-T5 (3B and
11B) (Wei et al., 2021). Models with Instruct or
Chat appended to their names are instruction fine-
tuned (Ouyang et al., 2022) versions of their base
models. The details of the models are given in Ta-
ble 10. To address RQ3, we evaluate ChatDoctor
(7B) (Li et al., 2023), MedAlpaca (7B) (Han et al.,
2023) and PMC-LLama (Wu et al., 2023). To ad-

1For MCQA evaluation in the zero-shot setting (where
models are not explicitly fine-tuned for MCQA tasks), we use a
1-shot prompt—giving an example to the model, and find that
it adheres better to the MCQA format and the standard 5-shot
prompt for MMLU datasets.

dress RQ4, we fine-tune models using the training
set of the M-QALM datasets. When official valida-
tion splits are unavailable, we employ a random
split of up to around 20% of the data for valida-
tion purposes. If no training datasets are available,
we do not use this dataset for fine-tuning and only
consider the test split of the respective datasets to
answer RQ5. For evaluating AQA, we use a sub-
sampled version of the test sets of MASHQA (500
questions) and MEDQUAD (200 questions by sam-
pling 100 questions from the two holdout websites),
while we use the other datasets as they are. For
MCQA, similar to Singhal et al. (2023a), we evalu-
ate all models on the validation set of MEDMCQA
since the answers for the test set are not released
publicly.

Finetuning and hyperparameters: Since the
number of parameters for most of our models is
in the billions, we follow a more accepted prac-
tice of using parameter-efficient fine-tuning, specif-
ically QLora and 4-bit quantization (Dettmers et al.,
2023). We utilize 8-bit quantization for evaluating
Flan-T5 (11B), LLaMA 1 (13B), LLaMA 2 (13B) and
LLaMA 2-Chat (13B) (Dettmers et al., 2022). We
use A100-40G GPUs for all our experiments. The
other hyper-parameters used to train our models
are reported in the Appendix (Table 11).

Evaluation measures: We use Accuracy to
measure the performance of the model on MCQA

datasets; for AQA datasets, we use ROUGE-L (Lin,
2004), BERTScore (Zhang et al., 2020) (based on
deberta-xlarge-mnli) and METEOR (Banerjee and
Lavie, 2005), which is found to correlate better
with human judgments than other metrics on AQA

(Chen et al., 2019).

5 Results and Analysis

In this section, we report and analyse the findings
of our empirical study.

5.1 Zero-shot Evaluation Results

Table 2 shows the dataset-averaged scores of the
zero-shot evaluation of language models as evi-
dence towards RQs 1-3. Note that in this way, each
dataset contributes equally to the average, regard-
less of its size. Micro-averaged MCQA accuracy
scores are reported in Table 4. However, these are
biased towards datasets with more examples (i.e.,
MEDMCQA). While the results between micro-
and by-dataset-averaged metrics might differ in de-
tail (consult Appendix D for a break-down), the
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MCQA AQA

Acc RL BS MTR
B

as
e

LLaMA 1 (7B) 31.9 14.0 54.2 20.5
LLaMA 1 (13B) 44.1 14.4 54.0 20.3
LLaMA 2 (7B) 42.9 14.9 55.3 21.1
LLaMA 2 (13B) 47.1 15.0 56.4 22.5
MPT (7B) 27.6 13.3 52.6 21.1
Falcon (7B) 34.7 14.0 54.1 20.0

In
st

ru
ct

io
n

tu
ne

d LLaMA 2-chat (7B) 45.9 15.0 58.0 23.3
LLaMA 2-chat (13B) 50.3 15.3 58.0 23.6
MPT-Instruct (7B) 31.6 15.8 59.7 15.6
Falcon-Instruct (7B) 31.8 17.2 62.4 17.4
Flan-T5 (3B) 51.8 10.8 55.0 7.4
Flan-T5 (11B) 56.5 11.5 56.3 8.2

A
da

pt
ed ChatDoctor (7B) 42.8 17.4 62.3 18.7

MedAlpaca (7B) 48.8 15.5 58.9 15.6

PMC-LLama (13B) 53.7 19.7 60.7 19.0

Random Baseline 27.7 - - -

Table 2: Zero-shot performance of base (top),
instruction-tuned models (middle) and domain-adapted
(bottom) models. Metrics are Accuracy for MCQA;
Rouge-L, BERTScore, and METEOR for AQA.

mean absolute difference between the metrics for
all models is 4.2, which suggests that reported
trends do not depend on the averaging method.

Table 2 highlights that LLMs exhibit strong zero-
shot capability on MCQA and AQA datasets, cor-
roborating the findings of Singhal et al. (2023a).
Considering LLMs of the same size (e.g., 7B),
LLaMA 2 performs best, possibly due to larger diver-
sity in pre-training data—LLaMA 2 is trained on the
most tokens. Another difference is the mixture of
datasets used for pre-training, which is not revealed
in some cases (c.f. Table 10 in Appendix).

Unsurprisingly, across all models of the same
architecture, scale predicts model performance,
even without domain-specific adaptation of LLMs
on the medical domain. For example, LLaMA 2
(13B) performs better on MCQA (+4.2 Accuracy
improvement) compared to the 7B version. Fig-
ure 5 in the Appendix shows the relationship be-
tween the number of parameters and performance.

To address RQ2, we investigate whether im-
provements from instruction fine-tuning also apply
to the clinical domain of M-QALM. The results are
reported in the middle part of Table 2.

Surprisingly, instruction fine-tuned models
perform better than their corresponding Base ver-
sions, despite the fact that the instruction set used
for fine-tuning contains only tasks in the general

domain—see Table 10 and compare *-Instruct/Chat
(middle) with their base versions (top). Among
them, Flan-T5 models exhibit the best zero-shot
performance on MCQA, outperforming comparable
decoder-only models. Seemingly, instruction fine-
tuning enables models to obtain representations of
question and context which are beneficial for fact
recall.

We note that bigger models are not always bet-
ter—the choice of model architecture and dataset
for instruction fine-tuning can have a bigger im-
pact on performance than model size alone. For
example the encoder-decoder Flan-T5 (3B) model
outperforms LLaMA 2-chat (13B) on the MCQA task,
despite being four times smaller.

The performance of domain-adapted models is
reported in Table 2 (bottom), as evidence for RQ3.
For MCQA, both MedAlpaca and ChatDoctor in-
deed exhibit improvements in Accuracy over their
respective 7B and 13B LLaMA 1 base versions; how-
ever they fail to reach the strong zero-shot perfor-
mance of Flan-T5 (11B).

In contrast, PMC-LLama performs well due to
continued pre-training on biomedical corpora be-
fore instruction tuning on biomedical and clinical
datasets. The latter results in exceptionally high
scores on the MEDINFO AQA dataset (See Table 20
in Appendix). This dataset, along with LIVEQA,
was used as part of the instruction tuning process,
leading to evaluation on these dataset not being
“zero-shot”2. Scores on LIVEQA, however, are
not inflated, compared to LLaMA 2(-chat) (13B).
This is possibly because we use a filtered version
of LIVEQA which contains only challenging an-
swers with sufficiently good expert quality rating.
PMC-LLama demonstrates significant improvements
over other open-source LLMs on MCQA datasets
such as USMLE, MEDMCQA and MMLU.

In summary, we conclude that while available
LLMs adapted to the medical domain successfully
improve performance of the adapted models, they
appear to have no improved domain knowledge
compared to other available open-domain models.
Evaluating these adaptation techniques on stronger
base models is an exciting avenue for future re-
search.

Importantly, none of the evaluated open-source
LLMs outperform humans: While the passing score

2https://huggingface.co/datasets/axiong/pmc_
llama_instructions
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for USMLE is 60% 3, we observe the best zero-
shot scores for USMLE are 43% for LLaMA 2, and
54% for the domain-adapted PMC-LLama, both be-
low the passing score. Meanwhile, GPT-4 (Ope-
nAI, 2023) with a customized prompting strategy
labeled MedPrompt (Nori et al., 2023) achieves
90.2%, while Med-PALM 2 (Singhal et al., 2023b)
achieves scores of 86.5% on USMLE. Similarly,
for the PubmedQA dataset, human performance
is 78% (Jin et al., 2019), compared to 72.4% of
Flan-T5. To summarize: While available LLMs ex-
hibit performance significantly higher than random
chance “out-of-the-box”, there is still a substantial
gap compared to humans and proprietary LLMs
(Singhal et al., 2023a,b) (see Appendix B).

5.2 Impact of Fine-tuning
Given the scale of M-QALM, we are able to fine-
tune models on parts of the data, to address RQ4
and RQ5. We fine-tune four models on MCQA and
AQA separately, given the different nature of these
datasets, but joint fine-tuning on both MCQA and
AQA did not yield significantly different results.

