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Abstract

Scientific literature is typically dense, requir-
ing significant background knowledge and deep
comprehension for effective engagement. We
introduce SCIDQA, a new dataset for read-
ing comprehension that challenges LLMs for a
deep understanding of scientific articles, con-
sisting of 2,937 QA pairs. Unlike other scien-
tific QA datasets, SCIDQA sources questions
from peer reviews by domain experts and an-
swers by paper authors, ensuring a thorough
examination of the literature. We enhance the
dataset’s quality through a process that care-
fully filters out lower quality questions, de-
contextualizes the content, tracks the source
document across different versions, and in-
corporates a bibliography for multi-document
question-answering. Questions in SCIDQA ne-
cessitate reasoning across figures, tables, equa-
tions, appendices, and supplementary materi-
als, and require multi-document reasoning. We
evaluate several open-source and proprietary
LLMs across various configurations to explore
their capabilities in generating relevant and fac-
tual responses. Our comprehensive evaluation,
based on metrics for surface-level similarity
and LLM judgements, highlights notable per-
formance discrepancies. SCIDQA represents a
rigorously curated, naturally derived scientific
QA dataset, designed to facilitate research on
complex scientific text understanding.

1 Introduction

Question-answering (QA) datasets are valuable for
evaluating the reading comprehension, reasoning,
and document understanding capabilities of lan-
guage models (Dua et al., 2019; Dasigi et al., 2021;
Rogers et al., 2023). The scientific QA task in-
volves reading a research paper and answering
questions, drawing on the paper content and some
background knowledge. This task mirrors how hu-
mans engage with academic literature (Lo et al.,
2023; Palani et al., 2023).

Figure 1: An instance in the SciDQA dataset. The ques-
tion and answer corresponding to the paper are extracted
from the reviewer-author discussion on OpenReview.

Scientific literature is inherently dense and typ-
ically requires a deep understanding and signifi-
cant background knowledge to fully comprehend
and engage with. To address this challenge, the
NLP community has developed various datasets
for question-answering (QA) from research papers
to aid in development and evaluation of AI systems
for comprehending the research papers. Methods
range from manual question generation by domain
experts (Möller et al., 2020; Dasigi et al., 2021; Lee
et al., 2023) to automated extraction of questions
using machine learning from selected texts (Saikh
et al., 2022, 2020; Pappas et al., 2020; Jin et al.,
2019; Pappas et al., 2018). However, many of these
datasets focus on surface-level information and are
often limited to questions that are written from ti-
tles and abstracts, which restricts the complexity
and deeper engagement with the full papers.

We introduce SCIDQA, a novel deep reading
comprehension dataset for scientific papers. It is
specifically tailored to the scientific articles in the
machine learning (ML) domain and sourced from
peer reviews on the OpenReview platform (Open-
Review, 2023). Peer reviews frequently include
questions or comments from reviewers who seek
information or clarification on aspects they are con-
fused about or do not fully understand. Answering
many of such questions necessitate a deep and com-
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Figure 2: Dataset curation pipeline for SCIDQA. LLM-
based QA extraction from peer reviews is followed by
a comprehensive human expert annotation and editing.
As discussed, we only include evidence for a subset of
the dataset due to high annotation cost.

prehensive understanding of the research and the
background, such as a critical view of the approach
and results, implications of the findings, and com-
parisons with previous works. Moreover, peer re-
views are acompanied by responses from authors,
who have carefully tried to address and clarify the
reviewers questions. As both authors and reviewers
are domain experts, responding to these inquiries
necessitates a deep understanding of the paper and
its broader research field. Consequently, we be-
lieve these questions are an excellent source for
probing deep comprehension of research papers,
contrasting with prior work that often targets shal-
low information-extraction or surface-level facts.
However, not all such questions expressed in a
review are useful. In addition they also need rewrit-
ing to stand alone as clear, self-contained queries
suitable for a reading comprehension dataset. To
ensure the quality and relevance of our dataset, we
implement a human annotation process by domain
experts, highlighted in Figure 2.

