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Abstract

Emotion classification has wide applications in
education, robotics, virtual reality, etc. How-
ever, identifying subtle differences between
fine-grained emotion categories remains chal-
lenging. Current methods typically aggregate
numerous token embeddings of a sentence
into a single vector, which, while being an
efficient compressor, may not fully capture
their complex semantic and temporal distri-
butions. To solve this problem, we propose
SEmantic ANchor Graph Neural Networks
(SEAN-GNN) for fine-grained emotion clas-
sification. It learns a group of representative,
multi-faceted semantic anchors in the token em-
bedding space: using these anchors as global
reference, any sentence can be projected onto
them to form a “semantic-anchor graph”, with
node attributes and edge weights quantifying
semantic and temporal information, respec-
tively. The graph structure is well aligned
across sentences and, importantly, allows for
generating comprehensive emotion representa-
tions regarding K different anchors. Message
passing on the anchor graph can further inte-
grate the semantic and temporal information
and refine the learned features. Empirically,
SEAN-GNN produces meaningful semantic an-
chors and discriminative graph patterns, with
promising classification results on 6 popular
benchmark datasets against state-of-the-arts.

1 Introduction

Emotion classification is an important task with
applications in many fields like education, virtual
reality, and robotics. However, fine-grained emo-
tion classification (FEC) remains a challenging
problem that is far from being well-solved. Un-
like coarse-grained emotion classification (CEC),
which may classify emotions into only a few ba-
sic categories (Ekman et al., 1999), FEC requires

∗These authors contribute equally.
†Corresponding Author.

more detailed distinctions. For example, the two
largest fine-grained emotion classification datasets
contain 32 (Rashkin et al., 2019) and 27 (Demszky
et al., 2020) categories, respectively.

The difficulty of fine-grained emotion classifica-
tion mainly arises from learning faithful emotion
representations, in particular in terms of captur-
ing both the semantic and temporal distribution of
emotion-related vocabulary in the sentence:

Semantically, human emotions are expressed by
highly diverse word vocabulary (emotion-related
adjectives, nouns, verbs and adverbs describing
the intensity of the situation). Capturing the dis-
tribution of this rich vocabulary, and the subtle
difference between similar emotions (e.g., afraid
and terrified) is still an important challenge for
fine-grained emotion classification.

Temporally, the meaning of a sentence is re-
lated to the meanings of its parts and the way they
are combined (Pagin, 2016); in particular, subtle
differences of emotion categories are in many cases
presented by the relationship among the words
(Waugh, 1977)†. Therefore capturing the temporal
(or positional) word relations is crucial for emo-
tion classification. Unfortunately, since different
sentences have different word compositions, di-
rectly quantifying and comparing word relation-
ships across sentences is practically challenging.

Numerous methods have been proposed for fine-
grained emotion classification, see a review in
Section 2. Despite the technical diversity, these
methods typically use pre-trained language mod-
els (PLMs) or those enhanced with contrastive
learning (Suresh and Ong, 2021) or LSTM (Zan-
war et al., 2022) to obtain the token embeddings,
and then aggregate them into a single vector for

†Consider two sentences: “I feel extremely sad when I see
animals abandoned and left to suffer.” and “I feel sad when
I see extremely pitiful animals abandoned and left to suffer.”
In the former, extremely describes sad and indicates a deeper
emotion like devastated, while in the latter, extremely modifies
pitiful, hence the emotion conveyed remains sadness.
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Figure 1: The structure of SEAN-GNN. (1) The K semantic anchors are learned end-to-end to cover emotion
relevant vocabulary. (2) For an input sentence, the content-projector and the temporal projector are used to instill its
semantic distribution and token relationship into an anchor graph. (3) A message passing GNN is used to integrate
the semantic and temporal information and refine the anchor representations for final classification.

sentence-level representation. Well-known ag-
gregating schemes include average pooling (Su
et al., 2021), sum-pooling (Alvarez-Gonzalez et al.,
2021), and [CLS] token (Sosea and Caragea, 2021;
Suresh and Ong, 2021; Chen et al., 2023).

Although PLMs provide informative token em-
beddings for a sentence, aggregating them into a
single vector may lead to significant information
compression. From data distribution point of view,
average pooling of the tokens is like approximating
their distribution with the first-order statistics, and
higher-order information (e.g. relationship among
the tokens) may not be fully quantified†. However,
the semantic distribution and the temporal relation-
ship among the tokens are important information
for accurate emotion classification.

In this paper, we explore new ways for com-
puting sentence-level representations to capture
complex semantic distributions and temporal rela-
tionship of the tokens. Unlike current methods that
compress all the tokens of a sentence into one vec-
tor, we use a set of “semantic anchors” to extract
sentence information in a more delicate manner.
Our method is called semantic anchor graph neural
network (SEAN-GNN), as in Figure 1.

The SEAN-network has three building blocks.
(1) Learning semantic anchors, a set of vectors
shared globally in the token embedding space cov-
ering emotion-related vocabulary. (2) Projecting

†The [CLS] embedding can be deemed as a weighted
average of the token embeddings, so with similar observation.

a sentence onto the anchors by content projector
(which projects token embeddings to anchors by
their semantic similarity) and temporal projector
(which projects the positional token relationship
onto pairs of anchors). Then a sentence of arbitrary
length can be expressed as a constant-sized anchor-
graph, where node attributes and edge weights in
turn quantify semantic and temporal information.
(3)Using GNN to integrate semantic and temporal
information to refine graph representations.

The semantic anchors provide a flexible and fine-
grained basis for learning emotion representations.
The anchors are learned end-to-end to cover emo-
tion related vocabulary adaptively. Besides, an-
chors are shared globally, and so complex token
relations from sentences of different word com-
positions, which are otherwise hard to compare,
can now be easily quantified using the anchors as
a common ground. This is beneficial since sub-
tle positional relations of words can be important
emotion features. Most importantly, rather than
compressing all the tokens into a single vector, the
semantic anchor graph allows one sentence to be
encoded by multiple vectors each associated with
one semantic anchor, being a highly enriched rep-
resentation for fine-grained emotion classification.