MCQA AQA

Acc RL BS MTR

LLaMA 2 (7B) 53.5 +10.6 17.7 +2.8 60.8 +5.5 16.9 −4.2

Falcon (7B) 49.3 +14.6 17.4 +3.4 60.4 +6.3 17.1 −2.9

MPT (7B) 53.2 +25.6 17.3 +4.0 60.0 +7.4 17.2 −3.9

Flan-T5 (3B) 52.9 +1.1 15.9 +5.1 56.8 +1.8 15.6 +8.2

Table 3: Model fine-tuning is performed either on MCQA
or AQA datasets. Reported are Accuracy for MCQA;
Rouge-L, BERTScore, and METEOR for AQA. Sub-
scripts indicate improvement over zero-shot versions.

We fine-tune the models only on the MCQA sub-
set of datasets first (cf. Table 3). We find that the
fine-tuned models perform better compared to
their non-fine-tuned counterparts. Decoder-only
models like MPT (7B) benefit more than others
(+25.6 Accuracy improvement). Fine-tuning mod-
els on the data seems to close the gaps introduced
by different model architectures and pre-training
data: The standard deviation of the evaluated mod-
els’ accuracies reduces from 9.0 in the zero-shot
setting to 1.7 after fine-tuning. This suggests that
LLMs can benefit from task-specific fine-tuning to
address seemingly sub-optimal architecture or pre-
training conditions. For AQA, Flan-T5 benefits

3https://www.usmle.org/bulletin-information/
scoring-and-score-reporting

more from fine-tuning compared to the decoder-
only models, possibly by better aligning generated
outputs to the expected format of the answer. De-
coder models present inconsistent results with im-
provements in ROUGE-L and BERTScore at the ex-
pense of lower METEOR scores, which raises con-
cerns about the reliability of the AQA metrics.

Scaling up models introduces practical problems
of deploying the model in real-world scenarios—
smaller models may be preferred to larger ones
due to faster inference times and lower memory
footprints. We find that fine-tuning helps com-
pensate for scale. Fine-tuned LLaMA 2 (7B) sig-
nificantly outperforms zero-shot LLaMA 2 (13B)
(+6.4 Accuracy gain on MCQA, +2.7 ROUGE-L
gain and +4.4 BERTScore gain on AQA). Simi-
larly, fine-tuned Flan-T5 (3B) outperforms zero-
shot LLaMA 2 (13B) on 8 out of 16 MCQA datasets
(see Tables 13 and 15).

In summary, we conclude that task-specific fine-
tuning improves performance, mitigating weak-
nesses due to size, architecture and training data.

Finally, we report the potential of LLMs fine-
tuned on in-domain data to generalize to medical
datasets unseen during training to answer RQ5. To
this end, during fine-tuning, we hold out ten MCQA

and four AQA datasets presented in Figures 2 and 3.
Figure 2 shows the performance of LLaMA 2 (7B)

and Flan-T5 (3B) models on the four held-out AQA

evaluation sets. While LLaMA 2 does not appear
to generalise to unseen AQA datasets, Flan-T5’s
scores improve across the board. We note however,
that this result might depend on the choice of met-
ric, as Figures 6 and 7 in the Appendix paint a more
mixed picture. Indeed, across all conducted experi-
ments, only ROUGE-L scores show a statistically sig-
nificant Spearman rank correlation with the reliable
MCQA accuracy measure (r = 0.616, p = 0.008,
more details in Appendix C). This suggests that
other metrics used are either a sub-optimal choice
or that they measure another, complementary as-
pect captured neither by Accuracy nor ROUGE-L.
These findings highlight the low robustness of
overlap-based NLG metrics discussed in the in-
troduction.

Investigating the more robust MCQA setting, Fig-
ure 3 (comparing blue ZS with orange AQA-FT
bars) shows that fine-tuning on AQA does not im-
prove performance on unseen MCQA datasets.
This suggests that higher scores on unseen AQA

datasets might stem from better aligning genera-
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Flan-T5 Flan-T5 MPT MPT Falcon Falcon LLaMA 2 LLaMA 2
Category Support (ZS) (FT) (ZS) (FT) (ZS) (FT) (ZS) (FT)

D
om

ai
n General Medical 9275 37.9 44.9 26.5 49.5 29.5 46.9 37.6 50.5

General Biomedical 683 64.4 71.0 32.4 70.0 56.7 68.4 58.9 68.5
Biological 294 71.4 70.4 39.5 71.1 39.1 58.2 57.8 68.4

K
no

w
le

dg
e

So
ur

ce

General Medicine 2675 38.0 43.2 26.0 46.4 30.1 46.4 36.6 50.0
Basic and Life Sciences 2235 38.9 44.3 26.9 52.6 30.6 49.4 40.0 52.5
Dental and Oral Health 1318 34.8 42.9 25.9 44.3 30.7 43.8 36.1 44.2
Pharmacology and Anesthesia 784 39.7 48.1 29.0 55.6 28.8 54.0 42.9 59.4
Within Context 710 74.1 75.2 37.2 71.5 52.7 66.5 60.8 67.7
Diagnostic Sciences 640 32.2 43.1 26.4 51.1 30.3 46.4 37.2 47.5
Supportive and Preventive Services 599 48.2 56.6 23.7 55.1 27.9 48.1 39.9 56.3
Women’s and Children’s Health 507 30.2 42.6 27.2 51.7 28.4 43.0 34.3 49.9
Mental and Behavioral Health 496 50.0 57.9 29.4 55.4 31.5 49.2 40.7 59.1
Sensory Organs 205 29.8 42.0 27.8 45.4 28.8 42.4 33.2 42.0
Miscellaneous 45 42.2 44.4 20.0 60.0 24.4 44.4 31.1 40.0
Musculoskeletal and Dermatology 38 18.4 26.3 18.4 44.7 34.2 42.1 28.9 44.7
Micro-averaged Accuracy 10252 40.6 47.4 27.3 51.5 31.6 48.6 39.6 52.2
Category-averaged Accuracy 12 39.7 47.2 26.5 52.8 31.5 48.0 38.5 51.1

Table 4: Performance of LLMs in the zero-shot and fine-tuned setting across various categories on the test set.

LIVEQA

MEDIQA-ANS

MEDQUAD
MEDINFO

0
0
.2

0
.4

ME
TE
OR

LLAMA-ZS LLAMA-AQA-FT

FLAN-T5-AQA-ZS FLAN-T5-AQA-FT

Figure 2: Performance of base and AQA-fine-tuned
LLaMA 2 and Flan-T5 models on unseen AQA test sets.

tions to the expected answer form of AQA answers,
which shows improvements in some of the AQA

metrics, rather than acquiring additional medical
knowledge during fine-tuning. While this could
also due to a domain shift between the training
and holdout datasets, this is not supported by the
performance drop on MedQuaD, which, by this the-
ory, should exhibit improved performance, since
its domain is “General Medical”, and would thus
be in-domain.

Figure 3 (comparing blue ZS with green MCQ-
FT) suggests that models indeed can learn to
acquire domain-specific knowledge during fine-
tuning, as MCQA-tuned models consistently per-
form better than their zero-shot counterparts. This
seemingly contradicts the previous finding that
models fail to acquire additional medical knowl-
edge when fine-tuned on the AQA datasets.

Further analysis indicates that the reported gener-
alisation capabilities might be over-stated, as eval-
uation questions from the unseen datasets have se-
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Figure 3: Performance of base, MCQA-tuned, and AQA-
tuned LLaMA 2 model on unseen MCQA test sets.

mantically similar counterparts in the fine-tuning
data. However, a manual analysis of the cases
where fine-tuned models outperform their zero-shot
counter-parts reveals that only about 60% of the
improvement can be explained by the presence of
such similar examples. Details of this analysis are
reported in Appendix D.

Based on these findings, we conclude that fine-
tuning can serve as a partial solution for achiev-
ing generalisable adaptation to the medical do-
main.

6 Error Analysis

In this section, we analyze the errors of LLMs on
MCQA datasets.

6.1 Category-wise and Manual Error Analysis

To better understand the performance of zero-shot
and fine-tuned models across MCQA, we analyze
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Flan-T5 Flan-T5 MPT MPT Falcon Falcon LLaMA 2 LLaMA 2
Reasoning Type Support (ZS) (FT) (ZS) (FT) (ZS) (FT) (ZS) (FT)
Recall 131 48.1 49.6 23.7 51.1 31.3 49.6 47.3 51.1
Reading Comprehension 59 27.1 39.0 27.1 35.6 40.7 47.5 33.9 42.4
Quantitative/Arithmetic 10 40.0 30.0 10.0 20.0 30.0 40.0 30.0 30.0

Table 5: Performance of LLMs in zero-shot and fine-tuned settings on three reasoning types identified in M-QALM.

them broken down by sub-domain and knowledge
source. We calculate the accuracy of the models
in their zero-shot and fine-tuned settings for each
category, as shown in Table 4.