Our dataset features long-form questions and
answer pairs, as shown in Table 1. It is diverse
and also some questions require comprehension of
figures, tables, equations, and references in addi-
tion to the paper text. Approximately 11% of the
questions necessitate reasoning over at least one
explicitly mentioned reference paper in addition
to the candidate paper. We evaluate several open-
source and proprietary LLMs under various con-
figurations (including closed-book, retrieval-based
setup and long-context reasoning) to benchmark
their capabitlies on this task. Our findings suggest
that our dataset presents a significant challenge, as

several LLMs struggle to generate accurate factual
answers across a variety of experimental setups.
Our dataset, code, and model outputs to reproduce
our results are available on the github repository. 1

2 Building the SCIDQA Dataset

We present the pipeline for the collection of the
SCIDQA dataset and the preprocessing, manual
filtering and rewriting steps involved. A schematic
denoting the pipeline is presented in Figure 2. We
present the various stages of data curation next.

2.1 Curation from OpenReview

We selected top-tier ML and DL venues, designated
as A* rankings by ICORE Portal (CORE), with
publicly accessible reviewer-author discussions on
OpenReview (Appendix A). We curate 11400 pa-
pers from ICLR (2018-2022) and NeurIPS (2021-
2022), with a major focus on including newer pa-
pers to decrease the risk of contamination with
LLM pretraining datasets.

2.2 Processing the reviews

PDF to Text Conversion OpenReview portal
hosts multiple submitted PDF versions of a submit-
ted manuscript which are curated. Nougat (Blecher
et al., 2023), a visual transformer model designed
for scientific OCR tasks (details in Appendix A), is
used for PDF to text conversion.

Regex Filtering OpenReview has nested discus-
sions, i.e. authors and reviewers reply to messages,
creating a time-stamp chain of discussion. We ex-
tract 18,658 reviewer-author discussions for 11,400
papers that contain questions and answers, by regex
pattern matching (details in Appendix A).

LLM-based QA Extraction Next, we extract ex-
plicit questions that reviewers asked the authors
from the reviews. For QA extraction, we uti-
lized the PaLM API (Google, 2023) to extract spe-
cific question-answer pairs within the reviewer-
author discussions.2 Initial attempts to extract
questions and answers using non-LLM methods
faced challenges, as authors and reviewers em-
ploy various patterns for posing questions and
answers, making it difficult to comprehensively

1https://github.com/yale-nlp/SciDQA
2We chose to use PaLM because it consistently delivered

high-quality extractions and offered an available API, capable
of handling up to 60 requests per minute.
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Dataset Curation Size Source Question
length

Answer
length

Multiple
Docs

% Short
Answers

QASA (2023) Manual 1,554 Full-Text 15.86 44.95 × 1.61%
QASPER (2021) Manual 5,089 Title/Abstract 9.33 18.19 × 39.94%
Covid-QA (2020) Manual 2,019 Full-Text 10.61 15.79 × 32.64%
ScholarlyRead†

(2020)
Synthetic 10,000 Abstract NA NA × NA

BioRead (2018) Synthetic 16.4M Full-Text 42.90 1.92 × 98.70%
BioMRC (2020) Synthetic 700,000 Title/Abstract 16.01 1.73 × 99.38%
PubMedQA (2019)

Annotated Manual 1,000 Title/Abstract 14.42 43.23 × 0%*

Unlabeled Synthetic 61,249 Title/Abstract 14.98 45.88 × 0%*

Artificial Synthetic 211,269 Title/Abstract 16.35 40.97 × 0%*

SCIDQA (Ours) Hybrid 2,937 Full-Text 23.92 104.67 ✓ 1.74%

Table 1: Comparison of the related datasets. †ScholarlyRead dataset is unavailable publicly, hence we skip its
statistics. *PubMedQA features two types of answers: a long answer, which is the last sentence of the abstract, and
a short answer, which is yes/no. Here, we report statistics of long answers as all short answers are less than 5 words.

cover all instances. Through this approach, we ex-
tracted 26,085 question-answer pairs. Details of
the prompts are in the Appendix A Figure 3.

2.3 Human Expert Annotation and Editing

In initial investigations, we found that many of the
extracted questions are not useful and they would
need additional revisions to be appropriate for a
QA dataset. Therefore, to ensure the quality of the
QA pairs in the SCIDQA dataset, we employed
an extensive manual annotation process by domain
experts.3 This included determining and keeping
only the most relevant questions, rewriting both
questions and answers, and editing references in
the QA pairs. We briefly discuss annotation and
editing stages.