Main contributions of the paper are listed below:
• We proposed SEAN-GNN to extract emotion-
related features in a more delicate manner for fine-
grained emotion classification.
• We show that SEAN-GNN learns meaningful

2772



semantic anchors and discriminative graph patterns
for different emotion categories.
• We show that SEAN-GNN has promising results
against state-of-the-arts across various base PLMs
and 6 popular benchmark datasets.

2 Related Work

Numerous methods have been proposed for fine-
grained emotion classification. Typically, pre-
trained language models (PLM) are used to get
token embeddings; these embedding are then fur-
ther refined/updated before aggregated into a single
vector for emotion classification. Various strategies
were designed to refine either of these 3 steps.

For PLMs, Sosea and Caragea (2021) presented
emotion masked language modeling, which only
masked off those emotion-related tokens in the pre-
training stage; Yin and Shang (2022) incorporated
a whitening method and nearest neighbor retrieval
to PLMs to improve retrieval efficiency so as to
better differentiate semantically similar sentences.

For token embedding refinement, Suresh and
Ong (2021) modified the supervised contrastive
loss (Khosla et al., 2020) and propose a label-aware
contrastive loss to improve token embedding; Chen
et al. (2023) proposed HypEmo, which learned
label embedding in hyperbolic space and integrated
it with RoBERTa fine-tuned in Euclidean space.

For token aggregation, a common method in-
volves pooling all token embeddings into a single
vector through averaging, summation, or taking
the maximum/minimum. For instance, Zanwar
et al. (2022) employed Bi-LSTM to process token
embeddings derived from a pre-trained language
model, and concatenated the hidden representa-
tions from Bi-LSTM’s final layer to form the con-
text representation. Alvarez-Gonzalez et al. (2021)
suggested that a pooling function such as attention,
mean or max can be used to aggregate token em-
beddings to a vector; The [CLS] token embedding
is also commonly used as the sentence-level fea-
ture (Devlin et al., 2018). However, Su et al. (2021)
showed that averaging the token embeddings is
better than only utilizing [CLS] token. Both are
sub-optimal as demonstrated by Choi et al. (2021).

Despite the technical diversity, most of these
methods mix up the token embeddings of a sen-
tence into a single vector. Such aggregation is a
convenient way for sentence-level representation,
but it may not be sufficiently effective in capturing
the semantic and temporal distribution, which can

be crucial to accurate emotion classification.
In the NLP literature, concept of anchors have

been explored in various tasks, but with motiva-
tions and implementations very different from our
approach. For example, Arora et al. (2012) se-
lected words that are uniquely associated with a
topic as anchors to accelerate topic modeling anal-
ysis. Liu et al. (2020) adopted the average contex-
tual representations of each word as the anchors to
enhance contextualized representations. Wang et al.
(2023) used the class labels/words as anchors and
used anchor re-weighting to improve in-context
learning performance. In these works, anchors are
linked to predefined words, while our anchors are
learned adaptively through data.

GNN models have also been applied in NLP
tasks, like encoding word relations (Yao et al.,
2019), recognizing named entities (Luo and Zhao,
2020), modeling syntactic structures (Luo and
Zhao, 2020), etc. A main difference is that our
GNN is built on semantic anchors rather than raw
tokens. Using anchors as GNN nodes allows gener-
ating emotion representations that are not only rich
and multi-faceted, but also well-aligned across dif-
ferent sentences without token padding or cutting
(an undesired perturbation of their embeddings).

GNN models themselves could also benefit from
the use of anchors. These methods use anchors to
improve the computational efficiency of GNNs or
graph-based clustering/semi-supervised learning
(Liu et al., 2010; Nie et al., 2022; You et al., 2019,
etc), to better encode relative positional relation
between the nodes (You et al., 2019), or to improve
graph embedding in case of noisy/inaccurate edges
(Tu et al., 2022). These anchor based GNN models
are different from ours in both their motivations
and methodology. They mainly consider graphs
like similarity graph (clustering), protein networks
and communication networks (link prediction and
community detection), without temporal (sequen-
tial) relation between the nodes; in comparison, a
challenge in our context is how to properly project
the temporal relationship between pairs of tokens
onto their corresponding anchors. Furthermore,
our anchors are learned end-to-end, instead of be-
ing directly selected from existing nodes or com-
puted through an off-line procedure.

3 Methodology

The SEAN-GNN model has three main modules,
as discussed in the following three subsections.
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3.1 Semantic Anchors

Given m sentences each shaped to the same length
of n tokens, as X(i) = {x(i)

1 ,x
(i)
2 , ...,x

(i)
n }. Here

x
(i)
j ∈ Rd×1 is the embedding of the jth token of

the ith sentence. In order to account for the diver-
sity of emotion-related vocabulary in the training
data, we propose to learn a global semantic anchor
set, Z = {z1, z2, ..., zK} to facilitate the represen-
tation learning for emotion classification. Each
zk ∈ Rd×1 is a vector in the word embedding
space. Preferably, the learned anchors should be di-
verse enough to cover different emotional aspects,
while in the mean time discriminative enough to
generate good features for accurate classification.

To promote diversity of semantic anchors, we
collect token embeddings from all (or a random
subset of) the input sentences obtained through
pretrained language model, and then initialize the
anchors as their K-means clustering centers. The
K-means algorithm is known to distribute cluster-
ing centers to minimize the reconstruction error
of the input samples. We further optimize the se-
mantic anchors in the end-to-end architecture in
Figure 1. By doing this, the semantic anchors will
be iteratively optimized and updated to facilitate
extraction of discriminative semantic and temporal
features for emotion classification.

