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Abstract

Tools have become a mainstay of LLMs, al-
lowing them to retrieve knowledge not in their
weights, to perform tasks on the web, and even
to control robots. However, most ontologies
and surveys of tool-use have assumed the core
challenge for LLMs is choosing the tool. In-
stead, we introduce a framework for tools more
broadly which guides us to explore a model’s
ability to detect “silent” tool errors, and reflect
on how to plan. This more directly aligns with
the increasingly popular use of models as tools.
We provide an initial approach to failure re-
covery with promising results both on a con-
trolled calculator setting and embodied agent
planning.1

1 Introduction

Tools offer a convenient way to augment capa-
bilities beyond text-based reasoning, from execut-
ing code to incorporating recent data through web
search, and even facilitating multimodal interac-
tions. While the term “tool” is often interpreted
to mean offloading specific deterministic functions
to external APIs, as tasks grow more complex, the
definition is expanding to include learned modules
such as translators and object detectors, as well
as heuristics-based policies like search algorithms
and robotic skills. LLMs themselves are also be-
ing used as tools, particularly as task planners in
robotics, chained with vision models and robot poli-
cies to perform navigation and manipulation (Ahn
et al., 2022; Huang et al., 2022a,b; Liang et al.,
2022; Singh et al., 2022a; Li et al., 2023; Xu et al.,
2023; Zeng et al., 2023).

As tools take on more responsibilities, assessing
and ensuring their reliability becomes crucial; a
failure in one tool can trigger a cascade of errors,
leading to complete task failure. Recent studies

1Code and data are released: https://github.com/
jiminsun/tools-fail

*Work done while at Carnegie Mellon University.

Figure 1: (a) Tool-use Overview: Starting from an input x, the
LLM generates inputs i for the selected tool, and incorporates
tool outputs o to predict the final task output ŷ. The context c
is used throughout the task. (b) Correct Calculator Incorrect
tool inputs from the LLM leads to tool failure. The error
messages can be leveraged for correction (Refine). (c) Broken
Calculator Tool inputs are correct, but the tool itself silently
produces false outputs. (d) ALFRED The first tool, Object
Detector, misidentifies the Tomato in the image as an Apple,
leading to error cascades in the next tool, the Action Planner.

have suggested recovery mechanisms, such as cor-
recting inputs based on API error messages (Pan
et al., 2023a; Zhang et al., 2023; Chen et al., 2023b;
Pan et al., 2023b). However, most methods rely
on two underlying assumptions: that accurate in-
puts guarantee flawless outputs, and that errors are
accompanied by explicit signals. Yet, real-world
scenarios challenge the premises, as failures often
arise from unpredictable environmental dynamics
and inherent inaccuracies of tools themselves.

This paper introduces a taxonomy to categorize
sources of tool-related errors and recovery methods.
We shed light on the often overlooked case: “tool-
based” failures. As opposed to input-based errors
which are often accompanied by error messages,
most tool failures are “silent.” This poses unique
reasoning challenges for the LLM, which must ac-
tively 1. detect the failure, 2. infer the source, and
3. plan recovery strategies. In this paper, we focus
on the first step, detection, as it is the prerequisite
for downstream fault assignment and recovery.

We investigate tool errors in two distinct set-
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tings (Fig. 1) – a controlled environment where an
LLM solves arithmetic problems using a broken
calculator, and a more natural “broken” tool set-
ting involving a multimodal instruction-following
agent. We investigate whether LLMs can detect
incorrect tool outputs without explicit error sig-
nals, to observe overtrusting of tools. Motivated by
how humans detect tool failures based on internal
expectations of correct outputs, we devise three
in-context interventions, and find that LLMs can
learn to doubt tools and detect mistakes. Following
the taxonomy, we further examine how much and
what type of deviation is necessary to trigger the
LLM’s recognition of the tool error in each setting.

2 Related Work

Tools Text-based tools help compensate for
LLMs’ relative weakness in world knowledge and
computational precision (Lewis et al., 2020; Parisi
et al., 2022; Gao et al., 2023; Schick et al., 2023;
Yao et al., 2023). Multimodal tools allow LLMs
to receive inputs from other modalities and gener-
ate grounded answers (Gupta and Kembhavi, 2023;
Wu et al., 2023; Yang et al., 2023; Zeng et al., 2023).
Outputs of Vision-Language models (Radford et al.,
2021), Object Detectors, OCR models, and speech-
to-text APIs (Zeng et al., 2023) have been added
to the LLM’s prompt, enabling zero-shot inference
on multimodal tasks.

Agents Research on LLM agents spans multi-
step tasks in gaming (Wang et al., 2023a; Wu et al.,
2024), web navigation (Qin et al., 2023; Shinn
et al., 2023; Yao et al., 2023), and code genera-
tion (Shinn et al., 2023; Yao et al., 2023). Most
focus on the selection and utilization of tools (Wang
et al., 2023a; Qin et al., 2023; Wu et al., 2024), and
enhancing reasoning through self-evaluation and
feedback (Shinn et al., 2023; Wang et al., 2023a;
Chen et al., 2023a; Xu et al., 2023; Madaan et al.,
2024).

Adapting LLMs to tool-use Existing works use
in-context learning (ICL) (Lu et al., 2023; Shen
et al., 2024), finetuning (Schick et al., 2023), and
trial-and-error (Wang et al., 2024) to adapt LLM to
tool-use. However, the focus has been on adapting
to “newer” tools, from demonstrations or docu-
mentations, and the question of tool reliability and
recovering from “unreliable” tools has not been ac-
tively investigated. While malfunctioning APIs are
preemptively filtered out in API-centric environ-

ments (Qin et al., 2023), the strategies for address-
ing ineffective learned tools, as in games (Wang
et al., 2023a; Wu et al., 2024) or multimodal tasks
(Zeng et al., 2022), have been less explored. Over-
all, existing approaches tend to amalgamate various
tool failure modes under the umbrella term “reason-
ing,” focusing primarily on the most salient aspect
of failure within their specific domain. In contrast,
we distinctly identify and thoroughly analyze er-
rors related to tool arguments, the tools themselves,
and the alignment with environmental dynamics.