Relevance Annotation This task selects
information-seeking questions, whose answers
are identifiable within the research paper text,
from a set of synthetically generated QA pairs.
Questions referencing figures, tables, equations,
specific sections, or lines, and inquiries requiring
data from multiple papers were categorized as
relevant. Conversely, questions asking for edits,
summaries, or subjective judgments about the
paper’s quality, or those based on the authors’
personal experiences, were classified as irrelevant.
To expedite the annotation process, we introduced
an ‘ambiguous’ category for cases where the rele-
vance of a question-answer pair was challenging
to ascertain. Questions necessitating experimental
validation for answers, and where it remained
unclear whether the authors had conducted such

3Students with extensive experience in NLP and ML.

experiments based on reviewer suggestion during
reviewer-author discussion, were classified as
ambiguous. We present a few samples for each
category in Table 6 in Appendix A.

Two annotators, also the authors of this paper,
annotated the dataset, starting with a common sub-
set of 200 instances and achieving an 85% agree-
ment rate. The disagreements were discussed and
resolved, and the rest of the questions were anno-
tated by a single annotator. In total, the annotators
reviewed 7,000 instances, identifying 2,937 QA
pairs as relevant, equivalent to a relevancy rate of
approximately 41%. Additional details about the
annotations are in Appendix A.1.

Decontextualizing Questions and Answers
Originally, questions were directed towards the au-
thors of the paper and authors provided answers
from their perspective. We rewrote these QA pairs
in the third-person point of view to make them uni-
versally applicable and to avoid biasing language
models to generate answers in the first person when
trained on SCIDQA. This is also necessary for the
models to understand that the question does not ask
for their personal opinion, but is a factual question
seeking information about the author’s reasoning
in the paper. We also add contextual information to
the questions where the question is incomplete or
incomprehensible without contextual information
present in the review text. We present an example
in Figure 4 showcasing scenarios where decontex-
tualization and editing the narrative is necessary
to comprehend the question. The perplexity of
questions before and after rewriting, when evalu-
ated with the GPT-2 model, exhibits a difference
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of 16.3 points, suggesting that decontextualization
contributes to an enhancement in dataset quality.

Annotating the Source Document Certain con-
ferences like NeurIPS and ICLR allow authors
to submit revised manuscripts during the author-
reviewer discussion period. For simplicity, we fo-
cus only on the initial submitted copy and the final
camera-ready manuscript. For rejected papers, the
last submitted manuscript is considered the final
version, which may sometimes be identical to the
initial submission. Establishing the source doc-
ument between the initial and final manuscripts
presents challenges, as author-reviewer discussions
often result in added details like tables, figures, and
text, making the camera-ready version a suitable
source document. However, reviewers’ questions
may prompt authors to rewrite paper text to explic-
itly mention the answer, simplifying the dataset if
the final version is used. We depict two such scenar-
ios in Figure 6. To manage these variations, each
question-answer pair is annotated with the version
of the document used as the source, typically the
initial or final version. If author responses indicate
additions in a revision, the final version is marked
as the source document. If no specific informa-
tion is given, the initial version is defaulted as the
source. This approach addresses potential ambi-
guities arising from updates in table, figure, and
section numbers in the revised final manuscript.

Reference Editing Finally, to prevent language
models from taking shortcuts by extracting answers
based on reference text markers within the papers,
we edited the references in the QA pairs, as shown
in Figure 5. This process involved replacing spe-
cific reference markers with placeholders and pro-
viding a list of necessary references at the end of
the question and the answer.

3 Dataset Details and Analysis

The SCIDQA dataset comprises 2,937 question-
answer pairs. We present the statistics of
SCIDQA in comparison to other related existing
QA datasets in Table 1. Next, we discuss the di-
versity of answer sources, and fuzzy searching for
answers, and the statistics of changes in initial and
revised manuscripts.

Diversity of Answer Sources Our dataset fea-
tures questions necessitating reasoning across mul-
tiple modalities beyond mere text, including figures,

Information Source % in Dataset

Tables 14.03%
Multiple documents 10.9%
Appendix and Supplementary 10.01%
Equations and Symbols 10.32%
Figures 6.98%

Table 2: Distribution of various modalities (text, figures,
tables, equations, appendix, and supplementary) which
are required to answer the questions in the dataset.

tables, equations, and both appendix and supple-
mentary materials.4 This design ensures that com-
prehensive reasoning over the full-text of the paper
is essential for answering the questions accurately.
The statistics are presented in Table 2.