3.2 Information Projection through Semantic
Anchor Graph

Using the K anchors {z′ks} as global reference,
we can project the information of sentence X(i)

onto it and obtain a graph representation as G(i) =
(A(i),W(i)). We call G(i) the semantic-anchor
graph (SEAN-graph) for sentence X(i), which has
exactly K nodes corresponding to the K anchors.
The node attribute matrix A(i) ∈ RK×d and ad-
jacency matrix W(i) ∈ RK×K respectively en-
codes the semantic (first-order) and the temporal
(second-order) distribution of the input sentence.
Since anchors are shared across sentences with
wide coverage and discriminative power, the se-
mantic anchor graph G(i) serves as an informative
and well-aligned emotion representation.

To project the input sentence X(i) onto the K an-
chors to extract its semantic/temporal information,
we have devised the following two projectors:

• Content projector. The semantics/embeddings
of the words of a sentence are projected as
node attributes (A(i)) of the SEAN-graph.

• Temporal projector. The temporal relations
between the words of a sentence are projected
as edge weights (W(i)) of the SEAN-graph.

Content projector. Suppose we are given
an input sentence with token embedding matrix
X(i) = {x(i)

1 ,x
(i)
2 , ...,x

(i)
n }. The goal of the con-

tent projector is to project each token to the K
anchors zk’s in a probabilistic manner. We use a
probability matrix P(i) ∈ Rn×K whose jkth entry
denote the probability that the jth token in the ith
sentence belongs to the kth anchor, such that

P
(i)
jk =

exp

(
−∥x(i)

j −zk∥2
2σ2

)

∑K
k=1 exp

(
−∥x(i)

j −zk∥2
2σ2

) (1)

with σ the bandwidth of the Gaussian. In other
words, each row of P(i) specifies the probability
of one token belonging to the K anchors. It can
also be deemed as the cross-attention matrix be-
tween tokens and anchors. After quantifying the
probabilistic association between n tokens and the
K anchors, we can project the token embeddings
onto the anchors as,

A(i) = (P(i))⊤ ·X(i). (2)

The matrix A(i) ∈ RK×d′ can be used as the at-
tribute matrix of the semantic anchor-graph G(i).
Intuitively, the kth row in A(i) summarizes the con-
tent of the sentence that are most relevant to the
kth semantic anchor. If the tokens are all irrelevant
to that anchor, the kth row of A(i) approaches 0.

Temporal Projector. The goal of the temporal
projector is to project the temporal/positional re-
lation between pairs of tokens in a sentence onto
pairs of anchors. This allows token relationship
in each sentence to be expressed globally as the
relationship among the K semantic anchors.

Suppose we have projected a sentence X(i) onto
K anchors, with the token-anchor probability ma-
trix P(i) (1). We normalize it such that kth column
in P(i) becomes a probability simplex describing
the probabilities that a word similar to the kth an-
chor appears in the n locations of the sentence X(i).
It can be deemed as the positional distribution of
the kth anchor in the sentence. We will use these
columns to evaluate the relations between any pair
of anchors for input sentence X(i), as follows.

Let p(i)
a and p

(i)
b denote two columns of P(i),

i.e., p(i)
a = P

(i)
[:,a], p

(i)
b = P

(i)
[:,b], as illustrated in
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Figure 2. For each of the n entries/locations in p
(i)
a ,

say, the sth entry with (large) probability p
(i)
a (s),

we will examine the entries inside the location win-
dow [s− l, s+ l] in the probability vector p(i)

b . If
there exists a large probability in this window, that
means two words whose meanings are similar to
the two anchors respectively appear in close vicin-
ity to each other within the input sentence X(i).
This should contribute positively to the temporal
relation between the two anchors. We will exam-
ine all the entries in pa and accumulate the scores.
Mathematically, the temporal relation between the
ath anchor and the bth anchor due to the input
sentence X(i) can then be computed as follows,

W
(i)
ab =

n∑

s=1

p(i)
a (s)

n∑

t=1

p
(i)
b (t) · exp (−|s− t|)

It can be deemed as the correlation between two
probability simplex vectors (positional distribution
of two anchors) but with relaxed positional align-
ment. Note that if we scan through entries in p

(i)
b

and find neighbors in p
(i)
a , the resultant, accumu-

lated score will be the same (see Appendix A.1).
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Figure 2: The temporal relation between two anchors, a
and b, for input sentence X(i) based on their respective
positional distributions in this sentence.

The W
(i)
ab can be computed in matrix form as

follows. Define the n×n probabilistic coincidence
matrix using outer-product K(i)

ab = p
(i)
a (p

(i)
b )⊤,

and n× n positional proximity matrix C such that
Cst = exp(−|s−t|). Then W

(i)
ab can be computed

as the sum of entries of the hadamard product

W
(i)
ab =

∣∣∣K(i)
ab ⊙C

∣∣∣
1

(3)

Empirically, revising the ℓ1-norm in (3) to the
mixed-norm ℓ∞,1 (summation of the maximum
entry of each row) gives more robust result. This
means that for a token in one of the two positional
distributions, p(i)

a and p
(i)
b , we emphasize only the

most significant word pairs across the two distribu-
tions. This, however, breaks the symmetry so we

have to compute symmetric version

W
(i)
ab =

∣∣∣K(i)
ab ⊙C

∣∣∣
∞,1

+
∣∣∣(K(i)

ab )
⊤ ⊙C

∣∣∣
∞,1

(4)

3.3 Message Passing on the Anchor-Graph
Having encoded the semantic/temporal informa-
tion of sentence X(i) as an undirected anchor graph
G(i), with node attribute matrix A(i) and adjacency
matrix W(i), we employ GNNs (Kipf and Welling,
2016; Velickovic et al., 2017; Hamilton et al., 2017,
etc.) to perform message passing among the an-
chor nodes. The procedures using GCN (Kipf and
Welling, 2016) is as follows.