3 Background

Notation We outline a typical tool-use scenario
in Fig. 1a with the following notation:

x ∶ task input i ∶ tool input

ŷ ∶ predicted task output o ∶ tool output

c ∶ context information tθ ∶ tool

The LLM first selects tools and constructs tool-
specific arguments i from the task input x. Based
on the tool result o, the final task prediction ŷ is
made. Notably, the flexibility of LLMs as an in-
terface allows tool inputs to be constructed based
on enriched context information c throughout the
task. c may include task specifics, API docstrings,
any external feedback like error messages, or even
previous action trajectories in interactive tasks.

Additionally, we denote the oracle values of the
input, output, context as i∗, o∗, and c

∗. The tool
input i and output o may contain inaccuracies since
they are essentially outputs of preceding LLM/-
tool calls. Fig. 1b demonstrates a scenario where
i contains a mistake (15 x 58 should be 15 *
58). The context c can also be incomprehensive or
noisy, as they are approximations of the real world.
Moreover, the tool tθ can be suboptimal in multiple
dimensions. For deterministic APIs, a suboptimal
tool may have been chosen by an LLM (Schick
et al., 2023). For learned tools, the tool itself is an
inherently imperfect parameterized model, thus tθ.

Defining Error The suboptimality of i, c, and
tθ manifest as suboptimal tool outputs o, that devi-
ate from o

∗. The deviation can be as critical and
explicit, leading to error messages in Fig. 1b, or
weakly wrong like the Object Detector output in
Fig. 1d. In fact, the severity of a tool error depends
on how critically the mistake impacts downstream
task performance. In Fig. 1d, the Object Detector
misidentifying the Tomato as an Apple, is crucial
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to the task, but mistaking objects like Bread would
not hinder the task as much. As the high-level goal
is task success rather than perfect tool utilization,
it is important to rectify critical mistakes, whereas
harmless mistakes can be disregarded.

To formalize this notion of “task-critical” tool-
use mistakes, we introduce an error threshold ϵ to
define a range of tool outputs that are not “critically”
wrong. Intervention is only necessary when the
deviation between the tool output and the oracle,
d(o, o∗), is larger than ϵ, thereby degrading the
performance/quality of the final task output ŷ.

d(o, o∗) > ϵ ⟹ stask(ŷ∣o) < stask(ŷ∣o∗) (1)

where stask ≔ task performance metric

This is analogous to how humans approach errors;
the goal is not a perfect world model but to accom-
plish a task. As long as we can grab the apple, we
do not need to know its exact shape or coordinates.

4 Error sources

The tool output o is accurate if and only if:

1. The context c is correct and sufficient.
2. The tool inputs i are accurate.
3. The tool tθ makes correct predictions.

Formally, to obtain o with deviation smaller than ϵ,
d(o, o∗), is a union of component error bounds:

d(o, o∗) < ϵ (2)

⇐ d(c, c∗) < ϵcÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
context

∧ d(i, i∗) < ϵiÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tool input

∧ d(tθ, tθ∗) < ϵtÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
tool correctness

If any condition above is not met, output errors will
lead to task failure. The following sections discuss
each condition, and a table of corresponding real-
world error scenarios is presented in App. A.

4.1 Context: d(c, c∗) > ϵc

LLMs are employed to choose tools and gener-
ate tool inputs, based on context information rep-
resented in natural language. However, context
information that fits into the prompt is often an
impoverished textual approximation of all of the
information needed (e.g., API docstrings, few-shot
examples, world knowledge) to construct perfect
tool inputs. Even for LLMs with human-level rea-
soning capability, tool proficiency is bottlenecked
if the provided context is insufficient. In interactive
task settings, this is often inevitable earlier in the
planning trajectory, due to partial observability of

the surrounding environment. For instance, a web
agent might need to scroll through the page and
explore hyperlinks. Similarly, an embodied agent
may need to explore hidden objects in closed re-
ceptacles through trial-and-error, in order to obtain
enough information pertinent to the task.

4.2 Input: d(i, i∗) > ϵi

Even when the provided context is sufficient, LLMs
are prone to generate incorrect tool inputs. Imper-
fect tool inputs often result from incorrect outputs
from a prior tool, like errors in LLM-generated
code or noisy images. For deterministic tools (e.g.,
code interpreters), most errors are due to tool in-
puts, and malformed inputs typically trigger an er-
ror message. However, well-formed inputs with in-
correct content (e.g., ambiguous queries for search
APIs) can produce erroneous outputs that inadver-
tently propagate through subsequent steps.

4.3 Tool: d(tθ, tθ∗) > ϵt

Tools themselves can make mistakes, even when
the input or context is perfect. This situation is es-
pecially prominent as learnable tools are becoming
more widely adopted in practice. LLMs are prone
to generating factually incorrect statements even
when reference documents are provided through
context (Krishna et al., 2024). Search APIs might
fail not because of the input query’s clarity, but due
to an imperfect database/dense retrieval method.
The tool’s precision can also contribute to failure –
heuristic-based search/manipulation robot policies
can fall apart when they lack the precision needed
to address the complexity of real-world scenarios.

Due to the absence of explicit error signals, tool-
based errors require the tool-using model to reason
over indirect cues. In easier cases, errors can be
recognized based on well-calibrated confidence
scores. Much harder cases, however, arise when a
tool confidently produces errors. In such scenarios,
a broader context may help identify these hidden
errors. Multiple tools presenting conflicting
evidence (e.g., fact verification tool vs search API),
disagreement between different modalities (Lee
et al., 2021), or prediction inconsistencies over
multiple trials (Kadavath et al., 2022; Wang et al.,
2023c) or timesteps (Chaplot et al., 2020), may
help surface potential limitations of the tool.

5 Recovery behaviors

Next, we categorize current recovery methods from
previous literature into two groups: Refine and Re-
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place, and advocate for meta-cognitive reasoning.