Models tend to perform better on the biolog-
ical and biomedical sub-domains. We posit as
the reason for this that biomedical information is
more readily available in the pre-training corpora
of the models, e.g., in the form of biomedical ab-
stracts (see also Table 10 in the Appendix). Fur-
thermore, fine-tuning improves performance for
all categories, but the gaps between medical and
biomedical domains persist, indicating that medical
questions are indeed harder to answer, even though
they prevail in the training set. Perhaps more wor-
ryingly, the Consumer Health AQA scores do not
improve as much as for other domains, even after
fine-tuning (see Appendix, Table 19).

For knowledge sources, fine-tuned Flan-T5 (3B)
excels in Within Context and Supportive and
Preventive Services, also showing strong zero-
shot capabilities in these categories, perhaps due
to architecture or pre-training data. Similarly, fine-
tuned MPT (7B) and LLaMA 2 (7B) show superior
performance across categories. However, despite
fine-tuning benefits, models still underperform in
areas like General Medicine, Basic and Life
Sciences, and Dental and Oral Health, which
form the majority of the benchmark. Overall, we
conclude that fine-tuning improves model perfor-
mance in sub-domains, but knowledge gaps still
persist across different domains and knowledge
sources.

Finally, we sample 200 MCQA-questions from
M-QALM evaluation data, and annotate the type of
reasoning required to solve the problem: we dis-
tinguish three broad categories: Recall questions,
which only require to recall necessary knowledge,
Reading Comprehension questions, which re-
quire recall of knowledge and its combination with
a given context—and Quantitative/Arithmetic
questions, which require the calculation of quanti-
ties, such as probabilities or dosages. The majority
of analyzed questions fall into the Recall category.

Together with the Reading Comprehension cate-
gory, these questions account for 95% of annotated
questions. These two categories probe the capabili-
ties required for reading comprehension (Kintsch,
1988), validating the use of M-QALM for the stated
purpose of evaluating comprehension and recall.

Recall
Q: During CPR, chest compressions should be
delivered at a rate of:
A. 80/minute. B. as fast as possible.
C. 100/minute. D. varies with each patient.
Answer: C. 100/minute

Reading Comprehension
Q: A 22-year-old man comes to the physician
for a routine health maintenance examination.
He feels well. He has had a painless left scro-
tal mass since childhood. Examination shows a
6-cm, soft, nontender left scrotal mass that tran-
silluminates; there are no bowel sounds in the
mass. Examination of the testis shows no ab-
normalities. Which of the following is the most
likely cause of the mass?
A. Accumulation of scrotal adipose tissue
B. Cryptorchidism of the left testis
C. Dilation of the pampiniform plexus of veins
around the testis
D. Persistence of a patent processus vaginalis
Answer: D. Persistence of a patent processus
vaginalis

Quantitative/Arithmetic
Q: A person is prescribed Ropinirole 1.5 mg di-
vided into three doses. How many micrograms
is each dose? Choose one answer from the fol-
lowing:
A. 5 B. 50 C. 0.5 D. 500
Answer: D. 500

Figure 4: Sample questions corresponding to each cate-
gory of the manual error analysis.

Table 5 describes the accuracy of the four base
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and fine-tuned models: we find that Recall ques-
tions dominate the sample and models tend to
perform best in this category, but even after fine-
tuning on M-QALM, their performance hardly sur-
passes 50%, indicating that they may yet lack
the necessary knowledge. Additionally, mod-
els perform worse on Reading Comprehension
questions, suggesting that it is indeed harder
to integrate necessary knowledge rather than
just recalling it. Fine-tuning improves perfor-
mance for all models for both types of reason-
ing. Quantitative/Arithmetic are the worst-
performing category, even after fine-tuning. This
is unsurprising, as arithmetic capabilities are ob-
served to emerge with larger model scale (Wei et al.,
2022).

6.2 Error Analysis of LLama-2

We perform a manual error analysis of the
fine-tuned LLaMA 2 (7B) model on MCQA.
We examine 200 non-Within Context ques-
tions where the model erred, and assign them
to the Recall, Reading Comprehension and
Quantitative/Arithmetic categories, as done
previously. The model incorrectly answered 134
Recall, 52 Reading Comprehension, and 14
Quantitative/Arithmetic questions (Table 6).
Comparing these errors to the earlier sample of
200 questions we analyze from the test set in Ta-
ble 5, reveals that the distribution of errors for
each category mirrors their general distribution
in the overall test set. The prevalence of Recall
questions in errors aligns with their dominance in
medical exams like MEDMCQA, USMLE, and
HEADQA. While fine-tuning on extensive medi-
cal corpora may enhance Recall question perfor-
mance, improving on Reading Comprehension
and Quantitative/Arithmetic questions might
require different fine-tuning approaches, as these
categories demand comprehension skills rather
than mere knowledge recall.

Category General Test Set LLaMA 2 Errors

Recall 65.5% 67%

Reading Comprehension 29.5% 26%

Quantitative/Arithmetic 5% 7%

Table 6: Distribution of Llama-2 errors across reasoning
categories, compared with overall distribution of each
category

7 Conclusions

In this work, we introduce M-QALM, a compre-
hensive collection of clinical datasets compris-
ing 16 multiple-choice and 6 abstractive question-
answering datasets. Our study encompasses an
extensive empirical investigation of open-source
language models with up to 13 billion parameters.
We assess their clinical and biomedical knowledge,
their capacity to acquire such knowledge through
training on M-QALM, and their ability to generalize
to previously unseen datasets.

Our results highlight the strengths and limita-
tions of LLMs on MCQA and AQA: while per-
forming significantly better than a random guess
baseline, they still fall significantly short in perfor-
mance compared to proprietary language models
and humans. This is true even after fine-tuning on
M-QALM, which demonstrates potential improve-
ments, especially in the context of instruction fine-
tuned models like Flan-T5. Finally, we show in-
consistencies arising from the use of different AQA

metrics—in future work we will supplement the
automated metrics by fine-grained expert-driven
manual evaluation of LLM’s answers on M-QALM

to learn to automate (some dimensions of) these
expert judgments.

Based on our findings, we caution on the uncon-
strained use of open-source LLMs (Li et al., 2023;
Han et al., 2023) as assistants to help perform med-
ical tasks or provide answers to medical queries, to
experts or lay people alike, as they seem to lack the
necessary medical domain knowledge.

We make the dataset, experiment code and eval-
uation protocol publicly available4 to allow future
developers of medical LLMs to assess the founda-
tions of their models’ knowledge, as our evaluation
shows that architecture of language models, the
choice of datasets for pre-training and instruction
fine-tuning can greatly impact their performance to
the extent it can be assessed by M-QALM.

Limitations

In this paper, we evaluate the medical or clinical
knowledge of LLMs by measuring their capability
of answering test questions. While this can be a
useful proxy measure of a model’s domain knowl-
edge, it is insufficient to gauge its potential applica-
tion in a real-world scenario. A multi-dimensional
analysis of a model’s behaviour, including judging

4https://github.com/anand-subu/m-qalm
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the completeness, harmlessness and usefulness of
generated answers, is required in addition to solely
evaluating their correctness.

Furthermore, the aggregated resource presented
in this paper might be seen as lacking diversity,
as all collected datasets are in English. To make
inferences about the capabilities of evaluated mod-
els in other languages, a more diverse dataset with
examples in other languages is required.

For our finetuning experiments, we only use
parameter-efficient finetuning methods (PEFT)
with QLora due to the high compute requirements
for full-finetuning. We have not investigated the
impact of the full-finetuning of these LLMs on our
benchmark.
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A Datasets Used

In this section, we explain the MCQA and AQA

datasets we used in detail. The dataset characteris-
tics are presented in Table 1.

1. USMLE - English: We incorporate the
USMLE dataset obtained from the MedQA
dataset (Jin et al., 2021), comprising MCQA

questions from the Medical Licensing Exam
conducted in the US. We retain this dataset’s
original training, validation, and test set divi-
sions.

2. MEDMCQA: We incorporate the MEDM-
CQA dataset from (Pal et al., 2022), which
comprises medical MCQA from Indian Medi-
cal Entrance Exams. We retain this dataset’s
original training, validation, and test set splits.
Similar to Singhal et al. (2023a), we evaluate
all models on the validation set since we do
not have answers for the test set.

3. MMLU: Following the design of Singhal
et al. (2023a), we incorporate a subset of
the MMLU datasets (6 datasets) (Hendrycks
et al., 2021) which are MCQA specifically cu-
rated to assess medical domain knowledge.
The subsets used are the anatomy, clinical
knowledge, college medicine, medical genet-
ics, professional medicine and college biol-
ogy questions from MMLU. We utilize these
datasets only for evaluating models.

