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Abstract

Knowledge Graphs (KGs) often suffer from
incomplete knowledge, which restricts their
utility. Recently, Contrastive Learning (CL)
has been introduced to Knowledge Graph Com-
pletion (KGC), significantly improving the dis-
criminative capabilities of KGC models and set-
ting new benchmarks in performance. However,
existing contrastive methods primarily focus
on individual triples, overlooking the broader
structural connectivities of KGs. This narrow
focus hampers a more comprehensive under-
standing of the graph’s structural knowledge.
To address this gap, we propose StructKGC, a
novel contrastive learning framework designed
to flexibly accommodate the diverse topologies
inherent in KGs. We introduce four contrastive
tasks tailored to KG data: Vertex-level CL,
Neighbor-level CL, Path-level CL, and Relation
composition level CL. These tasks are trained
synergistically during the fine-tuning of pre-
trained language models (PLMs), allowing for
a more nuanced capture of subgraph semantics.
To validate the effectiveness of our method, we
perform a comprehensive set of experiments on
several real-world datasets. The experimental
results demonstrate that our approach achieves
SOTA performance under standard supervised
and low-resource settings. Furthermore, we
observe that the various structure-aware tasks
introduced can mutually reinforce each other,
resulting in consistent performance enhance-
ments.

1 Introduction

Knowledge graphs, such as Freebase and Wikidata,
are stores of relational facts that have become cru-
cial sources of knowledge in knowledge-intensive
applications. A KG typically comprises a collec-
tion of triples, where each triple (h, r, t) signifies
the relationship between a head entity, a tail entity,
and the corresponding relation. Factual knowledge
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is virtually infinite and subject to frequent changes,
leading to concerns about the incompleteness of
KGs.

To tackle this issue, researchers have focused on
Knowledge Graph Completion (KGC) models that
automatically fill in missing triples. These models
fall into two main categories: embedding-based
methods and text-based methods. Embedding-
based methods learn low-dimensional vectors for
entities and relations by minimizing a loss func-
tion (Bordes et al., 2013; Trouillon et al., 2016;
Sun et al., 2019; Balazevic et al., 2019). Text-
based methods (Wang et al., 2021, 2022, 2023)
leverage available text to gather textual informa-
tion for entities and relations. Recent approaches
have applied Contrastive Learning (CL) to text-
based KGC models, significantly improving their
discriminative power (Wang et al., 2022, 2023).
Typically, they use a dual-tower architecture that
utilizes Pre-trained Language Models (PLMs) to
produce textual embeddings and then use the In-
foNCE contrastive objective (Oord et al., 2018) to
perform instance discrimination. Despite their ef-
fectiveness, current contrastive approaches are not
explicitly designed to identify the graph structure
in KGs. They typically pair the entity-relation pair
(h, r) with one positive tail entity t from the same
triple (as shown in 2a). However, using just one
positive sample, this approach fails to capture the
broader connectivities and diverse topologies in
KGs, which are crucial for understanding complex
relation mappings (e.g., one-to-many, many-to-one)
(Ji et al., 2015) and long-range dependencies (Lin
et al., 2015a). Entities in a KG are often surrounded
by multiple neighboring entity-relation pairs that
enrich their profiles. Additionally, paths between
entities can reveal meaningful patterns and depen-
dencies, offering insights into intricate relations.

Furthermore, we observe that entities with sim-
ilar positions in a KG share underlying attributes,
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Figure 1: An example of knowledge graph comple-
tion. Structural contexts help infer missing facts. In
the subgraph, entities Ronaldo and Zidane, shar-
ing the context (Play_for,Real_Madrid), exhibit
analogous roles as Footballer. The entity-relation
pairs (Language, French), (Nationality, French),
and (Born_in, France) share relevant semantic impli-
cations for Zidane. Moreover, the path Play_for ∧
Play_for−1 shares similar properties with relation
Teammate due to similar semantic interaction.

consistent with the distributional semantics assump-
tion that similar words appear in similar contexts
(Suresh et al., 2023). Assume that entities rep-
resented by ei occupy the same structural posi-
tion as (ei

category−−−−−→ animal). Regardless of
whether these entities pertain to dogs, cats, or
lions, they exhibit analogous roles, such as res-
piration and sustenance requirements. Establish-
ing such semantic relevance is essential for in-
ferring incomplete facts. Fig.1 illustrates an ex-
ample of knowledge graph completion, the co-
occurrence of Ronaldo and Zidane in the context
of (Play_for,Real_Madrid) suggests that they
possess analogous conceptual attributes. Therefore,
inferring Zidane’s accurate profession becomes
more plausible when considering Ronaldo’s oc-
cupation. This principle extends to entity-relation
pairs and multi-hop paths. For example, the path
Play_for ∧ Play_for−1 shares similar proper-
ties with the relation Teammate, as both involve
similar semantic interactions, mirroring the under-
lying relational patterns. However, current text-
based methods primarily focus on internal links
within triples, disregarding the external semantic
relevance beyond the triples. This results in incom-
plete representations that miss the holistic struc-
tural knowledge. Therefore, integrating contex-
tual structural information is crucial for text-based
KGC, yet it remains largely underexplored.