5.1 Refine: i → i
∗, c → c

∗

Recovering from tool failures often involves refin-
ing the tool input. This is particularly effective
when the failure is followed by explicit feedback
signals that indicate “what” to fix. Inputs can be
rewritten guided by API error messages and hu-
man/LLM feedback (Madaan et al., 2023; Shinn
et al., 2023; Wang et al., 2023b). In the planning
literature (e.g., TAMP (Garrett et al., 2021; Ding
et al., 2023)), this is referred to as “closed-loop
planning,” where plans are continuously updated
by new observations, task progress, or clarification
questions (Huang et al., 2022b; Singh et al., 2022a;
Song et al., 2022). Augmenting the context based
on increased observability changes the input’s inter-
pretation. Refine methods are well-suited to LLMs
as they can flexibly accept varying lengths of text-
based feedback. In contrast, corrections to other
modalities (e.g. image lighting or non-verbal com-
munication) remain open challenges for VLMs.

5.2 Replace: tθ → tθ∗

When errors originate from the tool itself, the aim
is to move tθ closer to tθ∗ , aligning it more closely
with the final task. Mitigation strategies vary based
on how easily the tool can be fixed at inference time.
For LLMs, in-context examples are used to elicit
specific task capabilities from more generic rea-
soning abilities, a method further enhanced by re-
trieving samples that are more pertinent to the spe-
cific test example (Rubin et al., 2022; Song et al.,
2022). Ensembles over multiple predictions also of-
fer a non-invasive way to improve tool performance
(Anil et al., 2023; Wang et al., 2023c; Chen et al.,
2024). Test-time adaptation methods (Wang et al.,
2021) can be useful, though application requires
access to the tool’s internal parameters. The afore-
mentioned strategies focus on improving the tool’s
performance in isolation, which may not translate
to better task performance. In Fig. 1d, better Im-
ageNet performance does not guarantee detecting
the Tomato. Understanding the interplay between
tools and task performance remains an open ques-
tion of system dynamics and credit assignment.

When improving the tool is not viable or when
adjustments are insufficient, the best strategy can be
to switch to a different tool. Research on assistance-
seeking agents implicitly model this behavior, with
agents identifying when to delegate the action to
a human/oracle (Singh et al., 2022b; Xie et al.,

2022). In NLP, Krishna et al. (2024) introduce a
fact-checking tool that edits unsupported claims
in LLM-generated summaries, advocating for the
strategic use of alternative tools to ensure quality
and reliability.

5.3 LLMs as a Meta-Reasoner: ϵi, ϵc, ϵt ↑

For humans, the tools we employ are not perfect.
But tools can err because humans can fix incor-
rect outputs – misrecognized card numbers through
an OCR system are corrected ad-hoc by the user.
Similarly, imbuing LLMs with the ability to rec-
ognize and handle errors flexibly allows for tools
to make mistakes, effectively increasing the per-
missible error thresholds of the tool components
ϵi, ϵc, ϵt in Eq. 2. An LLM’s meta-cognitive ability
to reason over uncertainty and realize its knowl-
edge limits have received some attention (Kadavath
et al., 2022; Kuhn et al., 2023). The next step is to
jointly reason over their uncertainty/knowledge and
that of another tool or agent. This compounds in
multi-tool or multi-LM settings. Existing recovery
methods that presuppose the cause and tweak a sin-
gle knob may not yield overall improvement unless
limitations of the right variables are resolved.
In summary, we identify three challenges:

1. Failure Detection: Recognizing failures and
assessing their severity – d(o, o∗) > ϵ ?

2. Fault Assignment: Identifying which tool
caused the error (in multi-tool settings), with
the exact source – i, c, or tθ?

3. Recovery Planning: Selecting the most effec-
tive recovery strategy. Refine vs Replace?

Explicit error signals (though rare) can obviate all
three problems. More importantly, silent tool errors
are the opposite case, where even detection is not
straightforward although the problem is pervasive.
In this work, we delve into “silent” tool errors, a
relatively overlooked area in tool-error research,
focusing on the foremost problem: error detection.

6 A broken calculator

Humans use tools with a rough expectation of what
correct results should look like, allowing them to
spot outputs that are obviously wrong. For example,
for multiplying 120 by 131, we can expect a result
around 10,000 and ending in zero, even if we don’t
know the exact answer. If the tool makes arithmetic
mistakes, can LLMs also detect faulty outputs?
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# Task
What is the answer to: (2 + 3) * 5?

Refer to the tool output below.
# Calculator API
result = (2 + 3) * 5
result
25 # broken tool setting -> 21 / 205 / -25

# Format
Return your answer in this format:
Thought: Your reasoning process
Answer:
...

# Answer

Figure 2: Prompt for a math problem using tool outputs.
The result 25 is perturbed in the Broken scenario: Digit
replacement, Magnitude shift, or Sign inversion.

6.1 Task setting
We devise a controlled setting where an LLM an-
swers simple math problems with an external tool,
a calculator. In this case, the calculator is broken
and returns incorrect outputs.

First, we programmatically generate 300 equa-
tions that involve two random operators from{+,−,×} and three random integers (e.g., 9 ×(20 + 7)). The equations have three levels of diffi-
culty, which is determined by the range that the in-
tegers are sampled from: easy [−20, 20], medium[−100, 100], and hard [−1000, 1000]. We give
the incorrect tool output to the model, and test
whether models are able to recognize the error. We
compare five different models: GPT-3.5 and GPT-4,
Command-R and Command-R+, Gemini-1.5.

6.2 Preliminary experiments
We begin by estimating the models’ capabilities
to solve math problems on their own, to better un-
derstand the downstream implication of having a
credible/broken calculator in the loop. Specifically,
we query the LLM with five different prompts –
three non-tool and two tool-use prompts.