4. MEDIQA-ANS: The MEDIQA 2019 shared
task introduced the MEDIQA-QA dataset
(Savery et al., 2020) for answer-ranking, com-
prising consumer health questions and pas-
sages from reputable online sources. The
dataset was curated by extracting passages
from the text of web pages, and includes man-
ually generated single and multi-document
summaries in both extractive and abstractive
forms. We employ the multi-document ab-
stractive summary as our questions’ ground
truth reference answer. We specifically filter
for questions and answers marked as excellent
and utilize this as an AQA dataset solely for
evaluating models.

5. HEADQA: We include the HEADQA dataset
(Vilares and Gómez-Rodríguez, 2019), which
comprises graduate-level MCQA about various

fields of medicine used for examinations to ap-
ply for specialization positions in the Spanish
public healthcare system. We use the English
version of the dataset and retain the original
train, validation, and test split.

6. PubmedQA: The PubMedQA dataset (Jin
et al., 2019) is a biomedical question-
answering dataset comprising 1,000 expert-
annotated QA instances. Each instance neces-
sitates reasoning over a biomedical paper’s
abstract to answer a relevant question. While
the dataset provides long and short answers
(yes, no, or maybe), we focus exclusively on
the short answers for our evaluation, thereby
generalizing the task as MCQA. We retain
the original test split of 500 questions. Addi-
tionally, we allocate 100 questions from the
training set to serve as a validation set, facili-
tating standardized training and validation in
future studies.

7. BioMRC: The BIOMRC dataset (Pappas
et al., 2020) focuses on machine reading com-
prehension within the biomedical domain. It
is structured in a cloze-style MCQA format,
where questions are based on biomedical ab-
stracts where biomedical entities are replaced
with pseudo-identifiers. The task is to cor-
rectly identify the masked entity in the ti-
tle from a list of masked entities. We uti-
lize two compact versions of BioMRC: Tiny
A (Setting A) and Tiny B (Setting B). The
BIOMRC dataset comprises a large training
corpus, where masked entities share the same
pseudo-identifier across the entire corpus. Set-
ting A, retains the same pseudo-identifiers
used for masked biomedical entities in the
training corpus. This setup is beneficial when
testing models trained using the BioMRC
training set, allowing them to draw on pre-
viously seen patterns. Setting B, conversely,
changes the pseudo-identifiers for every sin-
gle question. This means that a model must
rely solely on the information in the text of
the question and the passage it refers to, with-
out any help from repeated exposure to the
same placeholders. While we maintain the
original format for Setting B, assessing Set-
ting A as is, is difficult as since we do not
utilize the BioMRC training set, it is function-
ally the same as Setting B. To address this
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limitation, we modify Setting A to include the
original entity names and their correspond-
ing pseudo-identifiers in the answer options,
based on how the original paper (Pappas et al.,
2020) assesses the performance of experts and
non-experts. This aims to assess whether the
model can accurately answer when provided
with the information about their original entity
names.

8. Processbank: The Processbank dataset (Be-
rant et al., 2014) is designed for machine read-
ing comprehension, featuring questions based
on paragraphs describing biological processes.
Each question, associated with a particular
paragraph, has two answer options (MCQA).
The dataset comes with a predefined split of
435 questions (150 files) for training and 100
questions (50 files) for testing. We allocate 25
files from the training set to create a valida-
tion set while retaining the original test set for
model evaluation.

9. QA4MRE - Alzheimer’s disease QA: The
dataset proposed by Morante et al. (Morante
et al., 2012) contains MCQA questions re-
garding Alzheimer’s disease, aimed at assess-
ing machine reading systems’ ability to an-
swer questions about the disease by parsing
relevant documents. We have adapted this
dataset as an open-ended MCQA task to eval-
uate LLMs’ ability to answer these questions
based on inherent knowledge. This dataset
is employed solely for model evaluation pur-
poses.

10. BioASQ: The BioASQ dataset (Tsatsaronis
et al., 2015; Krithara et al., 2023) features
biomedical questions crafted by experts. We
utilize the BioASQ 2022 dataset for our bench-
mark. The BioASQ dataset is divided into two
parts: for MCQA and another for AQA. For
the MCQA part, we filter out the yes/no ques-
tions from BioASQ, converting them into an
MCQ format to create a new subset, which we
term BioASQ-MCQ. We manually create a
training-validation (train-val) split of roughly
85%-15% from the filtered questions, result-
ing in 975 training questions and 173 vali-
dation questions and retaining a test set of
123 questions. For the AQA part, BioASQ
provides fact, list, and bullet-type questions.
We compile these into an AQA dataset, ensur-

ing a balanced representation of all question
types in training and validation sets. The train-
validation split results in 4733 training and
697 validation questions, with approximately
15% of all question types in the validation set.

11. MASH-QA: The MASH-QA dataset (Zhu
et al., 2020) was designed for answering med-
ical questions based on paragraphs where an-
swers may span multiple text segments. Ini-
tially intended for extractive answering tasks,
we repurpose it as an AQA task, utilizing the
extractive answers as the reference ground
truth.

12. MedQUAD: The MedQUAD dataset (Ben
Abacha and Demner-Fushman, 2019) en-
compasses medical question-answer pairs ex-
tracted from various National Institute of
Health (NIH) websites, covering topics on dis-
eases, drugs, and other medical entities. Only
nine of the twelve websites contributing to
the original dataset have answers. We segre-
gate questions from these nine websites and
devise a train-validation-test split (AQA), as-
signing data from six websites for training,
one website for validation, and two websites
for testing.

13. TREC-2017 LiveQA: We employ the TREC-
2017 LiveQA dataset (Abacha et al., 2017) for
evaluation purposes. Specifically, we leverage
the rankings provided within the MedQUAD
evaluation process (Ben Abacha and Demner-
Fushman, 2019) to keep question-answer pairs
that have answer rating as excellent. We uti-
lize this as an AQA dataset for evaluating the
model.

14. British Ophthalmology Practice Tests: We
employ sample questions from the Fellow-
ship of the Royal College of Ophthalmolo-
gists (FRCOphth) exams, as provided by the
Royal College of Ophthalmologists on their
website (Raimondi et al., 2023; RCOphth,
2022a,b). These MCQA questions, geared to-
wards testing ophthalmology-related knowl-
edge, are used for evaluation.

15. MEDINFO: The MEDINFO dataset, intro-
duced by Abacha et al. (Ben Abacha et al.,
2019), consists of real consumer questions
concerning medications and drugs. It en-
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compasses 674 question-answer pairs (AQA),
which we employ solely for evaluation.

B Performance of other methods for
MCQA datasets

We report the prior and current best scores on
MCQA datasets from current literature in Table 9.
GPT-4 combined with a prompting strategy la-
beled MedPrompt performs the best currently on
USMLE, MEDMCQA, and the MMLU datasets.
Of the 16 datasets, we can obtain comparable
scores for 12. For HEADQA, the results reported
by (Vilares and Gómez-Rodríguez, 2019) and (Liu
et al., 2020) are across individual sections, whereas
we calculate the scores overall across all questions.
The method proposed by (Liu et al., 2020), named
MurKe achieves average scores of 45.5% on Bi-
ology questions, 42.4% on Medicine questions,
42.3% on Nursing Questions, 48.0% on Pharma-
cology questions, 44.3% on Psychology questions
and 44.3% on Chemistry Questions, with an over-
all macro-average of 44.4% across all the sections.
Similarly, for the OPHTH dataset, the results re-
ported by (Raimondi et al., 2023) are separate for
Part 1 and Part 2 questions. Bing Chat performs the
best on Part 1 questions, achieving a performance
of 78.9%, and GPT-4 with prompting obtains a per-
formance of 88.4% on Part 2 questions (Raimondi
et al., 2023). We could not find directly compara-
ble scores for the BioASQ MCQ datasets as the
test sets are provided in different batches, with the
results on the BioASQ leaderboard also reported
separately in terms of batches. We combine the
questions across all the batches into one combined
test set. For BIOMRC - Tiny A, we do not have
directly comparable scores from prior works as we
provide the names of the original entities along
with the pseudo-identifiers to the LLMs, similar to
how (Pappas et al., 2020) evaluate the performance
of experts and non-experts. In contrast, when eval-
uating the performance of systems/deep learning
models, (Pappas et al., 2020) first fine-tune models
on the BIOMRC-Lite dataset and evaluate perfor-
mance on BIOMRC - Tiny A, without providing
names of the original entities to the system.