Fuzzy Search for Answers We search for an-
swers in the research paper texts and find sections
with at least 80% unigram overlap between answers
and paragraphs. Such a high degree of overlap
suggests that the text from the research papers is
directly utilized as answers to questions, simpli-
fying the question-answering process to the iden-
tification of pertinent paragraphs. This implies a
reduced necessity for reasoning or inferential think-
ing compared to scenarios where answers must be
derived from an analysis of the text. Our findings
reveal that only 25% of the answers in our dataset
can be identified with an overlap exceeding 80%.
By contrast, the QASA dataset (Lee et al., 2023),
features 52% of answers that demonstrate more
than 80% unigram overlap with the paper text, indi-
cating a higher reliance on direct text retrieval for
answering questions.

Edits in Initial and Revised Manuscripts We
conducted an analysis of differences between PDF
versions for each QA pair.5 Our dataset of 576
unique papers shows that 66.3% vary in figure men-
tions, and 54.9% vary in table counts between ini-
tial and final manuscripts, highlighting the need to
maintain separate versions.

4 Experimental Setup

We design four task configurations to evaluate the
capabilities of LLMs in answering the questions
in SCIDQA. We use two separate setups, closed-

4For experiments, we use table and figure captions and do
not use multi-modal models for direct processing of figures.
We’ll leave that as a future direction.

5This is because authors often update their manuscripts in
response to comments and questions by reviewers.
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book (Roberts et al., 2020), and open-book. We ex-
periment with a wide-range of open-source LLMs
(Falcon (Almazrouei et al., 2023), Galactica (Tay-
lor et al., 2022), Gemma (Team et al., 2024), Llama
2 (Touvron et al., 2023), Llama 3.1 (Dubey et al.,
2024) Mistral (Jiang et al., 2023), Phi-2 (Java-
heripi et al., 2023), Qwen v2.5 (Team, 2024), Vi-
cuna (Zheng et al., 2024), and Zephyr (Tunstall
et al., 2023)) and two frontier closed models Gem-
ini Pro (Google et al., 2023) and GPT-4 (Achiam
et al., 2023) models. For open-source models, we
experiment with various model sizes from ∼2B to
∼70B parameters.

Priming with the Question Only (closed-book)
Can LLMs answer the questions in a closed-book
setting (Roberts et al., 2020) when primed only
with the question text and without explicitly pro-
viding the paper? LLMs have the ability to re-
tain knowledge and in this sense, it’s conceivable
that LLMs might be able to generate answers di-
rectly based solely on the question text, without
any context from the associated research papers.6

Further, LLMs might already have internalized the
knowledge related to papers to be able to answer
some specific questions without explicitly provid-
ing the context. To investigate this possibility,
in the closed-book configuration, LLMs are pre-
sented with only the questions and instructions,
without any information about the relevant paper.

Priming with Question, and Paper’s Title and
Abstract (title-abs) In this setting, we provide
the LLM with the question text, along with the Ti-
tle/Abstract of the paper. This mimicks a “partially”
closed-book setting. The objective is to ascer-
tain whether the inclusion of limited additional
information, such as the paper’s Title and Abstract,
enhances the LLM’s ability to accurately retrieve
and recall the knowledge to correctly answer the
question. Unlike the fully closed-book setting,
it is not entirely infeasible to answer some ques-
tions with the information provided in the abstract.
However, given that our dataset comprises ques-
tions that require complex reasoning, the answers
to the majority of questions will not be found in the
abstract alone.

6Comphrehensive evaluation of this setting is challenging,
as it is difficult to disentangle potential effect of contamina-
tion, from knowledge retrained by LLMs, especially in models
where source of training data isn’t disclosed. While we source
our questions from peer reviews, our questions and answers
are significantly revised and re-written, so exact-match con-
tamination is less likely.