Non-tool setting The non-tool settings serve as a
proxy to gauge the model’s task capability, provid-
ing a basis to compare the effects of incorporating
tools with varying levels of credibility. We ask the
model to solve the math problems on its own, with
three different prompting methods:

1. Direct: Asking the equation directly (e.g.,
"What is the answer to (2+3)*5?")

2. Chain-of-Thought (CoT): Asking to explain
its reasoning step-by-step prior to answering.

3. CoT Few-Shot: In addition to reasoning, the
model is provided five in-context examples.

Figure 3: Math accuracy of models. The black bar
indicates the best accuracy without tool-use; upward
orange/downward arrows respectively indicate perfor-
mance with correct/broken tool-use.

Tool-use setting We assume two types of cal-
culators – Correct and Broken. Fig. 2 shows the
tool-use prompt, where the model is asked to an-
swer the question referring to the tool output (bold).
For Correct tool, the ground truth answer is pro-
vided as the tool result. For Broken tool, we give a
perturbed answer using one of the following three:

1. Digit replacement: One digit is replaced with
a different number (e.g., 25 → 21)

2. Magnitude shift: Digits are inserted/removed,
resulting in magnitude shifts in the range 10−2

and 10
3 (e.g., 25 → 205)

3. Sign inversion: The sign is flipped, chang-
ing positive numbers to negative and negative
numbers to positive (e.g., 25 → −25)

Inspired by Wei et al. (2022); Yao et al. (2023),
we specify a “Thought” section, to encourage the
model to generate its reasoning prior to answering.

Results We report the preliminary experiment re-
sults in App. B and Fig. 3. When the tool is broken,
the accuracy drops drastically for all perturbation
categories, with the exception of Sign Inversion on
GPT-4 and Gemini-1.5. With broken tools, perfor-
mance drops far below the best no-tool setting’s
performance, up to 47%. We find that models tend
to overtrust tools – copying the incorrect output
(with hallucinated justification) rather than ignore
the tool in favor of its own answer.

6.3 In-context intervention strategies

Humans leverage various contextual cues like prior
tool failures to calibrate the level of trust associ-
ated with their tools. Further, AI chatbots include
disclaimers like “The model can make mistakes”
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GPT-3.5 23 53 44 46 46 81 79 80 87 89 86 84

GPT-4 76 82 85 85 86 89 89 91 90 91 88 89

Command-R 16 14 16 14 29 42 44 47 11 23 53 46

Command-R+ 57 76 79 81 60 84 82 76 71 82 86 78

Gemini-1.5 84 90 76 87 93 95 95 90 94 94 94 94

Table 1: Accuracy of models on math equations with
in-context intervention methods against broken tools

to ensure answers are scrutinized. Can LLMs also
leverage such information effectively?

We test three types of contextual cues that can
raise the awareness towards potential tool mistakes:
a simple disclaimer, prediction confidence scores,
and a checklist of criteria to look out for. For each
method, we evaluate the prediction accuracy on
both perturbed and non-perturbed tool outputs, in
Zero-shot, CoT, and Few-shot settings. We com-
pare four different prompts:

• Oblivious (Obl.) does not mention any indica-
tions that the tool can cause errors Fig. 2.

• Disclaimer (Disc.) includes a simple disclaimer:
“The tool can sometimes give incorrect answers.
Please verify the correctness of the tool output.”

• Confidence (Conf.) includes the confidence
score of the tool’s prediction, in addition to the
disclaimer. Since the calculator is not a prob-
abilistic model, we devise a score [0,1] based
on the string edit distance between the ground
truth and the perturbed output. For learned tools,
model confidence can be used.

• Checklist (Check.) is motivated by heuristics
that humans use, which includes a list of criteria
to check the tool output, based on the perturba-
tion. For the math task, the checklist consists of:

1. Is the positive or negative sign correct?
2. Is the magnitude of the number correct?
3. Is the last digit correct?
4. Are all the digits correct?

Results Table 1 shows how effectively each
method helps the LLM notice and correct mistakes.
For most models, even a simple disclaimer prevents
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GPT-3.5 79 86 86 83 70 67 83 75

GPT-4 92 95 94 91 96 97 96 94

Command-R 62 64 67 60 59 68 80 71

Command-R+ 83 89 87 77 73 78 81 77

Gemini-1.5 92 94 94 96 95 96 96 89

Table 2: Accuracy of models on the Accept/Reject task
on calculator outputs.

naively believing perturbed answers, boosting ac-
curacy up to 30%. As humans, LLMs can better de-
tect mistakes when provided the context that tools
can be wrong. Chain-of-thought prompting and
in-context examples further help models recover
performance, nearly to the best no-tool scores.

7 Detecting tool-based mistakes

The results in §6 suggest that it is challenging for
LLMs to simultaneously detect and override faulty
outputs, even for capabilities that are decently per-
formed without tools. Thus, next we narrow the
LLM’s responsibility to “detecting” mistakes.2

Results The models are often able to identify
the incorrect outputs (Table 2) despite not being
able to produce the correct answer – even in condi-
tions where they would have without a tool present.
Smaller models (GPT-3.5, Command-R) are more
sensitive to in-context information. Where in Obliv-
ious, most small model errors are due to overtrust-
ing tools, and with in-context intervention, the pre-
diction skews heavily towards rejecting outputs,
leading to high false positive rates. In contrast,
errors occur in similar rates for the larger models.

Surprisingly, CoT does not always improve per-
formance over Zero-shot. We find that the majority
of CoT errors are the model falsely rejecting correct
outputs – caused by failure in faithfully copying
the original equation’s terms in its reasoning steps.
Incorrect reasoning cases are more frequently ob-
served in the CoT setting, contradicting Table 1
where CoT outperformed Zero-shot. While more
investigation is needed, we speculate that the effec-
tiveness of CoT might depend on task complexity,
because the model is burdened to simultaneously

2We reformulate the calculator setting into a binary Accep-
t/Reject task (Fig. 8). We balance the 300 perturbed equations
in §6.2 with 300 correct samples to account for false positives.
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Figure 4: The rejection rate on the perturbed calculator outputs with respect to six features.

1. solve the equation and 2. spot mistakes in the
Detection+CoT setting. A two-step process where
the LLM first generates its answer, then compares
its own answer to tool outputs in a second call may
alleviate this issue, which we leave to future work.