Building on our analysis, we systematically in-
vestigate the effects of various structural forms.

Instead of focusing on individual triples, we con-
sider the structural context around an anchor as
weakly positive instances. Our key idea is to max-
imize the mutual information between the cen-
tral anchor and its context. To achieve this, we
explore various subgraph topologies surrounding
each triple, including vertex, neighbor, and path
structures, as shown in Fig.2. Then, we propose a
novel structure-aware contrastive learning frame-
work, named StructKGC, which offers the flexibil-
ity to effortlessly handle a wide range of topology
types and quantities within KGs, without introduc-
ing additional parameters. Following this, we in-
troduce four supervised contrastive learning tasks
tailored for KG data: Vertex-level CL, Neighbor-
level CL, Path-level CL, and Relation Composition
Level CL, each designed to capture distinct knowl-
edge properties. During the fine-tuning stage of the
PLMs, we jointly train these tasks, which facilitates
a collaborative reinforcement effect among the dif-
ferent tasks and enables the model to effectively
capture the underlying semantics within subgraphs.

In summary, the contributions of this work are
as follows:

1. To the best of our knowledge, we are the first
to systematically investigate the impact of dif-
ferent structures within KG for dual-tower-
based KGC.

2. We propose a novel contrastive learning
framework that incorporates four structure-
aware tasks, enabling comprehensive struc-
ture awareness at the vertex, neighbor, path,
and relation composition levels.

3. Experiments and analysis demonstrate the ef-
fectiveness and efficiency of this work against
state-of-the-art approaches in standard super-
vised and low-resource settings.

2 Related Work

2.1 Embedding-based methods

Knowledge graph completion aims to infer miss-
ing facts or relationships in a knowledge graph.
Embedding-based methods represent entities and
relations in a continuous vector space. TransE (Bor-
des et al., 2013) operates on the translation assump-
tion, i.e., h+ r ≈ t, but struggles with complex re-
lations. TransR (Lin et al., 2015b) embeds entities
and relations in different semantic spaces. RotatE
(Sun et al., 2019) uses complex-valued embeddings
and achieves semantic transformation via rotation



(a) Triple-based Positive (b) Vertex-based Positives
(The green edges represent
the same type of relation)

(c) Neighbor-based Positives (d) Path-based Positives

Figure 2: An example of a subgraph around a triple. The triple-based method creates a single positive for each
anchor from a sample triple (i.e., the object entity in the same triple as the anchor). The vertex-based positives
represent multiple entities that connect to the same entity-relation pair. The neighbor-based positives refer to
multiple entity-relation pairs surrounding the same entity. The path-based positives represent a collection of routes
connecting the initial entity to the final entity.

on the complex plane. These methods, however,
treat each triple separately, neglecting global graph
information.

To address this, researchers have proposed meth-
ods considering the graph structure in KGs. R-
GCN (Schlichtkrull et al., 2018) introduces a Graph
Convolutional Network (GCN) variant for rela-
tional data. CompGCN (Vashishth et al., 2020)
uses composition operations to jointly embed enti-
ties and relations. The Path Ranking Algorithm
(PRA) (Lao and Cohen, 2010) captures contex-
tual relationships via indirect paths. PtransE (Lin
et al., 2015a) treats multi-hop paths as new rela-
tions. These studies have showcased the efficacy of
incorporating graph context into knowledge graph
completion. Nevertheless, these methodologies
have limitations as they fail to consider the poten-
tial semantic correlations among the knowledge
graph contexts. Additionally, they struggle consid-
erably in formulating predictive models within an
inductive paradigm.

2.2 Text-based methods

Text-based methods use descriptions to capture the
semantics of knowledge graph components, en-
abling the inference of unseen entities. KG-BERT
(Yao et al., 2019) first proposed using PLMs to
model KGs by simply concatenating textual de-
scriptions for binary classification. However, this
approach suffers from low efficiency due to com-
binatorial explosion. StAR (Wang et al., 2021) ad-
dresses this by using two encoders to decouple the
triple. MKGformer (Chen et al., 2022b) transforms
link prediction into masked language modeling, im-
proving inference efficiency. SimKGC (Wang et al.,
2022) and C-LMKE (Wang et al., 2023) propose a
contrastive learning framework for more discrimi-

native KGC models, while Jiang et al. (Jiang et al.,
2023) explore various negative sampling strategies.
Recent research (Zhang et al., 2023) has introduced
Large Language Models (LLMs) as sequence-to-
sequence generators for KGC. AutoKG (Zhu et al.,
2024) uses prompt engineering and evaluates GPT-
3.5 and GPT-4 (Achiam et al., 2023) on KGC tasks.
Although promising, text-based methods face chal-
lenges in capturing the abundant structural infor-
mation inherent in knowledge graphs.