Retrieval-Augmented Generation with LLMs
(RAG) We follow a retrieval-augmented gener-
ation setup for this configuration. Research paper
texts exceed the typical model context length with
exception of few long-context models (which we
will discuss in the next experimental setup). To ac-
comodate processing such documents we employ
a RAG setup, where we first divide the document
into smaller and slightly overlapping chunks, re-
trieve the most relevant chunks to the question us-
ing a BM25 ranker,7 and subsequently input the top
ranked chunks to the LLM, tasked with generating
the response. The operational flow of this pipeline
is depicted in Appendix Figure 9 and the chunking
algorithm is presented in Appendix Algorithm 1.

Comprehending the Full-text using LLMs
(full-text) In this experimental setup, LLMs
are provided with the full-text of scientific papers
and are tasked with answering a specific question.
The length of scientific texts could exceed the con-
text length limit of many LLMs. In such cases, we
divide the full-text into segments. Each segment,
along with the question and instructions, is then
presented to an LLM (referred to as base-LLM),
which generates answers for each segment.

This setup produces multiple answer candidates
for a single question, contingent on the number of
passes required to present all chunks to the LLM.
To distill these into a singular, optimal response,
we introduce an answer selection phase. During
this phase, the Llama 3.1 70B model is prompted
with the question and all answers generated by
the base-LLM, with instructions to identify the
most comprehensive response from the provided
options. Details of this prompt are included in the
Appendix B in Figure 11. We only segment paper’s
full-text when it exceeds the model’s context length
(pipeline presented in Appendix Figure 10).

For models with context length limit greater than
the full-text (Gemini, GPT-4o, and GPT-4o-mini),
the base-LLM directly generates the answer from
the full text, and the answer-selection phase is not
required. For Qwen v2.5 (1.5B and 7B) and Llama
3.1 (8B and 70B) models, the context length is
128k, however the prompt with the entire paper
text does not fit into the cache, so we chunk the
text and generate multiple answer candidates simi-
lar to other LLMs, however, the answer selection

7More advanced retrieval settings using dense retrievers or
rerankers can be also employed to improve the performance of
models in this setting. Our goal is mainly to provide a baseline
setup for each of the experimental settings.

20912



Model CB T/Abs RAG FT

2-3 B

Gemma IT (2024) 40.75 31.50 39.47 30.33
Phi2 (2023) 45.24 43.16 42.20 40.95
Qwen 2.5 IT (2024) 34.86 37.81 33.01 35.70

6-7 B

Falcon IT (2023) 28.49 19.70 44.28 42.25
Galactica (2022) 14.49 41.76 34.27 43.07
Llama 2 Chat (2023) 26.09 36.20 46.95 45.99
Llama 3.1 IT (2024) 20.46 42.56 38.59 45.73
Longchat 32k (2023) 25.77 22.59 44.98 40.58
Mistral IT (2023) 29.71 47.64 47.67 42.29
Qwen 2.5 IT (2024) 44.72 47.10 45.13 41.41
Vicuna (2024) 21.32 18.22 42.01 46.46
Zephyr β (2023) 29.20 41.66 48.74 42.13

13 B

Llama 2 Chat (2023) 28.06 37.35 47.53 45.88
Vicuna (2024) 27.69 30.11 45.41 46.77

70 B

Llama 2 Chat (2023) 43.33 39.69 40.71 30.14
Llama 3.1 IT (2024) 46.20 48.46 47.60 47.78

Proprietary LLMs

Gemini Pro (2023) 28.31 32.01 38.03 37.59
GPT-4o 48.48 50.61 46.63 54.03
GPT-4o-mini 47.50 50.32 48.90 54.02
GPT-4o (2023) - - - 49.3

Table 3: Average scores for all configurations. CB refers
to closed-book and T/Abs referes to title-abs. Cells
in blue indicate RAG or full-text (FT) settings where
performance improves over both closed-book settings
by atleast two points. For seven models, both RAG and
full-text lead to better scores, while for four models
(including GPT-4o and GPT-4o-mini) only one of the
RAG/full-text settings performs significantly better
than Closed settings.

phase uses the same base-LLM (Qwen and Llama
versions respectively) instead of Llama 3.1 70B.

4.1 Evaluation

Surface-level Metrics: We first use surface-level
metrics for evaluating the LLM generated answers,
which compare the similarity of the generated long-
form answer with the gold standard through textual
overlaps. These include ROUGE score (Lin, 2004)
(we compute ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-L (R-L); and report the average as Rµ),
BLEURT-20 (Pu et al., 2021) (abbreviated as BL),
and BERTScore (Zhang* et al., 2020) (BERTScore
F1 score as BS).