C Correlation between AQA and MCQA
metrics

We use ROUGE-L, BERTScore and METEOR for eval-
uating the performance of LLMs for AQA. We try to
understand which of the three metrics might be the

most reliable for evaluation. Assuming that MCQA
evaluations give a more robust estimate of models’
capabilities due to the exact nature of evaluation,
we calculate the correlation between the MCQA ac-
curacy and each of the AQA metrics. Removing the
Flan-T5-ZS models as outliers, we calculate the
Spearman Rank Correlation and obtain the follow-
ing results:

Metrics Spearman R P-value

MCQA Accuracy and AQA ROUGE-L 0.616 0.008

MCQA Accuracy and AQA BERTScore 0.353 0.164

MCQA Accuracy and AQA METEOR -0.192 0.461

Table 7: Spearman Rank Correlation between MCQA
accuracy and AQA metrics along with their statistical
significance

The scores indicate that only ROUGE-L scores
show a reliable and statistically significant corre-
lation to MCQA Accuracy scores, suggesting that
this might be the more reliable metric of the three.
However, we wish to stress that these results must
not be taken as definitive because the underlying
assumption is that models performing better on
MCQA should also perform better on AQA.

D Analysis of the causes of generalisation
to unseen datasets

We aim to discriminate whether MCQA fine-tuned
models’ performance on unseen MCQA datasets
can be attributed to their ability to generalize in an-
swering medical questions, or if their performance
is influenced by memorization of questions from
the training set. To this end, we examine three
evaluation-only MCQ datasets not used in the train-
ing split of M-QALM: Clinical Knowledge Tests
(MMLU-CK) and Medical Genetics (MMLU-
MG) from MMLU and the OPHTH dataset. We uti-
lize semantic similarity algorithms to retrieve ques-
tions in the training sets that closely resemble those
in these test sets and manually filter the retrieved re-
sults. We identify 6 out of 92, 12 out of 265, and 17
out of 100 questions in the OPHTH, MMLU-CK,
and MMLU-MG datasets, respectively, that have
similar counterparts in the MEDMCQA dataset
which was used to fine-tune the LLaMA 2 model
This suggests that scores might be inflated due to
train-test leakage.

Next, we focus on questions that the LLaMA 2
(7B) model answered wrongly, but which were
corrected by MCQA-fine-tuning. We then cross-
reference these with the closest equivalent ques-

4017



tions in the MEDMCQA dataset. This allows us to
categorize the correct answers from near-duplicate
memorization or the model’s generalized learning
capabilities. We find 5, 2, and 5 questions in the
three investigated datasets, respectively, where the
MCQA-fine-tuned model outperformed its zero-shot
counterpart and identified closely related questions
in MEDMCQA. Of these, 7 questions were near-
duplicates with identical answers, while the remain-
ing 5 would have required some level of clinical un-
derstanding for the model to answer them correctly.
This suggests that the improved performance of
instruction-tuned models on unseen datasets can
be partially attributed to exposure to near-identical
questions during training.
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MCQA

Macro-Avg Micro-Avg

B
as

e

LLaMA 1 (7B) 31.9 30.7
LLaMA 1 (13B) 44.1 38.9
LLaMA 2 (7B) 42.9 39.6
LLaMA 2 (13B) 47.1 43.4
MPT (7B) 27.6 27.3
Falcon (7B) 34.7 31.6

In
st

ru
ct

io
n

tu
ne

d LLaMA 2-chat (7B) 45.9 41.2
LLaMA 2-chat (13B) 50.3 45.6
MPT-Instruct (7B) 31.6 29.1
Falcon-Instruct (7B) 31.8 29.7
Flan-T5 (3B) 51.8 40.6
Flan-T5 (11B) 56.5 45.2

Fi
ne

tu
ne

d LLaMA 2 (7B) 53.5 52.2
MPT (7B) 53.2 51.5
Falcon (7B) 49.3 48.6
Flan-T5 (3B) 52.9 47.4

A
da

pt
ed ChatDoctor (7B) 42.8 36.0

MedAlpaca (7B) 48.8 42.3
PMC-LLama (13B) 53.7 57.9

Table 8: Micro-Average and Macro-Average Accuracies of all Models

Dataset Best Reported Score Method

USMLE (4 options) 90.2 GPT 4 + MedPrompt (Nori et al., 2023)

MEDMCQA 79.1 GPT 4 + MedPrompt (Nori et al., 2023)

PubMedQA 82.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Anatomy 89.6 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Clinical Knowledge 95.8 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - College Biology 97.9 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - College Medicine 89.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Medical Genetics 98.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Professional Medicine 95.2 GPT 4 + MedPrompt (Nori et al., 2023)

ProcessBank 68.8 SemanticILP (Biology Cascade) (Khashabi et al., 2018)

QA4MRE 55.0 Index Expansion (Attardi et al., 2012) (Morante et al., 2012)

BioMRC - Tiny B 60.0 SciBERT-Max-Reader (Pappas et al., 2020)

Table 9: Performance scores of various methods on various MCQA datasets
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Model Architecture # Tokens Data Source

Base models

MPT Decoder 1T Red Pajama (Computer, 2023), The Stack (Kocetkov et al., 2022), C4
(Raffel et al., 2019), mC4 (Xue et al., 2021), S20RC (Lo et al., 2020)

LLaMA 1 Decoder 1.4T Common Crawl, C4 (Raffel et al., 2019), Github, Wikipedia, Gutenberg,
Books3 (Gao et al., 2021), Arxiv and Stack Exchange

Falcon Decoder 1.5T RefinedWeb (Penedo et al., 2023)

LLaMA 2 Decoder 2T Unknown

Instruction tuned models

Flan-T5 Encoder-Decoder 1T C4 (Raffel et al., 2019) and Flan-Collection (Wei et al., 2021)

MPT-Instruct Decoder 1T MPT, Databricks Dolly-15k (Conover et al., 2023), Anthropic Helpful and
Harmless (Bai et al., 2022)

Falcon-Instruct Decoder 1.5T Falcon, baize (Xu et al., 2023), GPT4All, GPTeacher 5

LLaMA 2-Chat Decoder 2T LLaMA 2, Flan Collection (Wei et al., 2021), Private Data

Table 10: Pretrained LLMs considered in this paper. (Top rows) Open-source models that are decoder-only. (Bottom
rows) Instruction-fine-tuned language models. # Tokens: Number of tokens used in pretraining the model. Data
Source: Data used for pre-training (instruction data is italicized).

Parameter Flan-T5 XL Llama-2 7B Falcon 7B MPT 7B
lora_r 16 16 16 16
lora_alpha 16 16 16 16
lora_dropout 0.05 0.05 0.05 0.05
bias none none none none
optimizer adamw adamw adamw adamw
epochs 4 4 4 4
batch size 8 8 8 8
model_max_length 256 384 384 384

Table 11: Hyper-parameters used to train our models

Parameter Decoder LLMs Encoder-Decoder LLMs
Beam Size 3 3
Repetition Penalty 1.5 1.5
Max Output Length 200 200

Table 12: Inference time parameters used for abstractive question answering
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Figure 5: Zero-shot performance of models on MCQA (top-left) and AQA (top-right, bottom-left and bottom-right)
as a function of model size. The dashed line represents a fitted linear regression showing the correlation between the
model size and the score.
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Figure 6: Performance of base and AQA-finetuned LLaMA 2 and Flan-T5 models on four unseen AQA test sets in
terms of ROUGE-L.
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Figure 7: Performance of base and AQA-finetuned LLaMA 2 and Flan-T5 models on four unseen AQA test sets in
terms of BERTScore.
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Dataset Random Baseline Falcon (7B) MPT (7B) LLaMA 2 (7B) LLaMA 2 (13B) LLaMA 1 (7B) LLaMA 1 (13B)

BIOASQ-MCQ 50.0 72.4 33.3 67.5 35.8 35.0 37.4

BIOMRC Tiny A 21.6 26.7 23.3 30.0 53.3 26.7 60.0

BIOMRC Tiny B 18.1 16.7 13.3 26.7 20.0 13.3 33.3

MMLU - Anatomy 25.0 28.1 26.7 40.7 54.1 37.8 45.9

MMLU - Clinical Knowledge 25.0 32.5 29.8 38.1 57.7 35.5 43.4

MMLU - College Biology 25.0 27.1 22.2 39.6 58.3 35.4 44.4

MMLU - College Medicine 25.0 30.6 26.6 35.3 54.3 25.4 42.2

MMLU - Medical Genetics 25.0 33.0 27.0 49.0 52.0 34.0 42.0

MMLU - Professional Medicine 25.0 44.1 20.2 44.1 53.7 28.3 47.1

HEADQA 25.0 27.8 28.0 40.4 48.5 34.4 40.6

MEDMCQA 25.0 30.4 26.5 36.0 37.5 27.0 35.9

OPHTH 25.0 21.7 28.3 27.2 30.4 20.7 39.1

PROCESSBANK 50.0 50.7 56.0 75.3 83.3 63.3 74.0

PUBMEDQA 33.3 57.0 33.8 60.4 33.8 34.2 34.8

QA4MRE 20.0 30.0 22.5 40.0 37.5 30.0 47.5

USMLE 25.0 27.0 24.2 35.3 42.9 29.1 37.5

Average 27.7 34.7 27.6 42.9 47.1 31.9 44.1

Table 13: MCQA scores of LLMs in the zero-shot setting along with a random baseline. When calculating the random
baselines for each dataset, for datasets with the same number of options for all questions, we set the score as the
reciprocal of the number of options. For datasets with variable number of options per question, we calculate the
score for each question as the reciprocal of the number of options for that question and then average all values. We
utilize 5-shot prompting for the MMLU datasets and 1-shot prompting for other datasets to evaluate the models.

Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B) Chat Flan-T5 (11B) LLaMA 2 (13B) Chat

BIOASQ-MCQ 43.9 45.5 34.1 69.9 48.8 65.0

BIOMRC Tiny A 73.3 30.0 23.3 26.7 63.3 33.3

BIOMRC Tiny B 46.7 23.3 23.3 20.0 60.0 26.7

MMLU - Anatomy 46.7 27.4 32.6 44.4 48.9 52.6

MMLU - Clinical Knowledge 52.1 31.7 36.6 54.3 61.9 57.7

MMLU - College Biology 48.6 25.0 29.9 55.6 54.9 59.0

MMLU - College Medicine 41.6 27.7 30.1 44.5 52.6 46.2

MMLU - Medical Genetics 50.0 32.0 32.0 60.0 55.0 56.0

MMLU - Professional Medicine 42.6 37.9 28.3 45.2 55.1 51.1

HEADQA 42.9 26.1 30.2 43.9 49.1 51.3

MEDMCQA 33.1 29.8 27.2 35.0 36.4 39.3

OPHTH 26.1 32.6 30.4 26.1 25.0 27.2

PROCESSBANK 93.3 52.0 56.7 72.0 95.3 80.0

PUBMEDQA 70.0 47.4 35.6 61.6 70.8 45.2

QA4MRE 82.5 15.0 30.0 40.0 87.5 72.5

USMLE 36.1 25.1 24.6 35.6 39.7 42.2

Average 51.8 31.8 31.6 45.9 56.5 50.3

Table 14: MCQA scores of Instruction-tuned LLMs in the zero-shot setting. We utilize 5-shot prompting for the
MMLU datasets and 1-shot prompting for other datasets to evaluate these models.
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Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 73.2 80.5 78.9 81.3

BIOMRC Tiny A 53.3 23.3 26.7 23.3

BIOMRC Tiny B 26.7 23.3 20.0 26.7

MMLU - Anatomy 43.7 43.7 45.9 54.1

MMLU - Clinical Knowledge 54.0 52.8 53.2 59.6

MMLU - College Biology 47.2 46.5 56.9 61.1

MMLU - College Medicine 44.5 53.2 50.3 52.0

MMLU - Medical Genetics 47.0 55.0 60.0 62.0

MMLU - Professional Medicine 48.5 50.0 49.3 59.6

HEADQA 49.0 47.7 52.4 53.9

MEDMCQA 43.0 45.9 48.4 48.3

OPHTH 34.8 30.4 35.9 31.5

PROCESSBANK 92.7 69.3 84.7 75.3

PUBMEDQA 74.2 70.8 73.4 70.6

QA4MRE 75.0 50.0 70.0 50.0

USMLE 39.7 46.3 45.7 46.1

Average 52.9 49.3 53.2 53.5

Table 15: MCQA scores of LLMs finetuned with QLora on MCQA datasets from the M-QALM benchmark. We
evaluate these models without any examples in the prompt.

Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 0.8 13.8 14.6 7.3

BIOMRC Tiny A 50.0 23.3 10.0 16.7

BIOMRC Tiny B 36.7 23.3 16.7 16.7

MMLU - Anatomy 43.0 24.4 34.8 38.5

MMLU - Clinical Knowledge 50.9 25.3 28.7 40.8

MMLU - College Biology 42.4 23.6 34.7 38.9

MMLU - College Medicine 41.0 27.2 26.0 37.6

MMLU - Medical Genetics 45.0 31.0 22.0 49.0

MMLU - Professional Medicine 41.2 44.1 18.4 46.7

HEADQA 38.7 21.5 24.8 31.1

MEDMCQA 27.0 21.7 20.2 23.0

OPHTH 22.8 23.9 16.3 19.6

PROCESSBANK 88.0 54.7 42.0 50.7

PUBMEDQA 67.2 57.2 54.6 47.8

QA4MRE 77.5 35.0 10.0 15.0

USMLE 34.2 22.9 23.9 22.9

Average 44.1 29.6 24.9 31.4

Table 16: MCQA scores of LLMs finetuned with QLora on AQA datasets only from the M-QALM benchmark. We
utilize 5-shot prompting for the MMLU datasets and 1-shot prompting for other datasets to evaluate these models.
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Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 71.5 80.5 79.7 79.7

BIOMRC Tiny A 50.0 43.3 36.7 26.7

BIOMRC Tiny B 30.0 6.7 20.0 26.7

MMLU - Anatomy 40.7 45.2 47.4 52.6

MMLU - Clinical Knowledge 51.7 52.5 50.9 55.5

MMLU - College Biology 43.8 51.4 57.6 61.1

MMLU - College Medicine 41.6 48.0 54.3 52.6

MMLU - Medical Genetics 52.0 59.0 55.0 65.0

MMLU - Professional Medicine 47.1 46.0 50.4 59.9

HEADQA 47.5 47.4 51.2 54.2

MEDMCQA 41.7 45.2 47.4 48.0

OPHTH 32.6 28.3 38.0 28.3

PROCESSBANK 91.3 73.3 79.3 83.3

PUBMEDQA 71.4 67.8 72.8 71.8

QA4MRE 72.5 52.5 60.0 67.5

USMLE 40.9 45.7 44.3 45.6

Average 51.7 49.5 52.8 54.9

Table 17: MCQA scores of LLMs finetuned with QLora on both MCQA and AQA data from the M-QALM benchmark.
We evaluate these models without any examples in the prompt.

Dataset ChatDoctor (7B) MedAlpaca (7B) PMC-LLama (13B)

BIOASQ-MCQ 65.0 50.4 13.0

BIOMRC Tiny A 20.0 16.7 30.0

BIOMRC Tiny B 36.7 23.3 16.7

MMLU - Anatomy 43.7 60.0 63.0

MMLU - Clinical Knowledge 43.4 60.0 62.3

MMLU - College Biology 39.6 64.6 64.6

MMLU - College Medicine 32.4 52.6 53.2

MMLU - Medical Genetics 55.0 69.0 70.0

MMLU - Professional Medicine 47.1 67.3 67.6

HEADQA 37.2 45.1 59.1

MEDMCQA 29.4 35.0 56.5

OPHTH 30.4 23.9 46.7

PROCESSBANK 62.0 67.3 74.7

PUBMEDQA 67.4 40.8 72.6

QA4MRE 45.0 62.5 55.0

USMLE 31.3 42.4 54.7

Average 42.8 48.8 53.7

Table 18: MCQA scores of ChatDoctor (7B) , MedAlpaca (7B) and PMC-LLama (13B). To evaluate ChatDoctor, we
utilize 5-shot prompting for the MMLU datasets and 1-shot prompting for other datasets to evaluate these models.
We evaluate MedAlpaca (7B) and PMC-LLama (13B) directly without any examples in the prompt.
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Category Support Flan-T5 (ZS) Flan-T5 (FT) MPT (ZS) MPT (FT) Falcon (ZS) Falcon (FT) LLaMA 2 (ZS) LLaMA 2 (FT)

Consumer Health Dataset Questions 1449 10.5 13.4 12.6 14.6 13.2 14.6 13.7 14.5

General Biomedical Dataset Questions 363 15.0 26.6 11,4 28.9 13.9 27.8 15.8 30.0

General Medical Dataset Questions 200 9.3 12.8 13.7 14.0 14.3 14.8 14.7 15.7

Table 19: Performance of LLMs in the zero-shot and fine-tuned setting across various categories across various
dataset categories in terms of Rouge Score

Model BIOASQ-QA LIVEQA MASHQA MEDINFO MEDIQA-ANS MEDQUAD Average

RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR

Falcon (7B) 13.9 53.1 22.5 15.4 55.8 17.4 13.4 53.7 22.0 12.1 51.1 17.8 15.3 56.1 21.7 14.3 54.7 18.4 14.0 54.1 20.0