7.1 When are mistakes easier to detect?

For humans, whether a mistake is detected might
depend on the type of mistake (blatant vs subtle),
the difficulty of the original question, or the an-
swerer’s task proficiency. Are some mistakes, past
a certain level of deviation, just more obvious than
others? Does the property of the question matter?
Or does it relate to the model’s internal knowledge –
do you need to “know” the answer to detect errors?
In Fig. 4, we analyze the models’ rejection rate on
the perturbed outputs with respect to six features:

Numeric Difference The absolute difference be-
tween the correct and perturbed answer.

Symbolic Difference The string edit (Levenshtein)
distance. Smaller symbolic deviations are expected
to be less noticeable. Symbolic difference only
loosely correlates with numeric differences (ρ =
0.49). For example, 123 to −123 vs 119.

Perturbation Type Digit replacement, Magnitude
shift, and Sign inversion from §6.2. We separate
last digit replacement as it is easier for humans to
detect than other digit positions by mental math.

Magnitude in Equation Equations are binned into
three difficulty levels (§6.1), based on the magni-
tude of numbers involved in the equation. Relat-
edly, LLMs have been shown to find larger numbers
harder to reason over (Nogueira et al., 2021; Lee
et al., 2023; An et al., 2023; Duan and Shi, 2024).

Answer Magnitude The magnitude of the correct
answer, in log scale (log10 ∣x∣). This is similar to
“Magnitude in Equation” above, but provides more
fine-grained measurements.

Perceived Difficulty This is inferred via the
model’s ability to answer the equation in §6.2. The
categories are: The model (1) answered correctly
with a “Direct” prompt, (2) required CoT or Few-
Shot examples, and (3) gets the equation wrong
even after applying these methods. The number of
samples vary for each bin, depending on the model.

Numeric/String Difference and Perturbation Type
attribute the rejection rate to the error’s “wrong-
ness.” Magnitude is associated with the question
itself, and Perceived Difficulty targets the model’s
internal knowledge.

7.2 Analysis
Numeric vs Symbolic Unlike numeric differ-
ence, symbolic deviations appear highly correlated
with rejection rates. This aligns with literature that
LLMs are not performing arithmetic “reasoning,”
but memorizing strings (Chang and Bisk, 2024).

Perturbation Types For humans, Sign Inversion
and Last Digit are likely the easiest to spot. LLMs
also find some perturbation types more obvious
than others – Sign Inversion for GPT-4 and Gem-
ini, Magnitude for Command-R and GPT-3.5, and
Last Digit Replacement for Command-R+. Most
models find Last Digit Replacements easier to spot
than other digits. Sensitivity is likely attributable to
differing representations/tokenization (Nogueira
et al., 2021; Liu and Low, 2023).

Large Numbers Models struggle with large val-
ues in both Numbers in Equation and Magnitude.
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Figure 5: Evaluating two tool outputs in ALFRED –
Action Planner (Left) and Object Detector (Right). The
LLM is asked whether to Accept/Reject the tool output,
based on the provided image and task context.

Equations with large numbers can be easier de-
pending on the operations involved. For instance,(1000−998)×2 = 4 is easier than 10×11×12 =
1320. Notably, the rejection rate for answers larger
than 10

6 drops sharply for all models.

Perceived Difficulty Problems that are more eas-
ily answered by the model, are also more easily
detected when exposed to errors. While this might
raise a question on the utility of imperfect tools,
we find that the larger models (GPT-4, Gemini-
1.5-Pro, Command-R+) can “detect” the mistake
for the majority of questions, even for ones that
it were not able to answer correctly. This sheds
light on the feasibility of using LLMs as a tool
planner that evaluates the credibility of tools and
reroutes functions accordingly to alternative tools.
Smaller models, however, tend to overtrust the tool
and allow errors to pass.

8 Natural tool errors: ALFRED

We now consider a setting where tool-based errors
occur more naturally via ALFRED (Shridhar et al.,
2020), an embodied instruction following bench-
mark. Involving language understanding, percep-
tion, spatial reasoning, and action planning capabil-
ities, a common approach is to incorporate multiple
specialized modules (Blukis et al., 2022; Min et al.,
2022), as opposed to end-to-end training.

Multiple modules, or tools collaborating with
each other in ALFRED offer a unique opportunity
to study the robustness of LLMs to various tool
errors. As in Fig. 1d, the object detector’s mistakes
are silently passed on to subsequent tools, leading
to error cascades in the Action Planner. In such
scenarios, LLMs that can detect tool errors help im-
prove the system’s robustness, by correcting some
obvious semantic anomalies (Elhafsi et al., 2023)
or delegating operations to other tools or humans.
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Action
Planner

GPT-4o 43 42 40 44 57 55 52 60

Gemini 49 55 50 63 64 64 62 65

Object
Detector

GPT-4o 68 68 66 67 68 69 66 68

Gemini 60 60 56 62 67 66 65 66

Table 3: F1 score on the Accept/Reject task on two
tool outputs in ALFRED. We compare interventions
(Disclaimer, Confidence, Checklist) with “Oblivious.”

In this section, we investigate whether LLMs
can detect these realistic, multimodal tool errors
arising from individual modules used in the FILM
architecture (Min et al., 2022). Specifically, we test
the LLM’s fault detection capability on two distinct
tools – the object detector and the action planner.3

8.1 Multimodal tool-error detection dataset

We create a classification task where the model
Accept/Rejects the tool output, based on the current
context. For the action planner, the model has to
assess the feasibility of the predicted action, and
reject actions that are to fail (e.g., facing an obstacle
for MoveAhead, Fig. 5). For the object detector,
the LLM evaluates the correctness of the detection
results with respect to the image, and reject outputs
that mistaken important task objects. We note that
imperfect outputs can still be labeled as “Accept”
if only containing task-irrelevant errors.

We collect agent trajectories from the ALFRED
validation set with actions and API responses
whether the action succeeded. For the object detec-
tor, we gather RGB images with detection results
and groundtruth semantic information. We provide
detailed statistics of each dataset in App. C.1.