3 Methodology

In this section, we first introduce Knowledge Graph
Completion (KGC), and then we investigate the ex-
isting contrastive learning loss functions employed
in the KGC, analyzing its potential drawbacks. Fol-
lowing this, we propose a novel structure-aware
contrastive learning framework. Fig.3b presents
an overview of our method, which consists of four
contrastive learning objectives tailored to the char-
acteristics of knowledge graphs.

3.1 Task Formulation: Knowledge Graph
Completion

Previous works often treat KG as a composition
of triples, which represent individual facts G =
(E ,R, T ). Each triple in T has the form (h, r, t),
where the head entity and tail entity h, t ∈ E
and the relation r ∈ R. In order to leverage
the rich structural knowledge contained in KG,
we formally represent the set of triples as a di-
rected graph G that includes vertices (entities) and
directed edges (relations). Each directed link in
the graph, denoted as l = (vi, ej , vk) ∈ G, repre-
sents a fact. Given a query q = (v, e, ?), where
v is the source vertex and e is the relational edge,
knowledge graph completion aims to enable effi-
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Figure 3: (a) C-LMKE and SimKGC use instance-wise contrastive learning to train dual-tower PLMs, where each
query (h, r) is paired with a positive instance t. (b) Our StructKGC overview: Vertex-level CL contrasts each
query (h, r) with multiple vertice-based positives Pv(h, r); Neighbor-level CL contrasts each key t with multiple
neighbors Pn(t); Path-level CL captures long-range dependencies by contrasting t with head-path pairs; Relation
composition level CL contrasts multi-hop composite relations with direct relations. The combination of the four
tasks allows PLMs to sufficiently perceive structural knowledge within KG.

cient retrieval and gather a set of candidate enti-
ties Vo = {vo} s.t. (v, e, vo) /∈ G due to the incom-
pleteness of KG.

3.2 Revisiting Contrastive Loss of Knowledge
Graph Completion

Contrastive learning has been proven successful in
the task of knowledge graph completion. Given a
batch of triple samples (h, r, t)Ni=1, a dual-tower ar-
chitecture with PLMs is employed to separately en-
code decoupled triples, as shown in Fig.2a. Specif-
ically, the relation-aware embedding ehr for (h, r)
is computed by query encoder BERThr, while the
tail entity embedding et is calculated by key en-
coder BERTt. Then, cosine similarity is used as the
scoring function to measure the distance between
the two components. Following the InfoNCE loss
(Chen et al., 2020), the general loss function can
be represented as:

L = − log
eϕ(hr,t)/τ∑|N |
i=1 e

ϕ(hr,ti)/τ
(1)

Here, ϕ(hr, t) = cos(ehr, et) ∈ [−1, 1] repre-
sents the cosine similarity. N represents a set of
negative examples in the same batch. The learnable
temperature parameter τ is introduced to control
the relative significance of these negatives. Note

that the instance-wise contrastive loss described in
Eq.1 only contrasts the entity-relation pair (h, r)
exclusively with a single positive tail entity. As a re-
sult, it learns little about the structural information
preserved in the knowledge graph.

3.3 Structure-Aware Contrastive Learning
Framework

In this work, we consider the structural context be-
yond individual triples to enable PLMs to perceive
more structural knowledge. A straightforward ap-
proach is to consider these structures as additional
contrastive supervision. In this case, the weak pos-
itives are derived from the subgraph of a given
anchor rather than from a single triple sample. Our
primary objective is to maximize the mutual in-
formation between the anchor and its structural
context, thus necessitating knowledge representa-
tion to integrate the underlying shared semantics.
However, the original InfoNCE loss cannot handle
scenarios with multiple positive instances. Inspired
by (Khosla et al., 2020), we generalize Eq.1 to
support structure-aware multi-positive contrastive
learning:

Lsup = − 1
|P (q)|

∑
qp∈P (q) log

eϕ(q,qp)/τ∑|N|
i=1 e

ϕ(q,qi)/τ

(2)



Generally, ϕ(q, qp) = cos(eq, eqp) ∈ [−1, 1], q
denotes the query (i.e., an entity-relation pair hr or
an entity t); qp is the positive representation of q de-
rived from P (q); P (q) consists of multiple positive
samples surrounding q, which are context-specific
and categorized into three types in our approach:
vertex-based positives, neighbor-based positives,
and path-based positives, as depicted in Fig.2.