H[l] = A(i)

W̃ = W(i), D̃ii =
∑

j
W̃ij

H[l+1] = σ
(
D̃− 1

2W̃D̃− 1
2H[l]Θ[l]

)
(5)

Here, H[l] is node feature matrix at layer l, and the
0th layer is initialized by A(i); D̃ is normalized de-
gree matrix, W̃ is chosen as the adjacency matrix
between anchors, σ is the ReLU (Krizhevsky et al.,
2012), and Θ[l]is the transform at layer l.

The message passing on semantic anchor graph
will aggregate the features of those anchor-nodes
having close temporal relations with each other
according to the input sentence. In other words,
the temporal and semantic information of the input
sentence are integrated through GNN to enhance
the anchor features, and the resultant attribute ma-
trix H[l] will uniquely determine representation of
the input sentence. We concatenate H[0] and final-
layer H[l] as the sentence-level representation, and
flatten it to a long vector with a 3-layer FFN and
cross entropy loss for classification. Note that our
method allows any GNN model for message pass-
ing, lending itself great flexibility in applications.

4 Experiments

4.1 Datasets
We evaluate our model on altogether 6 benchmark
datasets widely used for emotion classification.
Among them, the first two are fine-grained clas-
sification (the two largest and most challenging
datasets we could find in the literature), and the
other 4 datasets are course-grained classification.
The way we pre-process each dataset follows pre-
vious works (Chen et al., 2023; Suresh and Ong,
2021; Yin and Shang, 2022). Brief data statistics
are listed below (see more details in Appendix B).
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(1) Empathetic Dialogue (Rashkin et al., 2019)
consists of dialogues between a speaker and a lis-
tener with 32 single emotion label.
(2) GoEmotion (Demszky et al., 2020) are Reddit
comments from 27 emotions and neutral.
(3) CancerEmo (Sosea and Caragea, 2020) com-
poses of 8500 sentences sampled from an online
cancer survivors network with 8 emotion labels.
(4) ISEAR (Scherer and Wallbott, 1994) contains
sentences of personal reports on emotional events
labelled with one of 7 emotions.
(5) GoEmotion-EK (Ekman et al., 1999) anno-
tates data originally constructed by (Demszky et al.,
2020) into Ekman’s 6 basic emotions.
(6) EmoInt (Mohammad and Bravo-Marquez,
2017) comprises tweets of 4 emotion classes.

4.2 Experimental Settings and Baselines
Metrics. For fine-grained emotion classification,
we adopt Accuracy and Weighted F1 by following
the setting in (Suresh and Ong, 2021) and (Chen
et al., 2023). For coarse-grained emotion classifica-
tion, we use Macro F1 following the common prac-
tice in (Yin and Shang, 2022; Singh et al., 2023).

Baselines. We incorporated 12 baseline meth-
ods. Baseline methods (1-6) are three PLMs
(BERT, RoBERTa, and ELECTRA) with two sizes
(base, large), all using the [CLS] token embed-
ding as the sentence-level feature. The remaining
6 baselines are recent state-of-the-art methods, in-
cluding: (7) LCL (Suresh and Ong, 2021) using
label-aware contrastive loss; (8) Hypemo (Chen
et al., 2023), using label-aware weighting and hy-
perbolic distance metric; (9-10) PLM-BiLSTM
and PLM-DNN (Alvarez-Gonzalez et al., 2021)
using Bi-LSTM and DNN to update token em-
beddings from PLMs with summation pooling;
(11) PsyLing (Zanwar et al., 2022) use Bi-LSTM
trained on psycholinguistic features to improve the
generalizability for emotion classification of token
embeddings from PLMs; (12) KNNEC (Yin and
Shang, 2022) using whitening method and nearest
neighbor retrieval for emotion classification.

Method (7-12) and ours need a base PLM to
compute token embeddings. For fairness of com-
parison, we used RoBERTabase for all, which was
also the majority of their official choices. For those
officially reported results using BERTbase, our com-
parisons with them are in Appendix C.1.

Our algorithm used batch size 64 and AdamW
optimizer, with a learning rate 2e−5 and a weight
decay 0.01. Graph convolutional network (Kipf

and Welling, 2016) is used for message passing.
The number of semantic anchor K was chosen
from {50, 100, 150, 200} using validation set. The
parameter settings of other methods follow their
original papers, see details in Appendix C.2.

4.3 Classification Results
Results are reported in Table 1. Each evaluation
is based on 5 repeats of different seeds, with the
average score and standard deviation.

Our results surpassed over PLMs (base and large
versions), with weighted-F1 being 4.0% and 2.2%
higher than the best among them (RoBERTa large)
in two fine-grained classifications. In the 4 coarse-
grained tasks, our model surpassed RoBERTalarge
in Macro-F1 by 1.1% - 2.9%. Note that our model
was only based on the base version of RoBERTa.
Therefore these performance gains are clearly at-
tributed to the use the semantic anchor graph in
aggregating token embeddings.

Our model also outperforms other advanced al-
gorithms with an improvement of 1.2% and 1.1%
in weighted F1 , 1.6% and 2.2% in accuracy against
the best competitor on 2 fine-grained tasks; on
4 coarse-grains datasets, an improvement around
1.1% - 2.2% in Macro F1 was observed. Overall,
our method has shown promising results across all
metrics and datasets.

4.4 Impact of Base PLMs and Anchor-set Size
Table 2 reports the results of our method using
anchor-based sentence features when the raw to-
ken embeddings are obtained from different base
PLMs (BERTbase, RoBERTabase, ELECTRAbase).
It also reports the results of these PLMs using
[CLS] embedding as sentence features. As can
be seen, SEAN-GNN can enhance performance ir-
respective of the PLM employed, with an improve-
ment around 3.3% - 9.4%. This shows that our
approach is PLM-agnostic and can be versatilely
integrated with any PLMs to improve performance.