MPT (7B) 11.4 50.1 21.7 15.7 55.2 20.9 12.8 52.3 23.0 11.2 49.6 18.4 14.8 55.6 23.3 13.7 53.2 19.4 13.3 52.6 21.1

LLaMA 1 (7B) 13.8 53.4 23.3 15.4 55.8 18.9 13.5 54.1 22.2 11.6 51.4 17.9 15.5 56.8 22.5 14.3 54.0 18.5 14.0 54.2 20.5

LLaMA 1 (13B) 14.6 53.3 22.8 16.7 55.7 19.7 13.1 53.3 20.9 12.5 51.7 18.6 15.4 57.0 22.1 14.0 53.2 17.8 14.4 54.0 20.3

LLaMA 2 (7B) 15.8 54.6 24.0 16.8 57.5 20.1 14.0 55.4 23.3 12.3 51.1 17.8 15.9 57.3 22.3 14.7 55.9 19.4 14.9 55.3 21.1

LLaMA 2 (13B) 14.9 55.3 24.9 16.2 57.3 20.1 14.5 56.4 24.4 12.7 53.6 20.0 16.4 58.9 24.4 15.4 57.1 20.9 15.0 56.4 22.5

Flan-T5 (3B) 15.0 57.7 11.1 9.3 52.5 6.1 10.5 56.0 7.5 10.8 54.9 7.6 9.8 55.7 6.2 9.3 53.2 6.0 10.8 55.0 7.4

MPT (7B) Instruct 23.2 64.5 22.4 14.5 58.1 13.4 15.0 61.1 15.9 14.0 56.8 12.9 14.8 60.5 16.1 12.9 57.1 13.1 15.8 59.7 15.6

Falcon (7B) Instruct 27.2 68.9 28.1 16.1 61.4 14.7 15.5 62.5 17.1 14.7 58.4 15.2 15.4 62.4 15.4 14.3 60.8 14.2 17.2 62.4 17.4

LLaMA 2 (7B) Chat 15.9 58.8 26.5 15.4 58.8 20.9 14.2 57.4 24.4 12.8 54.6 20.6 16.7 59.5 25.4 15.4 58.7 22.1 15.0 58.0 23.3

Flan-T5 (11B) 16.3 58.8 12.2 10.8 55.5 7.5 10.8 57.3 8.2 12.3 56.1 9.1 9.7 55.2 6.3 9.0 54.9 5.9 11.5 56.3 8.2

LLaMA 2 (13B) Chat 16.2 59.2 27.5 15.8 59.0 21.4 14.2 57.2 24.3 13.0 54.7 21.2 16.7 58.9 24.8 15.5 58.7 22.4 15.3 58.0 23.6

Flan-T5 (3B) (FT-QA) 26.6 66.2 25.2 16.1 55.0 16.9 15.4 58.2 16.4 11.7 53.8 10.5 12.6 55.7 12.0 12.8 52.2 12.7 15.9 56.8 15.6

Falcon (7B) (FT-QA) 27.8 68.4 26.6 20.1 60.6 21.1 16.7 61.3 17.8 12.4 56.5 9.4 12.8 57.9 11.6 14.8 57.5 16.2 17.4 60.4 17.1

LLaMA 2 (7B) (FT-QA) 30.0 69.7 28.2 18.3 60.7 19.2 16.9 61.9 17.5 12.2 55.8 9.0 13.0 58.5 11.2 15.7 58.5 16.6 17.7 60.8 16.9

MPT (7B) (FT-QA) 28.9 69.0 27.6 18.6 59.6 20.6 16.4 61.0 17.5 12.9 56.1 10.7 13.1 57.6 11.5 14.0 56.5 15.4 17.3 60.0 17.2

Flan-T5 (3B) (FT-All) 27.8 67.4 25.7 16.0 55.8 17.1 15.5 59.3 15.3 11.4 54.5 9.3 11.7 55.7 10.4 13.0 53.1 13.1 15.9 57.6 15.2

Falcon (7B) (FT-All) 27.3 68.6 26.1 18.9 59.9 19.8 16.1 61.0 16.7 11.7 55.4 8.0 12.8 58.0 10.9 14.8 57.5 16.5 16.9 60.1 16.3

LLaMA 2 (7B) (FT-All) 30.2 69.7 27.8 17.9 60.4 17.9 17.3 61.9 17.7 12.4 54.9 9.9 13.3 58.3 12.2 15.0 57.7 15.5 17.7 60.5 16.8

MPT (7B) (FT-All) 29.1 68.8 27.4 18.2 59.2 20.4 16.5 61.5 17.0 13.4 56.4 11.5 13.5 57.5 12.3 14.5 56.7 16.6 17.5 60.0 17.5

ChatDoctor 26.2 68.2 28.8 15.8 61.3 16.0 16.1 62.6 18.6 15.2 58.9 15.6 16.5 62.9 18.2 14.8 60.2 15.0 17.4 62.3 18.7

MedAlpaca 7B 26.4 67.8 27.1 14.7 55.6 13.0 13.4 59.3 15.0 12.3 55.1 12.6 13.9 59.0 15.4 12.5 56.8 10.2 15.5 58.9 15.6

PMC LLama 13B 19.7 62.6 20.9 12.7 55.8 11.0 13.5 58.8 14.4 45.6 70.7 43.6 14.8 59.6 14.0 11.9 57.0 10.1 19.7 60.7 19.0

Table 20: AQA scores of base, instruction-tuned LLMs in the zero-shot setting, LLMs fine-tuned with QLora and
other biomedical and clinical instruction tuned models such as ChatDoctor (7B), MedAlpaca (7B), PMC-LLama
(13B). FT-QA refers to models fine-tuned only with AQA data and FT-All refers to models fine-tuned with both
MCQA and AQA data.
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E Prompts utilized

In this section, we outline all prompts used for fine-
tuning and evaluating the LLMs. We define Single
Context MCQA Prompt as the prompt for the PRO-
CESSBANK dataset with a single paragraph context,
Multi-Context MCQA Prompt as the prompt for
the PUBMEDQA dataset with multiple paragraph
contexts, Cloze MCQA Prompt for the BIOMRC
Setting A and B datasets, MCQA Prompt for all
other MCQA datasets, and AQA Prompt for all AQA

datasets.

AQA Prompt for fine-tuning and evaluating
Falcon (Base), MPT (Base), LLaMA 2 (Base)
and Flan-T5

Answer the medical question precisely and fac-
tually
Question: {Question}
Answer:

Figure 8: AQA prompt utilized for finetuning and evalu-
ating these models.

MCQA Prompt for fine-tuning and evaluat-
ing Falcon (Base), MPT (Base), LLaMA 2 (Base)
and Flan-T5

Pick the right option that answers the question
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:

Figure 9: MCQA prompt utilized for finetuning and
evaluating these models.

Single Context MCQA Prompt for fine-
tuning and evaluating Falcon (Base), MPT
(Base), LLaMA 2 (Base) and Flan-T5

Given the context, pick the right choice that
answers the question
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:

Figure 10: Single Context MCQA prompt utilized for
finetuning and evaluating these models on the PROCESS-
BANK dataset.

Multi Context MCQA Prompt for fine-tuning
and evaluating Falcon (Base), MPT (Base),
LLaMA 2 (Base) and Flan-T5

Given the context, pick the right choice that
answers the question
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 11: Multi Context MCQA prompt utilized for fine-
tuning and evaluating these models on thePUBMEDQA
dataset.
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Cloze MCQA Prompt for evaluating fine-
tuned Falcon (Base), MPT (Base), LLaMA 2
(Base) and Flan-T5

Given the context, pick the right choice that
corresponds to the XXXX in the question
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 12: Cloze MCQA prompt utilized for evaluating
the fine-tuned models on the BIOMRC datasets.

MCQA Prompt for evaluating Falcon (Base
and Instruct), MPT (Base), LLaMA 1 (Base),
LLaMA 2 (Base) and Flan-T5 without any fine-
tuning

Pick the right option that answers the question
Question: {Example 1}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:{Correct Option}
...
Question: {Example K}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:{Correct Option}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:

Figure 13: MCQA prompt utilized for evaluating models
prior to any fine-tuning. 5-shot prompting is utilized
for the MMLU datasets whereas 1-shot prompting is
utilized for all other MCQA datasets when evaluating
non-finetuned models.

AQA Prompt for evaluating Falcon (Base
and Instruct), MPT (Base), LLaMA 1 (Base),
LLaMA 2 (Base) and Flan-T5 without any fine-
tuning

Answer the medical question precisely and fac-
tually
Question: {Question}
Answer:

Figure 14: AQA prompt utilized for evaluating the mod-
els.

Single Context MCQA Prompt for evaluat-
ing Falcon (Base and Instruct), MPT (Base),
LLaMA 1 (Base), LLaMA 2 (Base) and Flan-T5
without any fine-tuning

Given the context, pick the right choice that
answers the question
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:{Correct Option}
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:

Figure 15: Single Context MCQA prompt utilized for
evaluating the PROCESSBANK dataset.
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Cloze MCQA Prompt for evaluating Falcon
(Base and Instruct), MPT (Base), LLaMA 1
(Base), LLaMA 2 (Base) and Flan-T5 without
any fine-tuning

Given the context, pick the right choice that
corresponds to the XXXX in the question
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:{Correct Option}
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 16: Cloze MCQA prompt utilized for evaluating
the BIOMRC datasets in settings A and B. .