Since diverse structures depict different knowl-
edge perspectives, we integrate four structure-
aware contrastive tasks into the fine-tuning
paradigm of PLMs, as illustrated in Fig.3b. Next,
we will introduce these tasks and different types of
structural positives in detail.

3.3.1 Vertex-level CL
The intricate mapping properties of relations in
knowledge graphs (KGs), often result in multi-
ple vertices connecting to the same head-relation
query, offering rich semantics. To harness this,
we formally construct vertex-based positives as
Pv(v, e) = {vk | ∀(v, e, vk) ∈ G}, which repre-
sents the set of vertices that can be reached from a
given vertex v through a specific outgoing edge e.
Based on this, a Vertex-level CL task is proposed to
align the entity-relation pair with its vertex-based
positives. Following Eq.2, the Vertex-level CL loss
can be defined as:

LV C = − 1
|Pv(h,r)|

∑
qp∈Pv(h,r)

log eϕ(hr,qp)/τ∑|N|
i=1 e

ϕ(hr,qi)/τ

(3)

3.3.2 Neighbor-level CL
Neighbor-level CL focuses on modeling the neigh-
bors of an entity, which comprises incoming edges
and adjacent vertices connected through those
edges. Given a target entity v, we formally de-
fine its neighbor-based positives as a set of tuples:
Pn(v) = (vi, ej) | ∀(vi, ej , v) ∈ G. By examining
this local structure, we can gain valuable insights
into the entity’s nature and neighbors’ relevance.
Similarly, the loss of Neighbor-level CL is defined
as:

LNC = − 1
|Pn(t)|

∑
qp∈Pn(t)

log eϕ(t,qp)/τ∑|N|
i=1 e

ϕ(t,qi)/τ

(4)

3.3.3 Path-level CL
A L-hop path pi(v0, vj) from head h(v0) to
tail t(vL) is defined as: h(v0)

e0−→ v1
e1−→

v2 · · · (vL−1)
eL−1−−−→ t(vL), where vi and vi+1

are connected by edge ei. The path-based posi-
tives Pp(v0, vj) is then defined as the set of paths
{p1, p2, · · · , pn}. Path-level CL distinguishes
whether an entity pair matches the multi-hop path.
Similar to the PCRA algorithm (Lin et al., 2015a),
the path reliability R(p|h, r) is based on the flow
of resources from the initial entity to the final entity.
Then, we propose a weighted contrastive loss as
follows:

LPC = − 1
|Pp(h,t)|

∑
pp∈Pp(h,t)

R(p|h, r) log eϕ(t,hpp)/τ∑N
i=1 e

ϕ(t,hpi)/τ

(5)

3.3.4 Relation Composition Level CL
Multi-hop paths enable logical inference of direct
relations, forming complex queries and uncover-
ing meaningful connections between entities. We
introduce a relation composition level CL task to
capture this. Based on the path reliability factor,
the loss is defined as follows:

LRC = − 1
|Pp(h,t)|

∑
pp∈Pp(h,t)

R(p|h, r) log eϕ(r,pp)/τ∑N
i=1 e

ϕ(r,pi)/τ

(6)

3.4 Structural Positives Encoding
Following C-LMKE (Wang et al., 2023) and
SimKGC (Wang et al., 2022), we utilize a pair
of BERT-style architectures, with a query encoder
to encode (h, r) and (h, p), and a key encoder for
t, respectively. To mitigate the time-consuming
nature of path extraction, we perform multi-hop
path extraction during the preprocessing phase, de-
coupling it from the training process. Inspired by
(Lin et al., 2015a), we limit path length and ap-
ply pruning techniques, retaining only paths with
a reliability score greater than 0.01. To reduce the
computational cost of encoding phase, we use an
in-batch strategy that reuses potential positive and
negative samples within the same batch, improv-
ing data efficiency and enabling practical training.
Substantially, we convert the corresponding textual
descriptions into input sequences and then input
these sequences into the BERT encoder. Similar
to SimKGC, we use mean pooling followed by
L2 normalization to obtain the knowledge graph
embeddings.

3.5 Model Training
Different structure-aware CL tasks capture dis-
tinct aspects of structural knowledge. To facilitate
knowledge sharing across tasks, we train our KGC



models by jointly performing these tasks. Specif-
ically, we introduce a weighted combination of
contrastive loss functions, each tailored to a spe-
cific task. The overall loss function is formulated
as Eq.7.

Loverall = w1LV C +w2LNC +w3LPC +w4LRC

(7)
Where wi is tunable hyper-parameters for adapting
to specific knowledge graph characteristics.