We also investigate how the number of semantic
anchors, K, affects the performance. Using the
two fine-grained datasets, we plot the Weighted
F1 score of our method when K is chosen from 1
to 500. Here, K=1 can be deemed as the standard
pooling. As shown in Figure 3, the performance ex-
hibits a significant improvement when K increases
from 1 to 100, validating the effectiveness of intro-
ducing semantic anchors to emotion classification.
When K increases to 200, the performance remains
steady, meaning that the gains due to larger num-
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Empathetic Dialogue 32 GoEmotions 27 CE 8 IS 7 EK 6 EM 4

Acc Weighted F1 Acc Weighted F1 Macro F1

BERTbase 50.4 ± 0.3 51.8 ± 0.21 60.9 ± 0.4 62.9 ± 0.5 70.1 ± 1.4 69.2 ± 0.8 71.1 ± 1.1 84.8 ± 0.6
RoBERTabase 54.5 ± 0.7 56.0 ± 0.4 62.6 ± 0.6 64.0 ± 0.2 73.6 ± 1.3 69.4 ± 0.9 71.9 ± 0.7 85.4 ± 0.6
ELECTRAbase 47.7 ± 1.2 49.6 ± 1.0 59.5 ± 0.4 61.6 ± 0.6 72.1 ± 0.5 69.9 ± 1.2 71.4 ± 1.3 85.2 ± 0.9

BERTlarge 53.8 ± 0.1 54.3 ± 0.1 64.5 ± 0.3 65.2 ± 0.4 72.3 ± 0.7 70.2 ± 1.4 71.6 ± 0.9 85.6 ± 0.5
RoBERTalarge 57.4 ± 0.5 58.2 ± 0.3 64.6 ± 0.3 65.2 ± 0.2 74.7 ± 1.0 73.1 ± 0.5 73.0 ± 0.8 86.0 ± 0.7
ELECTRAlarge 56.7 ± 0.6 57.6 ± 0.6 63.5 ± 0.2 64.1 ± 0.3 73.5 ± 0.9 72.5 ± 1.4 72.0 ± 0.7 85.3 ± 0.7

PLM-BiLSTM† 55.3 ± 1.1 56.9 ± 0.9 63.4 ± 1.4 64.6 ± 0.8 73.8 ± 0.7 69.9 ± 1.2 72.3 ± 0.6 85.6 ± 0.6
PLM-DNN† 55.1 ± 0.7 57.2 ± 1.3 63.0 ± 0.5 64.3 ± 1.4 74.4 ± 0.9 70.3 ± 1.1 72.6 ± 0.8 85.4 ± 0.5

PsyLing 56.5 ± 1.2 57.0 ± 1.1 63.0 ± 0.6 64.6 ± 1.3 74.7 ± 0.7 71.7 ± 1.4 73.0 ± 0.9 85.7 ± 0.3
KNNEC 58.0 ± 0.9 58.5 ± 0.8 64.0 ± 1.2 64.5 ± 1.0 74.4 ± 0.6 70.7 ± 1.1 73.5 ± 1.3 86.0 ± 0.7

LCL† 59.5 ± 0.6 59.2 ± 0.5 64.5 ± 0.3 65.1 ± 0.3 75.0 ± 0.8 72.1 ± 1.0 72.8 ± 1.2 86.3 ± 0.3
HypEmo 59.6 ± 0.3 61.0 ± 0.3 65.4 ± 0.2 66.3 ± 0.2 75.4 ± 0.6 73.0 ± 1.4 73.2 ± 0.8 86.0 ± 0.6

Ours 61.2 ± 0.3 62.2 ± 0.2 67.6 ± 0.4 67.4 ± 0.5 77.6 ± 0.3 74.2 ± 0.6 74.7 ± 0.5 87.6 ± 0.4

∆ + 1.6% + 1.2% + 2.2% + 1.1% + 2.2% + 1.1% + 1.2% + 1.3%

Table 1: Classification results (in %) for all methods, with weighted F1 and accuracy for fine-grained task (Suresh
and Ong, 2021; Chen et al., 2023), and Macro F1 for coarse-grained task (Yin and Shang, 2022; Singh et al., 2023).
The best/second-best results highlighted in bold/ underline. "†" indicates we present results using RoBERTabase as
backbone for fairness. CE, IS, EK, EM stands for CancerEMO, ISEAR, GoEmotion-EK, EmoInt; numerals are the
number of classes. ∆ represents the improvement of our model over the second-best.

Dataset PLM w/o with ∆

ED BERTbase 51.8 58.8 + 7.0%
ED RoBERTabase 56.0 62.2 + 6.2%
ED ELECTRAbase 49.6 59.0 + 9.4%

GE BERTbase 62.9 66.2 + 3.3%
GE RoBERTabase 64.0 67.4 + 3.4%
GE ELECTRAbase 61.6 64.9 + 3.3%

Table 2: Weighted F1 score of different PLMs using
[CLS] token as sentence embedding, and that using
SEAN-GNN for sentence embedding. ED for Empa-
thetic Dialogue and GE for GoEmotion.

ber of anchors diminish. When K is larger than
300, the performance drops slightly by 0.5% - 1%.
This is because too many additional anchors (be-
yond what is necessary) may lead to overfitting or
introduce unnecessary noise. In practice, we use
validation set to determine the number of anchors,
which is typically around 100.

Figure 3: How the number of semantic anchors, K,
affects the performance of SEAN-GNN.

4.5 Case Study

In this subsection, we examine whether SEAN-
GNN can generate meaningful semantic anchors
for emotion classification, as well as unique graph
patterns for different emotion classes. Moreover,
we report comparative results using 4 most diffi-
cult subsets of Empathetic Dialogues to further
demonstrate the effectiveness of our method.