8.2 Experimental setting

We test tool evaluation accuracy against the two
best closed-source Vision-Language Models: GPT-
4o and Gemini-1.5-Pro-latest. As in the calculator,
we evaluate models on Zero-Shot (ZST) and Chain-
of-Thought (CoT) settings. The prompt includes
the task state (e.g., current subgoal, steps taken),
tool docstrings (e.g., possible actions, object cat-
egories), and the current tool output. We provide

3Object detection uses a finetuned MaskRCNN model. Ac-
tion planning is done by the Fast Marching Method (Sethian,
1996), a heuristic-based algorithm.
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Figure 6: Tool evaluation accuracy on the action planner
output binned by action types. We plot the baseline
(Zero-shot+Oblivious) with the best performing setting
(CoT+Checklist) of the two models.

example prompts in the Appendix: Action Planner
(C.2), Object Detector (C.3).

8.3 Results

Models are able to reach 60-70 F1 scores with
raised awareness through in-context learning and
CoT prompting (Tab. 3). In particular, specifying
the potential failure modes in the Checklist prompt
is effective for evaluating the action planner, where
the error modes are more diverse than the Object
Detector. In contrast, giving the raw confidence
scores is not as helpful, as it demands additional
interpretation. As these results are all zero-shot
evaluations, we expect further improvements in
few-shot or finetuning scenarios.

Action Planner In Figure 6, we further analyze
the tool evaluation accuracy per different action
type. Actions require different preconditions to
succeed. Also for assessing feasibility, different
actions require varying levels of spatial reasoning,
object/scene detection, and task understanding. For
MoveAhead, the agent needs to perform spatial
reasoning, looking out for obstacles in its path. For
interaction actions, more conditions are needed –
successful Pickup demands the target to be visible
from the agent, located within reachable distance,
while the agent’s hand is empty.

One might expect navigation actions like
MoveAhead to be the easiest to infer feasibility,
as it relies mainly on spatial reasoning of obstacles,
compared to interaction actions which may demand
more preconditions. Somewhat surprisingly, we
observe the opposite – because evaluating MoveA-
head depends “solely” on spatial information, it is
in fact harder to evaluate compared to other inter-
action actions, as the model has less hints to utilize.
For interaction actions, models were able to predict
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Figure 7: Tool evaluation accuracy on the object detec-
tor output binned by the number of detector mistakes on
all objects (Left) and task-relevant objects (Right).

tool success based on objects, which compensated
for the LLMs’ limited capability in spatial reason-
ing.

Object Detector In Figure 7, we plot the LLM’s
evaluation accuracy with respect to the number of
mistakes made by the detector, which is one indi-
cator of the deviation, d(o, o∗). We differentiate
“crucial” mistakes with less crucial ones, by plot-
ting the number of detection mistakes for all objects
(Left) and task-relevant objects (Right) separately.
The more mistakes the tool makes, regardless of
their task relevance, it is easier for models to re-
ject tool outputs. Both models are also able to spot
“task-relevant” mistakes 90% of the time when they
occur (#Task Obj Mistakes > 1).

However, models tend to over-reject many ac-
ceptable tool outputs even when the mistake is
not crucial. While the desired behavior is to ac-
cept when the number of task-object mistakes is
zero (i.e., no mistakes), models incorrectly reject
most outputs (Acc < 20%). Models seem to un-
derstand when the tool is wrong, but still strug-
gle with telling apart task-critical vs tolerable tool
mistakes, indicating the challenge of relying on
in-context learning to steer complex reasoning abil-
ities of LLMs.

9 Conclusion

We characterize the trust dynamics of modern
LLMs with respect to tool usage. By establish-
ing an extensive taxonomy of tool-related errors
and recovery strategies, we identify fundamental
challenges associated with integrating learned tools.
Our experiments span both synthetic and natural
tool failures, and affirms current LLMs’ ability to
identify silent tool failures. This work paves the
way for future research on harnessing LLMs as
sophisticated tool-reasoners.
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10 Limitations

This study, while comprehensive in its scope,
has certain limitations regarding the diversity and
breadth of the models and datasets used. Firstly,
for the calculator experiments, we employ five
LLMs, mostly closed-source. Including smaller,
open-source models, and models specifically fine-
tuned for tool-use would have offered more in-
sights into the models’ tool trusting behavior. In
the experiments involving embodied agents, we
limited our focus to only two API-based Vision-
Language Models (VLMs). Incorporating smaller,
open-source VLMs would have offered opportuni-
ties to explore into the models’ internal workings,
revealing additional nuances in how models handle
unreliable tools.

Secondly, the action planner and object detec-
tion dataset we constructed based on ALFRED
trajectories is fairly small in size – Action Planner
(490) and Object Detector (214). In terms of diver-
sity, running multiple models/agents in addition to
FILM would have enabled collecting a wider array
of failure modes. Moreover, the action’s success
or failure is highly dependent on the affordances
provided by the AI2-THOR framework which may
not accurately reflect real-world scenarios. For ex-
ample, a “Put” action might fail due to the system
perceiving a surface as cluttered, even when there
is visibly sufficient space available. A dataset en-
compassing a wider variety of scenarios and higher
diversity would potentially provide deeper insights
into the practical applications and limitations of
current AI systems in navigating real-world envi-
ronments.
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Appendix
A Overview of Tool Errors

In Table 4, we compile a list of tools that sup-
port various modalities, with respective real-world
tool-error scenarios. We categorize specific error
scenarios by its source of failure – the tool input,
the tool itself, or context information.

B Math problems

Table 5 reports the accuracy of models on “an-
swering” math equations, plotted in Figure 3. The
numbers in the parentheses indicate the relative
gain/loss compared to the best no-tool setting (in
bold). In short, Chain-of-Thought prompting im-
proves arithmetic performance, which is further
enhanced by few-shot in-context examples. Cor-
rect tool-use yields strongest results, supporting
existing literature that employ reliable tools.

We share an example prompt for Accept/Reject
task for the calculator setting in Figure 8. This is
comparable to Figure 2, where the task inputs are
identical, but the primary task is to “answer” the
equation rather than “evaluating” the tool output.