4 Experiments

4.1 Datasets

To assess the effectiveness of our approach, we
evaluate it on two popular benchmark datasets:
WN18RR (Dettmers et al., 2018) and FB15k-237
(Toutanova and Chen, 2015). The dataset statis-
tics are shown in Table 1. WN18RR is a subset of
WordNet, obtained by removing reversible relation
data and filtering out facts related to inverse rela-
tions to avoid information leakage. FB15k-237 is a
subset of Freebase, created by removing a signifi-
cant amount of reversible relation data and filtering
out trivial triples. We incorporated the textual in-
formation from KG-BERT (Yao et al., 2019) for
the WN18RR and FB15k-237 datasets.

Dataset # Ent # Rel # train # valid # test

FB15k-237 14541 237 272,115 17,535 20,466
WN18RR 40943 11 86,835 3,034 3,134

Table 1: Statistics of the benchmark datasets.

4.2 Baselines

In our study, we conducted a comparative analy-
sis of our methods against both embedding-based
and text-based approaches. The embedding-based
methods we considered encompass TransE, Com-
plEx, RotatE, ConvE, CompGCN, Tucker, Com-
poundE, KRACL and RotatE-VLP. On the other
hand, the text-based methods we evaluated include
KG-BERT, MTL-KGC, StAR, KG-S2S, C-LMKE,
SimKGC, LP-BERT and GHN.

4.2.1 Evaluation Metrics
Following previous work, we evaluate StructKGC
using the knowledge graph completion task. Our
evaluation involved all test triples (h, r, t), and our
trained model aimed to rank all entities related to
the predicted tail entity pairs (h, r, ?) or head entity
pairs (t, r−1, ?) for predicting t or h, respectively.

To assess the performance, we employ four evalu-
ation metrics: Mean Reciprocal Rank (MRR) and
Hits@k (H@k, where k ∈ {1, 3, 10}). MRR rep-
resents the average reciprocal rank of all test triples,
while H@k measures the proportion of correctly
ranked entities within the top-k predicted entities.

4.3 Implementation Detail

Our knowledge graph completion model is imple-
mented based on Pytorch (Paszke et al., 2019). The
dual-tower encoders are initialized from the pre-
trained BERT-based-uncased model. For fair com-
petition, we adhere to the setup of SimKGC (Wang
et al., 2022) and use the same hyperparameters as
presented in the oringinal paper. For newly intro-
duced coefficients wi, we use grid search to tune
with a search range of {0.2, 0.4, 0.6, 0.8, 1}. All
the experiments are executed on 2 A100 GPU. For
further details, please refer to Appendix A.

4.4 Main Result

We compare our model with established links pre-
diction task approaches on standard benchmarks,
including FB15k-237 and WN18RR. Table 2 re-
ports the link prediction performance of the base-
lines and our method with standard deviation from
three runs using different random seeds. Based on
the MRR, which most accurately depicts a model’s
total performance, our method achieved significant
improvements over the embedding-based methods,
with a margin of 2.1% on FB15k-237 and 16.9%
on WN18RR, respectively. Additionally, our Struc-
tKGC performs better than text-based SOTA meth-
ods on both datasets, with a margin of 4.4% on
FB15k-237 and 1.8% on WN18RR, respectively.
This indicates that simultaneously leveraging struc-
tural knowledge and implicit textual knowledge
within pre-trained language models can effectively
improve the performance of KGC tasks. Over-
all, StructKGC markedly improves upon existing
SOTA baselines.

4.5 Low-Resource Evaluation

To evaluate the performance of our method com-
pared to baseline models in a low-resource setting,
we randomly select factual triples to create a train-
ing subset for FB15k-237 and assess the models
using the complete test set.

Fig.4 shows the MRR metrics for various com-
petitive baselines and our proposed model in low-
resource link prediction scenarios. As expected,



Method
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE(Bordes et al., 2013)† 27.9 19.8 37.6 44.1 24.3 4.3 44.1 53.2
ComplEx(Trouillon et al., 2016)† 27.8 19.4 29.7 45.0 44.9 40.9 46.9 53.0

RotatE(Sun et al., 2019)† 33.8 24.1 37.5 53.3 47.6 42.8 49.2 57.1
ConvE(Dettmers et al., 2018)† 31.2 22.5 34.1 49.7 45.6 41.9 47.0 53.1

CompGCN(Vashishth et al., 2020) 35.5 26.4 39.0 53.5 48.1 44.8 49.2 54.8
TuckER(Balazevic et al., 2019)† 35.8 26.6 39.4 54.4 47.0 44.3 48.2 52.6

CompoundE(Ge et al., 2023) 35.0 26.2 39.0 54.7 49.2 45.2 51.0 57.0
KRACL(Tan et al., 2023) 36.0 26.6 39.5 54.8 52.7 48.2 54.7 61.3