We choose three pairs of emotion classes with
subtle difference: {Afraid vs Terrified}, {Angry vs
Furious} and {Sad vs Devastated}. First, we pull
out top-6 semantic anchors most relevant to each
emotion, and annotate the anchor with two words
with closest embeddings to it (see Appendix A.2).
As shown in Figure 4, the learned anchors en-
compass verbs (run, shout, cry), nouns (murder,
betrayal, despair) and adjectives (severe, unfair, up-
set). Their semantics look quite reasonable with
each emotion class, like Terrified: {murder, crime,
scream, frighten}, and Furious: {disrespect,insult}.
Interestingly, for the intense emotion in each pair
(e.g., furious, terrified), they are often associated
with anchors of adverbs such as {so, really, very,
quite}, which are absent in less-intense emotions
(afraid, sad). Intense emotions may also employ an-
chors like {murder, yell} to describe the fierce state.
These observations are consistent with our under-
standing of the emotions from a natural language
perspective. A longer list is in Appendix A.3.

Figure 4 visualizes the averaged adjacency ma-
trix (4) (edges with the top-10% highest weights)
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die /
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grief

upset 

yell /
shout

anger /
temper cheat /

lie

irritated /
annoyed

abuse /
bully

insult

unfair /

so /
quite

mistake /
error rude /

interrupt /
ignore

offensive

disrespect /

betrayed /            

run /
escape

severe /
extreme scream /
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fear / 
sacre

danger /
risk

panic

unknown /
accident

murder /
crime

cancer /
illness

night /
midnight really /

very

horror /
terror

threat /

Figure 4: Visualization of semantic anchors (top row) and anchor-graph patterns (bottom row) learned by SEAN-
GNN for 6 (3 pairs of easily confused) emotion classes. Top row: 6 most relevant anchors, each annotated by 2
closest words, for different emotions as visualized by tSNE (colored squares: class-relevant anchors; gray: less
relevant). Bottom row: averaged anchor-graph patterns (K ×K adjacency matrix in (4)) for each emotion class.

subseta subsetb subsetc subsetd

RoBERTabase 57.1 64.4 55.5 79.4
LCL 58.7 66.3 57.2 80.2

HypeEmo 63.6 69.5 60.0 81.1
Ours 64.9 70.6 61.6 82.5

∆ 1.3% 1.1% 1.6% 1.4%

Table 3: Weighted F1 (%) on 4 most confusable sub-
sets of Empathetic Dialogue compared with previous
effective methods and RoBERTabase. ∆ represents the
improvement of our model over the second-best.

for sentences in each emotion category. The
anchor-graph patterns show a clear difference even
among emotion categories with only small differ-
ence.This shows the discriminative power of the
anchor-graph based sentence representations.

Table 3 reports comparative results on four
most confusable subsets of Empathetic Dialogue
selected by Suresh and Ong (2021) (see Appendix
D for details). Our method outperforms state-of-
the-art methods by 1.1%-1.6% in weighted F1.

4.6 Ablation Study

SEAN-GNN has several core components: Content
Projector, Temporal Projector, and GNN-module.
We sequentially remove each component and re-
port results for the two fine-grained datasets in
Table 4 in Weighted F1. It is observable that the
elimination of any one of the three components has
a significant detrimental effect on the performance.

Dataset Model Weighted F1 ∆

ED Complete 62.2 -
ED w/o Te 60.2 - 2.0%
ED w/o Te, GNN 58.4 - 3.8.%
ED w/o Te, GNN, Se 56.0 - 6.2%

GE Complete 67.4 -
GE w/o Te 66.3 - 1.1%
GE w/o Te, GNN 65.3 - 2.1%
GE w/o Te, GNN, Se 64.0 - 3.4%

Table 4: Weighted F1 (%) on ED and GE datasets after
sequentially removing the core component of our model.
TP/SP: Temporal/Semantic Projector. ∆: the adverse
impact due to removal of current component(s).

5 Conclusion

We proposed SEAN-GNN to extract the content
distribution and toke relation for fine-grained emo-
tion classification. It allows generating comprehen-
sive and discriminative emotion representations,
and has produced promising results across differ-
ent benchmark datasets and base PLM embedding.
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7 Limitations

We only evaluated the performance of the compet-
ing methods on datasets in the English, due to the
lack of fine-grained emotion classification datasets
in languages other than English,which potentially
introduced language and cultural biases. Moreover,
the risk of reinforcing existing data biases and the
consideration of model fairness across different
demographic groups were not addressed.
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A Appendix

A.1 Temporal Relation between two Anchors

We prove that if we scan the entries in p
(i)
a and

find neighbors in p
(i)
b , or if we do the opposite, the

resultant score between the two anchors (a and b)
will be the same, i.e., i.e.,

n∑

s=1

p(i)
a (s)

n∑

t=1

p
(i)
b (t) · exp (−|s− t|)

=
n∑

s=1

p
(i)
b (s)

n∑

t=1

p(i)
a (t) · exp (−|t− s|)

To prove this, we can simply swap the two sum-
mation indices, s and t; due to the exchangabil-
ity of the two indices and that exp (−|s− t|) =
exp (−|t− s|), we can easily see the equivalence.

Note that the computation in (3) can also be
written in quadratic terms W(i) = (P(i))⊤CP(i)

considering that all the numbers are non-negative.
This is computationally very efficient because all
the pairwise anchor relations can be computed with
two matrix multiplications. However, this may not
be applicable to the computation of (4) because we
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have to explicitly compute the hadamard matrix
K

(i)
ab ⊙C. This also makes our computation (of the

information projector) very different from other
methods in the literature such as the hierarchical
pooling (Ying et al., 2018, etc.).

A.2 Identifying Emotion-Relevant Anchors

When learning the semantic anchors {z′ks}, they
are not specifically tied to emotion classes but in-
stead learned globally. After obtaining the anchors,
however, we can associate each anchor to all the
emotion classes so as to make post-hoc analysis.