C ALFRED

C.1 Dataset

For the dataset used for action planner evaluation,
we plot the histogram of actions and task types
in Figure 9. For Action Type (Left), Pickup and
Put are the most frequent actions, as most task
types necessitate these actions for object interac-
tion. Toggle and OpenClose are merged from
the canonical actions ToggleOn+ToggleOff, and
OpenObject+CloseObject, respectively. We note
that ToggleOff and CloseObject was always suc-
cessful for the FILM agent, as these actions are
attempted at the same location where the precon-
ditioning action (ToggleOn, OpenObject) was suc-
cessful. Merging the related actions help balance
out the Accept/Reject label distribution per action
category.

Similarly in Figure 10, we describe object fre-
quencies in the object detector evaluation dataset.
Large receptacle objects like CounterTop and
Cabinet are observed the most frequently.

C.2 Action Planner Evaluation
Figure 11 shows an example prompt used for ac-
tion planner evaluation. The prompt consists of
general task instructions, a docstring explaining
how the Planner API works, the agent’s status on
task progress. For the Disclaimer setting, it is in-
formed that the planner can make mistakes. In
the Confidence setting, a confidence score is pro-
vided alongside the predicted action, which is the
success rate of the past five actions. We addition-
ally note that this confidence score may not always
align well with tool success rates in this setting,
which might be one reason why the Confidence
prompt underperforms the Oblivious prompt in
Table 3. The Checklist lists the common failure
modes of the planner suggested action. The pre-
vious four actions and their success/failure is also
presented. Our analysis into the reasoning steps
of the LLM shows that models are capable of in-
ferring the robot’s state based on this information
(e.g., [(Open, Fail), (MoveAhead, Success),
(Open, Fail), (MoveAhead, Success)] ->
Reasoning: ... the previous attempts
suggest that the robot might have been
trying to open the microwave from too far
away).

C.3 Object Detector Evaluation
Figure 12 shows an example prompt used for ob-
ject detector evaluation. Similar to the action plan-
ner prompt in Figure 11, general instructions, tool
docstring, robot states are given. The robot state
here additionally includes the remaining subgoals,
as it is helpful in determining which objects are
task relevant or not. For instance, while the cur-
rent subgoal is (’Pickup’, ’Apple’), correcting
detection mistakes for ’Microwave’ would be ben-
eficial, as it is needed in future subgoals. For Obliv-
ious, Disclaimer, and Checklist, the tool output
is given in a nested dictionary format, where ob-
jects are binned into ’detected’ and ’filtered’,
based on the detector threshold. For the Confidence
setting, the detection results are provided in a sin-
gle dictionary, with objects and their respective raw
confidence scores. The instruction mentions that
objects with score below 60 will be filtered out.
Based on the raw scores, the LLM has to interpret
whether specific objects will be kept or discarded.
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Source of failure

Modality Capability Tool Tool input Tool itself Context

Text Mathematical
computation

Calculator
Code interpreter

- API syntax error
- Incorrect content

NA NA

Code
validation

Code interpreter - Code syntax error
- Version updates (e.g.,
deprecated functions)
- Incorrect content

NA NA

World
knowledge

Search API - Ambiguous query - Incomplete DB
- Irrelevant results (e.g.,
different word sense)

Task planning LLM/VLM - Prompt includes non-
existent objects due to
previous perception
errors

- API call failure
- Plan includes unsup-
ported actions/objects
- Incorrect steps

- Invalid plan due to
partial observability (e.g.,
closed receptacles)

Image Text recognition OCR model - Blurry/noisy image - Parsing mistakes

Visual
perception

Vision-Language
Models (CLIP)
Semantic segmenta-
tion (Fast-RCNN)
Object detectors
(M-DETR)

- Camera noise
- Poor lighting

- Unknown object
- Detection failure
- Hallucination
- Wrong categories
- Bad segmentation mask

Depth estimators - Estimation errors

Sensory Perception Pose Estimation,
Map building

SLAM - Sensor drift - Algorithmic errors - Environmental inter-
ference (e.g. moving
humans, key object
change)

Audio Auditory
perception

Speech-to-text API
(Socratic Models)

- Audio noise - Recognition errors

Action Navigation Path-planning al-
gorithms (A*, Fast
Marching Method)

- Collision
- Circling with no
progress

- Change in obstacle
locations

Manipulation Skills - Grip failure

Table 4: Overview of Tool Errors. API syntax errors are a shared case of input-based failures across tools.
Similarly, network issues are shared across tools as environmental failures.

# Task
You are given the equation: (2 + 3) * 5. The task is to
evaluate the result of the equation provided by the tool.

Refer to the tool output below.
# Calculator API
result = (2 + 3) * 5
result
-25 # broken tool setting -> 21 / 205 / -25

# Format
Return your answer in this format:
Thought: Your reasoning process
Evaluation: Accept/Reject
...

# Answer

Figure 8: Example Accept/Reject prompt for the output
of the calculator. The modified Fig. 2 instructions are in
bold. We color-code the three perturbation methods as:
Digit replacement, Magnitude shift, Sign inversion.

Model Direct CoT CoT-FS Correct tool Broken tool

GPT-3.5 61.0 79.7 85.3 98.7 (+13.4) 22.7 (-62.6)

GPT-4 64.0 89.0 89.7 97.7 (+8.0) 76.0 (-13.7)

Command-R 34.3 52.3 63.3 86.3 (+23.0) 16.0 (-47.3)

Command-R+ 62.0 75.7 77.3 93.7 (+16.4) 56.7 (-20.6)

Gemini-1.5 86.7 90.3 88.7 98.3 (+8.0) 83.7 (-6.6)

Table 5: Average accuracy of models on math equations
based on various prompting methods.
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Figure 9: Histogram of actions (left) and task types (right) in the dataset
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A robot is working on household tasks in a simulator environment. The robot follows a series of low -level actions to
accomplish the task. The robot uses an external tool , a low -level action planner , which predicts the next action to follow.
The provided image is a first -person view from the robot 's perspective. Refer to the tool suggested action below and

decide whether to accept or reject the tool output , based on your judgement of whether the action would succeed/fail.