RotatE-VLP(Li et al., 2023b) 36.2 27.1 39.7 54.2 49.8 45.5 51.4 58.2

KG-BERT(Yao et al., 2019)† - - - 42.0 21.6 4.1 30.2 52.4
MTL-KGC(Kim et al., 2020) 26.7 17.2 29.8 45.8 33.1 20.3 38.3 59.7

StAR(Wang et al., 2021) 29.6 20.5 32.2 48.2 40.1 24.3 49.1 70.9
KG-S2S(Chen et al., 2022a) 33.6 25.7 37.3 49.8 57.4 53.1 59.5 66.1
C-LMKE(Wang et al., 2023) 30.6 21.8 33.1 48.4 61.9 52.3 67.1 78.9

SimKGCIB(Wang et al., 2022) 33.3 24.6 36.2 51.0 67.1 58.7 73.1 81.7
LP-BERT (Li et al., 2023a) 31.0 22.3 33.6 49.0 48.2 34.3 56.3 75.2

GHN(Qiao et al., 2023) 33.9 25.1 36.4 51.8 67.8 59.6 71.9 82.1

StructKGC 38.3(±0.10) 28.9(±0.08) 41.9(±0.06) 56.6(±0.14) 69.6(±0.10) 62.3(±0.12) 74.1(±0.07) 82.7(±0.09)

Table 2: Main results on FB15k-237 and WN18RR datasets, †: results are from (Wang et al., 2021), and the other
results are taken from the corresponding papers. Bold numbers represent the best and underlined numbers represent
the second best.

Figure 4: Link prediction performance on the FB15k-
237 dataset under low-resourse setting.

performance declines across all models as the train-
ing data decreases. However, despite this trend,
our model consistently outperforms the baselines,
demonstrating its superior data efficiency in lever-
aging KG data. Moreover, the results highlight the
robustness and stability of StructKGC, evidenced
by the relatively low standard deviations. This
strong performance can be attributed to the com-
prehensive supervision provided by our structure-
aware framework, which enables the model to fully
perceive and leverage structural data.

4.6 Study of Relation Catergory

Knowledge graphs contain complex relation map-
pings, categorized into four groups: one-to-one
(1-to-1), one-to-many (1-to-M), many-to-one (M-
to-1), and many-to-many (M-to-M). To further ana-

Relation Category Numbers of Triples Propotion (%)
One-to-One 192 0.94

One-to-Many 1293 6.32
Many-to-One 4185 20.45

Many-to-Many 14796 72.29

Table 3: Statistics of relation categories on FB15k-237
dataset.

lyze the performance of StructKGC across different
relation categories, we use the categorization ap-
proach proposed by (Bordes et al., 2013). Table 3
presents the statistical results in FB15k-237.

We report the performance of our model com-
pared to the baselines across four different relation-
ship categories. Table 4 shows our findings: Firstly,
When it comes to triples with one on the tail side,
text-based approaches exhibit a notable advantage.
This advantage can be ascribed to the capability
of text-based methods to encompass supplemen-
tary textual knowledge, thereby mitigating the con-
straints of a singular structure. Secondly, predicting
multiple entities presents a notably greater chal-
lenge, leading to a decline in the performance of all
methods on M-side prediction. This highlights the
critical role of effectively learning complex relation
mapping. Despite these challenges, our method
generally outperforms baselines across all metrics.
Compared to the baseline method SimKGC, our ap-
proach shows substantial improvements in M-side
predictions.



Category
TransE DistMult ConvE CompGCN SimKGC StructKGC

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

Forward Prediction

1-to-1 47.6 58.8 25.7 31.2 36.6 51.0 45.3 58.9 70.1 87.9 70.4 88.5
1-to-M 6.0 11.8 3.2 6.7 6.9 15 7.6 15.1 9.4 18.6 10.2 19.8
M-to-1 53.6 84.6 57.5 75.0 76.2 87.8 77.9 88.5 78.8 88.4 79.6 88.9
M-to-M 28.7 55.3 18.4 37.6 37.5 60.3 39.5 61.6 34.8 56.31 39.7 60.6

Backward Prediction

1-to-1 48.4 59.3 25.5 30.7 37.4 50.5 45.7 60.4 73.3 92.7 74.3 93.8
1-to-M 32.9 58.9 32.2 55.8 44.4 64.4 47.1 65.6 46.2 63.8 47.4 65.7
M-to-1 8.0 15.2 3.8 7.1 9.1 17.0 11.2 19.0 15.3 27.7 19.5 34.3
M-to-M 21.9 43.6 13.1 25.5 26.1 45.9 27.5 47.4 24.1 43.9 28.0 48.8