Suppose we have m sentences, each with the
feature H(i) ∈ RK×d′ as learned by SEAN-GNN.
Each sentence is also linked to a label vector
y(i) ∈ R1×L, with L the number of emotions.
Then we can perform association analysis as fol-
lows. We flatten each H(i) to a Kd′-dimensional
vector, and put this vector all all the m sentences
together as an m × Kd matrix; we also put the
label vectors together and form a m × L matrix.
We can then compute the correlation between these
two matrices and obtain an Kd′ × L association
matrix. We compute the absolute value of this ma-
trix and compress it to a K×L matrix by summing
up those rows that belong to the same anchor. This
matrix then tells the relevance between each anchor
and each emotion class.

A.3 List of Anchors for Some Emotions

In Table 5, we report a longer list of the anchors
that are associated with each emotion class, by
choosing top 6 anchors for each class, (three clos-
est words to each anchor for annotation), and 10
different emotion classes appearing in Empathetic
Dialogue. In the following, we denote each anchor
as (w1, w2, w3), the three words with the closest
embeddings to this anchor.

B Details on Datasets and Pre-processing

(1) Empathetic Dialogue (Rashkin et al., 2019)
consists of dialogues between a speaker and a lis-
tener with 32 single emotion label. For fair compar-
ison with the previous model (Chen et al., 2023),
we only utilize the first turn of the dialogue. The
training/validation/test split of the dataset is 19,533
/ 2,770 / 2,547, respectively.
(2) GoEmotion (Demszky et al., 2020) is a dataset
of Reddit comments where each sample is anno-
tated with one or more labels from 27 emotions and
neutral. Following Chen et al. (2023), we exclude

Emotion Anchors

Afraid
(accident, crash, incidents), (night, midnight, dark),
(danger, risk, hazard), (threat, panic, alarm),
(run, escape, flee), (fear, scare, worry)

Terrified
(cancer, illness, disease), (severe, extreme, intense),
(horror, terror, fear), (murder, crime, violence),
(really, very, truly), (scream, frighten, shout)

Angry
(temper,rage,anger), (unfair,bullied,oppressed),
(rude,offensive,impolite), (interrupt,ignore,disrupt),
(mistake,error,fault), (irritated,annoyed,upset)

Furious
(cheat,lie,deceive), (betrayed,untrust,faithless),
(shout,yell,scream), (disrespect,insult,abuse),
(so,quite,very), (insult,abuse,offend)

Sad
(lose,miss,lost), (upset,frustrated,disappointed),
(failure,sorrow,regret), (unhappy,heartbroken,worried),
(cry,weep,tears), (depressed,sentimental,unhappy)

Devastated
(die,pass,lose), (despair,grief,sadness),
(lost,gone,missing), (crushed,shocked,stunned),
(really,very,truly), (divorce,cancer,separation)

Excited
(thrilled, elated, happy), (eager, keen, enthusiastic),
(wonder, awe, astonished), (party, fun, celebration),
(happy, cheerful, delighted), (cheer, celebrate, shout)

Proud
(honor, dignity, respect), (accomplished, successful, celebrated)
(award, recognition, medal), (achievement, accomplishment, success),
(happy, cheerful, delighted), (pleased, satisfied, content)

Joyful
(happy, cheerful, delighted), (celebration, festivity, party)
(fun, enjoyment, pleasure), (smile, laugh, enjoy ),
(glad, pleased, satisfied), (laughter, amusement, thrill)

Grateful
(thankful, appreciative, obliged), (thanks, appreciation, gratitude)
(blessing, gift, favor), (kindness, support, help)
(acknowledgment, recognition, appreciation),(smile, thank, express)

Table 5: List of top-6 most relevant semantic anchors to
10 emotion classes; each anchor is annotated by three
words whose embeddings are closest to it.

samples with multiple labels and the neutral label.
The training/validation/test split of the remaining
dataset is 23,485 / 2,956 / 2,984.
(3) CancerEmo (Sosea and Caragea, 2020) com-
poses of 8500 sentences sampled from an online
cancer survivors network and label them with 8
eight Plutchik basic emotions (Plutchik, 1980).
(4) ISEAR (Scherer and Wallbott, 1994) includes
personal reports of emotional experiences from
diverse cultural backgrounds. This collection com-
prises 7000 sentences, which are categorized into
seven distinct emotions. The train/validation/test
split of the dataset is 4,599 / 1,533 / 1,534.
(5) GoEmotion-EK (Ekman et al., 1999) anno-
tates data originally constructed by (Demszky et al.,
2020) into Ekman’s 6 basic emotions. Following
Yin and Shang (2022), sentences with multi la-
bels and the neutral label are removed. The train-
ing/validation/test split of the remaining dataset is
23,485 / 2,956 / 2,984.
(6) EmoInt (Mohammad and Bravo-Marquez,
2017) comprises tweets of 4 emotion classes. The
train/validation/test split of this dataset is 3,612 /
346 / 3,141.
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Empathetic Dialogue 32 GoEmotions 27 CE 8 IS 7 EK 6 EM 4

Acc Weighted F1 Acc Weighted F1 Macro F1

PLM-BiLSTM 54.3 ± 0.8 55.6 ± 0.7 62.3 ± 0.6 63.5 ± 0.6 72.5 ± 0.3 69.5 ± 0.7 71.5 ± 1.0 85.4 ± 0.4
PLM-DNN 52.9 ± 0.4 54.4 ± 0.5 62.0 ± 0.7 63.3 ± 1.3 73.0 ± 0.5 70.1 ± 0.7 71.9 ± 0.8 85.0 ± 0.2

PsyLing 56.0 ± 1.0 56.3 ± 0.9 62.7 ± 0.7 63.8 ± 1.1 74.4 ± 0.6 70.1 ± 1.0 71.0 ± 0.7 85.4 ± 0.5
KNNEC 57.1 ± 0.8 57.5 ± 0.8 63.6 ± 1.3 63.5 ± 1.0 73.9 ± 0.4 69.5 ± 0.5 72.7 ± 0.4 85.7 ± 0.4

Ours 60.5 ± 0.3 61.0 ± 0.2 66.7 ± 0.4 66.4 ± 0.5 76.1 ± 0.3 72.2 ± 0.6 73.9 ± 0.5 86.5 ± 0.4

∆ + 3.4% + 3.5% + 3.1% + 2.6% + 1.7% + 2.1% + 1.2% + 0.8%

Table 6: Classification results (in %) using BERTbase as backbone for all methods, with weighted F1 and accuracy
for fine-grained task and Macro F1 for coarse-grained task. The best/second-best results highlighted in bold/
underline. CE, IS, EK, EM stands for CancerEMO, ISEAR, GoEmotion-EK, EmoInt; numerals are the number of
classes. ∆ represents the improvement of our model over the second-best.