Multi Context MCQA Prompt for evaluat-
ing Falcon (Base and Instruct), MPT (Base),
LLaMA 1 (Base), LLaMA 2 (Base) and Flan-T5
without any fine-tuning

Given the context, pick the right choice that
answers the question
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:{Correct Option}
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 17: Multi-Context MCQA prompt utilized for
evaluating the PUBMEDQA dataset.
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MCQA Prompt for evaluating LLaMA 2 (Chat)
Models without any fine-tuning

[INST] «SYS»
Pick the right option that answers the question
«/SYS»

Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text} [/INST] Answer:{Correct Op-
tion} </s><s>[INST] Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text} [/INST] Answer:

Figure 18: MCQA prompt utilized foe evaluating the
model. 5-shot prompting is utilized for the MMLU
datasets whereas 1-shot prompting is utilized for all
other MCQA datasets.

Single Context MCQA Prompt for evaluat-
ing LLaMA 2 (Chat) Models without any fine-
tuning

[INST] «SYS»
Given the context, pick the right choice that
answers the question
«/SYS»

Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:{Correct Op-
tion} </s><s>[INST] Context: {Context Para-
graph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:

Figure 19: Single Context MCQA prompt utilized for
evaluating models on the PROCESSBANK dataset.

AQA Prompt for evaluating LLaMA 2 (Chat)
Models without any fine-tuning

[INST] «SYS»
Answer the medical question precisely and fac-
tually
«/SYS»

Question: {Question} [/INST]

Figure 20: AQA prompt utilized for evaluating the model

Cloze MCQA Prompt for evaluating LLaMA 2
(Chat) Models without any fine-tuning

[INST] «SYS»
Given the context, pick the right choice that
corresponds to the XXXX in the question
«/SYS»

Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:{Correct Op-
tion} </s><s>[INST] Context: {Context Para-
graph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:

Figure 21: Cloze MCQA prompt utilized for evaluating
models on the BIOMRC datasets in settings A and B.
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Multi Context MCQA Prompt for evaluating LLaMA 2 (Chat) Models without any fine-tuning

[INST] «SYS»
Given the context, pick the right choice that answers the question
«/SYS»

Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text} [/INST] Answer:{Correct Option} </s><s>[INST] Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text} [/INST] Answer:

Figure 22: Multi-Context MCQA prompt utilized for evaluating models on the PUBMEDQA dataset.

AQA Prompt for evaluating MPT Instruct without fine-tuning

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Answer the medical question precisely and factually. Question: {Question}
### Response:
Answer:

Figure 23: AQA prompt utilized for evaluating the model.
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MCQA Prompt for evaluating MPT Instruct without fine-tuning

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Pick the right option that answers the question. Question: {Example Question 1}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
### Response:
Answer:{Correct Option}
...
### Instruction:
Pick the right option that answers the question. Question: {Example Question K}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
### Response:
Answer:{Correct Option}
### Instruction:
Pick the right option that answers the question. Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
### Response:
Answer:

Figure 24: MCQA prompt utilized for evaluating the model. 5-shot prompting is utilized for the MMLU datasets
whereas 1-shot prompting is utilized for all other MCQA datasets.
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Single Context MCQA Prompt for evaluating MPT Instruct without fine-tuning

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the context, pick the right choice that answers the question. Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
### Response:
Answer:{Correct Option}
### Instruction:
Given the context, pick the right choice that answers the question. Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
### Response:
Answer:

Figure 25: Single Context MCQA prompt utilized for evaluating the model on the PROCESSBANK dataset.

Multi Context MCQA Prompt for evaluating MPT Instruct without fine-tuning

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the contexts, pick the right choice that answers the question. Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question 1}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
### Response:
Answer:{Correct Option}
### Instruction:
Given the contexts, pick the right choice that answers the question. Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
### Response:
Answer:

Figure 26: Multi-Context MCQA prompt utilized for evaluating the model on the PUBMEDQA dataset.
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Cloze MCQA Prompt for evaluating MPT Instruct without fine-tuning

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Given the context, pick the right choice that corresponds to the XXXX in the question. Context:
{Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
### Response:
Answer:{Correct Option}
### Instruction:
Given the context, pick the right choice that corresponds to the XXXX in the question. Context:
{Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
### Response:
Answer:

Figure 27: Cloze MCQA prompt utilized for evaluating the model on the BIOMRC datasets in settings A and B.
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MCQA Prompt for ChatDoctor

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Answer
with the best option directly.

### Input:
Question: {Example Question 1}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
Answer:{Correct Option}
...
### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Answer
with the best option directly.

### Input:
Question: {Example Question K}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Answer
with the best option directly.

### Input:
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
Answer:

Figure 28: MCQA prompt utilized for evaluating ChatDoctor. 5-shot prompting is utilized for the MMLU datasets
whereas 1-shot prompting is utilized for all other MCQA datasets.
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Single Context MCQA Prompt for ChatDoctor

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Analyze
the question given its context. Answer with the best option directly.

### Input:
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Analyze
the question given its context. Answer with the best option directly.

### Input:
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:

Figure 29: Single Context MCQA prompt utilized for evaluating ChatDoctor on the PROCESSBANK dataset.
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Multi Context MCQA Prompt for ChatDoctor

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Analyze
the question given its context. Answer with the best option directly.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. Analyze
the question given its context. Answer with the best option directly.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
Answer:

Figure 30: Multi-Context MCQA prompt utilized for evaluating ChatDoctor on the PUBMEDQA dataset.
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Cloze MCQA Prompt for ChatDoctor

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. An-
alyze the question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description. An-
alyze the question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:

Figure 31: Cloze MCQA prompt utilized for evaluating ChatDoctor on the BIOMRC datasets in settings A and B.

AQA Prompt for ChatDoctor

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description.

### Input:
{Question}

### Response:

Figure 32: AQA prompt utilized for evaluating ChatDoctor.
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MCQA Prompt for MedAlpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Answer this multiple-choice question.

### Input:
{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}
D: {Option Text}

### Response:
The Answer to the question is:

Figure 33: MCQA prompt utilized for evaluating MedAlpaca.

Single Context MCQA Prompt for MedAlpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Answer this multiple-choice question.

### Input:
Context: {Context Paragraph}

{Question}
A: {Option Text}
B: {Option Text}

### Response:
The Answer to the question is:

Figure 34: Single Context MCQA prompt utilized for evaluating MedAlpaca on the PROCESSBANK dataset
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Multi Context MCQA Prompt for MedAlpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Answer this multiple-choice question.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}

{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}

### Response:
The Answer to the question is:

Figure 35: Multi-Context MCQA prompt utilized for evaluating MedAlpaca on the PUBMEDQA dataset.

Cloze MCQA Prompt for MedAlpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Pick the right option that corresponds to the XXXX in the
question.

### Input:
Context: {Context Paragraph}

{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}
D: {Option Text}

### Response:
The Answer to the question is:

Figure 36: Cloze MCQA prompt utilized for evaluating MedAlpaca on the BIOMRC datasets in settings A and B.
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AQA Prompt for MedAlpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Answer this question truthfully

### Input:
{Question}

### Response:

Figure 37: AQA prompt utilized for evaluating MedAlpaca.

MCQA Prompt for PMC-LLama

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
You’re a doctor, kindly address the medical queries according to the patient’s account. Answer with
the best option directly.

### Input:
###Question: {Question}
###Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
###Answer:

Figure 38: MCQA prompt utilized for evaluating PMC-LLama.
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Single Context MCQA Prompt for PMC-LLama

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
You’re a doctor, kindly address the medical queries according to the patient’s account. Analyze the
question given its context. Answer with the best option directly.

### Input:
###Question: {Question}
###Context: {Context Paragraph}
###Options:
A. {Option Text}
B. {Option Text}

### Response:
###Answer:

Figure 39: Single Context MCQA prompt utilized for evaluating PMC-LLama on the PROCESSBANK dataset.

Multi-Context MCQA Prompt for PMC-LLama

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
You’re a doctor, kindly address the medical queries according to the patient’s account. Analyze the
question given its context. Answer with the best option directly.

### Input:
###Question: {Question}
###Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
###Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
###Answer:

Figure 40: Multi-Context MCQA prompt utilized for evaluating PMC-LLama on the PUBMEDQA dataset.
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Cloze MCQA Prompt for PMC-LLama

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
You’re a doctor, kindly address the medical queries according to the patient’s account. Analyze the
question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:
###Question: {Question}
###Context: {Context Paragraph}
###Options:
A. {Option Text}
B. {Option Text}

### Response:
###Answer:

Figure 41: Cloze MCQA prompt utilized for evaluating PMC-LLama on the BIOMRC datasets in settings A and B.

AQA Prompt for PMC-LLama

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
You’re a doctor, kindly address the medical queries according to the patient’s account.

### Input:
###Question: {Question}

### Response:
###Answer:

Figure 42: AQA prompt utilized for evaluating PMC-LLama.
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