Table 4: Link prediction performance by relation category on FB15k-237 dataset

Method
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

SimKGCIB 33.3 24.6 36.2 51.0 67.1 58.5 73.1 81.7
SimKGCIB+VC 34.3 25.1 37.9 53.1 68.5 61.3 72.7 82.0

SimKGCIB+VC+NC 35.2 25.5 38.6 53.6 69.3 62.6 73.5 82.5
SimKGCIB+VC+NC+PC+RC 38.3 28.9 41.9 56.6 69.6 62.3 74.1 82.7

Table 5: Ablation on structure-aware contrastive learning supervisions. VC/NC/PC/RC denotes Vertex-level CL,
Neighbor-level CL, Path-level CL and Relation composition level CL respectively.

4.7 Ablation on Various Contrastive Tasks

We conduct an ablation study to investigate the
effectiveness of our proposed contrastive tasks us-
ing SimKGC with in-batch negatives as a base-
line. Table 5 presents the results. Incorporating
VC enhances performance across all metrics on
both datasets, which is attributed to better model-
ing of entity-relation queries, especially those with
multiple tail entities. NC further improves results,
suggesting it captures implied associations between
entities and their neighbors more effectively. The
path-related tasks PC+RC show a substantial 8.8%
MRR increase on the FB15k-237 dataset, though
the gain on WN18RR is less significant. This dis-
parity may be due to dataset characteristics. As
shown in Fig.7c, FB15k-237 has more paths, offer-
ing abundant training signals. WN18RR, derived
from WordNet, has fewer relations but many tran-
sitive relationships. Encoding too many redundant
paths in a text encoder with limited token length
could harm the expressive capacity of knowledge
representations. Although expanding token length
could help, it raises encoding overhead and falls
outside the scope of this paper.

5 Ablation on positive sample quantity

In this paper, we use an in-batch strategy to ef-
fectively reuse samples, resulting in an increase in
both negative and positive samples as the batch size
grows. This makes it difficult to analyze the contri-
bution of positive samples alone, as the model’s
performance is also affected by changes in the
number of negatives. To address this, we fix the
batch size and limit the maximum sampling of pos-
itive samples per batch to analyze their impact on
FB15k-237. Fig.5 shows that the model’s perfor-
mance can be significantly enhanced by including
more positive samples, especially when the num-
ber of positive samples is small. This suggests
that integrating further structural context can aug-
ment the model’s performance. With increasing
positive instances, the model can grasp a wider
structural context, facilitating a deeper understand-
ing of structural semantics. Nonetheless, we have
observed that the advantage of adding more posi-
tive samples becomes less significant as the number
of samples increases.

6 Conclusion

In this work, we propose a simple yet effective
framework (StructKGC) that learns knowledge



Figure 5: Effect of positive quantity on FB15k-237 and
WN18RR datasets.

Figure 6: Training and inference time of StructKGC
and text-based counterparts on WN18RR.

representations by efficiently utilizing the struc-
ture information. In particular, we propose a novel
structure-aware supervised contrastive learning and
design four CL tasks specifically designed for KGs.
By jointly training these tasks, our StructKGC can
sufficiently perceive diverse structural knowledge.
Experiments show that our method achieves over-
all state-of-the-art performance better than other
baselines in the link prediction task on benchmark
datasets. The primary focus of this study is to lever-
age structural information for mining weak positive
samples. In the future, we are interested in incorpo-
rating the negative sampling strategies, especially
in hard negative mining, to further improve the
discriminative ability in contrastive learning.

7 Limitations

Due to the additional entity-path textual pair en-
coding, we acknowledge that our StructKGC in-
curs higher training costs than SimKGC, as shown
in Fig.6. Specifically, our proposed method re-
quires approximately 1.2 times the iteration time
of SimKGC. However, considering the significant
gains achieved, this cost is deemed acceptable. Fur-
thermore, by eliminating the encoding of paths, our
method can achieve the same training time while
yielding better results due to its enhanced data ef-
ficiency. Moreover, during the inference phase,
our method demonstrates superior efficiency com-
pared to most text-based methods. Although we are
not the first to achieve fast inference—models like

StAR (Wang et al., 2021) and SimKGC (Wang
et al., 2022) already offer similar benefits—we
want to underscore the indispensable role that fast
inference plays in driving the advancement of new
model developments.
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A Hyperparameters

The maximum number of tokens in the descrip-
tion sequence is limited to 50. We conduct a grid
search to identify the optimal learning rate within
the range of {5e−4, 5e−5, 1ee−5}. The initial tem-
perature τ is set to 0.05. For the coefficients wi,
we use grid search to tune with a search range of
{0.2, 0.4, 0.6, 0.8, 1}. Training is carried out using
the AdamW optimizer with linear learning rate de-
cay, and the models are trained with a batch size
of 1024. The training epochs are set to 100 for
the WN18RR dataset and 10 for the FB15k-237
dataset. Table 6 provides a summary of the training
hyperparameters.