C Comparison with BERT-based model
and Baseline settings

C.1 Comparison with BERT-based models

Some Baselines report official results utilizing
BERTbase as their backbone. For fair comparison,
we incorporate our method on top of BERTbase, and
the comparative results can be found in Table 6.
We performed the experiment five times using dif-
ferent random seeds and reported the mean score
along with the standard deviation.

C.2 Parameter settings of baseline models

For baseline (1-6), we uniformly set the batch size
to 64, the learning rate to 2e-5, use AdamW as the
optimizer, and set the weight decay to 0.01.

For baseline (7-12), We select parameters from
the following range and determine their values
based on performance on the validation set. These
parameter candidates have subsumed their recom-
mended parameters (if reported in their papers).
The batch size is chosen from the set {4, 8, 16, 32,
64}, the learning rate from {1e-5, 2e-5, 1e-4, 1e-3,
1e-2}, the weight decay from {1e-5, 1e-4, 1e-3,
1e-2, 1e-1, 0}, and the optimizer from Adam and
AdamW.

D Details on 4 confusable subsets of ED

The 4 subsets of Empathetic Dialogue are selected
by Suresh and Ong (2021), comprising the most
challenging subsets identified after evaluating all
possible combinations of four labels. These sub-
sets include: a: {Anxious, Apprehensive, Afraid,
Terrified}, b: {Devastated, Nostalgic, Sad, Senti-
mental}, c: {Angry, Ashamed, Furious, Guilty},
and d: {Anticipating, Excited, Hopeful, Guilty}
from the Empathetic Dialogue datasets.

E Comparisons with LLMs on FEC tasks

Given the widespread application and promising
outcomes of large language models, we further in-
clude GPT-4o and Llama3-8b, two highly popular
and competitive LLMs in new comparisons on 2
largest fine-grained emotion classification datasets
in the paper: Empathetic Dialogue and GoEmo-
tions, using the popular experimental settings as
Liu et al. (2024) and the prompt template used by
Gao et al. (2023).

Experimental results are shown in Table 7,
where ZS, FS denotes zero-shot and few-shot; ED,
GE represents Empathetic Dialogue and GoEmo-
tions respectively. The prompt template used for
GoEmotions data is shown in Table 8.

Empathetic Dialogue 32 GoEmotions 27

Acc Weighted F1 Acc Weighted F1

Llama3-8b-ZS 16.3 ± 0.5 11.5 ± 0.2 31.4 ± 0.4 28.1 ± 0.4
Llama3-8b-FS 18.9 ± 0.5 14.6 ± 0.3 31.6 ± 0.5 30.2 ± 0.1

GPT-4o-ZS 20.2 ± 0.4 19.2 ± 0.3 42.2 ± 0.2 42.7 ± 0.7
GPT-4o-FS 20.5 ± 0.3 20.2 ± 0.1 43.8 ± 0.3 44.0 ± 0.1

Ours 61.2 ± 0.3 62.2 ± 0.2 67.6 ± 0.4 67.4 ± 0.5

Table 7: Comparisons with GPT-4o and Llama3-8b on
GE and ED datasets. The best results highlighted in
bold.

As shown in Table 7, we can see that the two
LLMs perform less satisfactorily in zero / few-
shot experiments on these two difficult fine-grained
emotion classification tasks. In fact, similar obser-
vations were also made by other researchers (Liu
et al., 2024; Kocoń et al., 2023; Zhang et al., 2023).
Indeed, why powerful LLMs do not excel in fine-
grained emotion classification remains open and
could be related to many factors: processing and
understanding context correctly and extracting fine-
grained structured sentiment (Kocoń et al., 2023),
potential loss of structured emotional detail in the
sentence (Liu et al., 2024; Zhang et al., 2023), etc.
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Prompt template for zero-shot emotion classification:

Given sentences from Reddit comments, the task is to classify the sentences as being an Admi-
ration, Approval, Annoyance, Gratitude, Disapproval, Amusement, Curiosity, Love, Optimism,
Disappointment, Joy, Realization, Anger, Sadness, Confusion, Caring, Excitement, Surprise,
Disgust, Desire, Fear, Remorse, Embarrassment, Nervousness, Pride, Relief, or Grief category
of emotions. Don’t explain yourself.

Thus given the following input:

input: [INPUT SENTENCE]
answer:

Prompt template for few-shot emotion classification:

Given sentences from Reddit comments, the task is to classify the sentences as being an Admi-
ration, Approval, Annoyance, Gratitude, Disapproval, Amusement, Curiosity, Love, Optimism,
Disappointment, Joy, Realization, Anger, Sadness, Confusion, Caring, Excitement, Surprise,
Disgust, Desire, Fear, Remorse, Embarrassment, Nervousness, Pride, Relief, or Grief category
of emotions. Don’t explain yourself.

Some examples are:
input: [INPUT SENTENCE 1]
answer: [ANSWER 1]
input: [INPUT SENTENCE 2]
answer: [ANSWER 2]

Thus given the following input:
input: [INPUT SENTENCE]
answer:

Table 8: Prompt template used for GoEmotions data

We will study how to combine the advantages of
specific classifiers with general LLMs for emotion
classification in our future work.
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