The tool can sometimes give incorrect answers. Please cross-check the output based on the image and robot state, to verify the correctness
and feasibility of the planner’s output.
The tool’s prediction confidence (between 0 and 1) is also provided, which may hint the correctness of the output. Confidence is based on previous
action attempts and success/failure.

The following are some scenarios where the Planner action might fail.
1. Interaction actions might fail if the object is too far from you. In this case, you need to approach closer to the object.
2. Interaction actions might fail when you do not have a good view of the object.
3. If another object is in your path, MoveAhead will fail due to collision. In this case, you need to walk around the obstacle.
4. If a receptacle is occupied with another object, Put will fail.

# Tool: Planner API
The Planner API provides a function that takes the task_state , observed_state as input and returns the next suggested
action. The action is computed based on the agent and target object 's location , based on the robot 's internal spatial map.

## Task
possible_actions = ['MoveAhead ', 'Open(Receptacle)', 'Close(Receptacle)', 'Pickup(Object)', 'Put(Object , Receptacle)', '
ToggleOn(Object)', 'ToggleOff(Object)', 'Slice(Object)']

## Robot state
task_state = {

'task_description ': "Pick up a pillow and turn a lamp on.",
'completed_subgoals ': [],
'current_subgoal ': "Pickup Pillow",
'num_steps_taken ': 56

}
print(observed_state)
Current room has: Bed , Pillow on a Bed , Cabinet , Drawer , Dresser , GarbageCan , Shelf , SideTable , Sofa , Pillow on a Sofa.
Previous action attempts: [(MoveAhead , Success), (MoveAhead , Success), (MoveAhead , Success), (MoveAhead , Success)]

## Planner output at current step
output = Planner(task_state , observed_state)
print(output)
Pickup(Pillow), 0.8

# Format
Return your answer in this format:
Tool output: [ACTION]
Thought: Your reasoning process
Evaluation: Accept/Reject

The evaluation is a single word indicating whether you accept or reject the tool output. Do not provide any reasoning in
the evaluation. Provide your reasoning in the thought section.

# Answer

Figure 11: Example Prompt for Planner Error Detection The model is provided instructions to evaluate the
output of the Planner and decide whether to Accept or Reject. We denote the instructions specific to the different
types of in-context interventions as Disclaimer, Confidence, and Checklist).
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A robot is working on household tasks in a simulator environment. The provided image is a first -person view from the robot '
s perspective. The robot uses an external tool , an object detector to identify which objects are in the current scene.
Refer to the tool output below and evaluate the correctness of the detector with respect to the provided image , and decide
whether to accept or reject the tool output. If objects important to the task are ignored by the detector , the tool output
should be rejected. Mistakes with regard to task -irrelevant mistakes are acceptable.

The tool can sometimes give incorrect answers. Please cross-check the output based on the image and robot state, to verify the correctness of the
detector’s output.
The tool’s prediction confidence (between 0 and 100) is also provided, which may hint the correctness of the output. Keep in mind that objects with
confidence scores below 60 will be ignored.

The following are common examples where the detector mistakes may hinder the robot’s ability to accomplish the task. Consider these cases in your
reasoning steps.
1. Missing task-relevant objects in the scene. In particular, small objects (e.g., keys, credit card) are prone to be missed.
2. Hallucinating task-relevant objects that are not in the scene. For example, objects that are similar in shape or color (e.g., apple vs tomato) may
be mistaken.

# Tool: Object Detector API
The Detector API provides a function that takes the current_image as input and returns the list of objects detected in the
image. The obj_categories and receptacles are predefined as below. The prediction consists of two parts: the predicted
objects and the filtered objects. The 'filtered ' objects are object detections ignored as the detection confidence was
lower than the threshold. Only the 'detected ' objects will be passed on.

Detector.obj_categories = ['AlarmClock ', 'Apple ', 'AppleSliced ', 'BaseballBat ', 'BasketBall ', 'Book ', 'Bowl ', 'Box ', 'Bread
', 'BreadSliced ', 'ButterKnife ', 'CD ', 'Candle ', 'CellPhone ', ... ]
Detector.receptacles = ['ArmChair ', 'BathtubBasin ', 'Bed ', 'Cabinet ', 'Cart ', 'CoffeeMachine ', 'CoffeeTable ', 'CounterTop ',
'Desk ', 'DiningTable ', 'Drawer ', 'Dresser ', 'Fridge ', ... ]

## Robot state
task_state = {

'task_description ': "Place a cooked apple into the sink.",
'completed_subgoals ': [('Pickup ', 'Apple ')],
'remaining_subgoals ': [('Open ', 'Microwave '), ('Put ', 'Microwave '), ('Close ', 'Microwave '), ('ToggleOn ', 'Microwave '),

('ToggleOff ', 'Microwave '), ('Open ', 'Microwave '), ('Pickup ', 'Apple '), ('Close ', 'Microwave '), ('Put ', 'SinkBasin ')],
'num_steps_taken ': 235

}

## Detector output on current image
Detector(current_image)
# {’Apple’: 3.09, ’Knife’: 0.55, ’CounterTop’: 63.31, ’DiningTable’: 47.09} for Confidence
# other prompting methods:
{

'detected ': {'CounterTop '},
'filtered ': {'DiningTable ', 'Apple ', 'Knife '}

}

# Format
Return your answer in this format:
Thought: Your reasoning process on the provided information (image , task_state and tool_output)
Evaluation: Accept/Reject

The evaluation is a single word indicating whether you accept or reject the tool output. Do not provide any reasoning in
the evaluation. Provide your reasoning in the thought section.

# Answer

Figure 12: Example Prompt for Object Detector Error Detection The model is provided instructions to evaluate
the output of the Object Detector and decide whether to Accept or Reject. We denote the instructions specific to the
different types of in-context interventions as Disclaimer, Confidence, and Checklist.
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