Hyperparameters FB15k-237 WN18RR

Learning rate 1e-5 5e-5
LR Scheduler Linear Warmup Linear Warmup
Warmup steps 400 400
initial temperature 0.05 0.05
Epochs 10 100
Batch size 1024 1024
Gradient clipping 10.0 10.0
max # of tokens 50 50
Combination weights [1, 0.2, 1, 1] [1, 1, 0.6, 0.4]

Table 6: Hyperparameters for our proposed StructKGC
model.

B Structure Statistical Analysis

In order to determine the universality of the vari-
ous structures discussed in this paper within KGs,
we analyze the numbers and proportions of differ-
ent types of structures across various static bench-
mark datasets. Our findings, as shown in Fig.7,
indicate that there are high numbers and propor-
tions of these structures across different datasets,
which could be potentially weakly positive indica-
tors of the feasibility of our method. We also find
that FB15k-237 has a higher number of structures,
particularly in terms of paths, when compared to
WN18RR. This suggests that FB15k-237 provides
more structural signals for PLMs during training,
which could explain why StructKGC shows more
improvement over the text-based model on FB15k-
237 datasets.

C Case Study

We conducted a comprehensive case study exam-
ining a diverse range of structural strengths. The
detailed results, covering various scenarios, are
presented in Tables 7, 8, and 9. The model con-
sistently assigns high similarity scores to both the
golden answers and their surrounding contexts, re-
vealing the semantic connections between them.
Furthermore, the relation composition case studies
highlight the effectiveness of our approach in un-
covering underlying logical rules. These analyses
demonstrate how the model effectively leverages
contextual cues to generate accurate explanations
and predictions.
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(a) (b) (c)

Figure 7: Statistics of various structures of FB15k-237 and WN18RR training set.

Entity Relation Golden Answer : Score Relevant Contextual Entities in Training Set : Score

FB15k-237

Pontefract contains/location−1 England: 0.59 West Yorkshire: 0.64, United Kingdom: 0.54
Thomas Lennon profession Screenwriter: 0.65 Television producer: 0.64, Film Producer: 0.58

Garland contains/location−1 Texas: 0.72 Dallas County: 0.71, Collin County: 0.65
Superhero movie genre/film−1 Superman II: 0.44 Spider-Man: 0.56, Green Hornet: 0.44

WN18RR
iris_family member_meronym spartium_NN_1: 0.64 genus_belamcanda: 0.72, ixia: 0.72, sisyrinchium: 0.64

subfamily_papilionoideae member_meronym spartium_NN_1: 0.64 templetonia_NN_1: 0.70, lablab_NN_1: 0.70
polish_NN_1 derivationally_related_form furbish_VB_1: 0.70 gloss_VB_1: 0.75, smoothen_VB_2: 0.68
africa_NN_1 has_part senegal_NN_1: 0.58 republic_of_kenya: 0.679, republic_of_guinea: 0.68

Table 7: Case study of entity prediction. The notation −1 indicates the inverse operation of a relation.

Entity Golden Neighbors : Score Relevant Contextual Neighbors in Training Set : Score

FB15k-237

Paul Robeson (nationality, America): 0.50 (ethnicity, African American): 0.52, (graduate, Columbia University): 0.37
The Ghost Writer (genre/film, Mystery): 0.44 (netflix/genre, Political thriller): 0.46, (genre/film, Crime Fiction): 0.45

Jason Flemyng (profession, Actor): 0.46 (award, Screen Actors Guild Award): 0.41, (perform, The Red Violin): 0.26

WN18RR
mindfulness_NN_1 (hypernym−1 , attentiveness): 0.53 (derivationally_related_form, thoughtful_JJ_4): 0.60

wheeled_vehicle_NN_1 (hypernym, scooter_NN_3): 0.59 (has_part−1, axle_NN_1): 0.46, (hypernym, self-propelled_vehicle): 0.56

Table 8: Case study of neighbor prediction.

Direct Relation Relevant Multi-hop Paths in Training Set Confidence

FB15k-237

award_nominations./award/award_nomination film/actor ∧ award/award_category/nominated_for−1 0.099
music/genre/artists music/genre/parent_genre ∧ music/genre/artists 0.093

people/person/place_of_birth people/place_lived/location ∧ location/hud_county_place 0.069

WN18RR

derivationally_related_form derivationally_related_form ∧ similar_to ∧ similar_to−1 0.071
has_part has_part ∧ has_part 0.06
also_see also_see ∧ also_see 0.059

Table 9: Case study of relation composition.
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