LLM Judge: In addition to traditional surface-
level metrics, we also use LLM-as-a-judge to evalu-
ate the quality of the generated text, given potential
unreliability issues of surface-level metrics (Liu
et al., 2023). In particular, we employ Llama 3.1
70B (Dubey et al., 2024), GPT-4o, and GPT-4o-
mini8 to evaluate LLM-generated answers on four
aspects, namely relevance, accuracy, completeness,
and conciseness on a scale of 1-10. The LLM is
also asked to report the overall quality scores by
averaging the individual scores for each aspect. All
LLM judge models (Llama 3.1 70B, GPT-4o, and
GPT-4o-mini) are prompted to generate the expla-
nations and the scores for each aspect, and sub-
sequently, Llama 3.1 8B model is used to extract
the overall quality score from the generated expla-
nations (see appendix B.3 for the exact prompts
used). The average scores, normalized to range
1-100, from Llama 3.1 70B, GPT-4o, and GPT-
4o-mini judges are represented with L70, 4o, and
4oM respectively. The average of LLM-as-a-judge
scores is presented as ALS in the tables. An average
score of all traditional and LLM judge scores is
presented in column Avg.

5 Results and Discussion

In this section we dicsuss the main results. We
provide the main results as averages of all metrics
for all the four experimental settings in Table 3.
Then we present the detailed results of each setting
in Tables 4 and 5.

Comparison among closed-book, title-abs,
RAG, and full-text settings: We compare the
average scores of all metrics for the models in
four settings in Table 3, out of which two settings
(closed-book and title-abs) are open-domain
question answering settings, and the other two set-
tings provide the LLMs with paper context either
in relevant chunk format (RAG) or full-text of
the paper (full-text). Seven models (Falcon In-
struct 7B, Llama 2 Chat 7B and 13B, Longchat
7B, Vicuna 7B and 13B, and Gemini) perform bet-
ter when provided with paper context (both RAG
and full-text setup) over the other two open-
domain question answering settings (Priming with
Questions (closed-book) and Priming with Ques-
tion and Title/Abstract (title-abs)). Other four

8Llama 3.1 allows full reproducible results, and is a highly
capable open-source model in evaluating instruction-following
(Liu et al., 2024), GPT-4o is a frontier LLM at time of writing,
and GPT-4o-mini balances the cost and quality of evaluation.
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closed-book (Prompt <INS, Q>) title-abs (Prompt <INS, Q, TABS>)
Size Model Rµ BL BS L70 4o 4oM ALS Avg Rµ BL BS L70 4o 4oM ALS Avg

2-3 B
Gemma IT (2024) 12.3 41.1 50.0 46.9 43.5 50.6 47.0 40.8 15.7 29.5 47.2 33.6 30.8 32.3 32.2 31.5
Phi-2 (2023) 16.4 40.8 54.1 53.4 49.3 57.4 53.4 45.2 12.3 42.8 50.6 49.1 48.8 55.3 51.1 43.2
Qwen 2.5 IT (2024) 5.9 53.1 42.5 31.7 32.3 43.7 35.9 34.9 6.3 54.1 42.4 37.8 37.5 48.8 41.4 37.8

6-7 B

Falcon IT (2023) 14.7 0.4 0.5 53.2 46.4 55.7 51.8 28.5 4.9 9.5 33.9 30.8 18.4 20.7 23.3 19.7
Galactica (2022) 4.1 0.5 0.4 23.2 26.6 32.2 27.3 14.5 20.1 40.3 49.9 45.5 44.5 50.3 46.8 41.8
Llama 2 Chat (2023) 7.5 0.5 0.5 46.8 46.2 55.1 49.4 26.1 10.6 37.1 48.9 40.2 37.5 42.9 40.2 36.2
Llama 3.1 IT (2024) 1.7 11.0 32.8 33.4 21.1 22.8 25.8 20.5 6.1 46.4 45.8 48.3 51.7 57.1 52.4 42.6
Longchat 32k (2023) 9.4 0.4 0.5 51.4 41.8 51.1 48.1 25.8 1.3 9.3 34.1 59.4 12.7 18.8 30.3 22.6
Mistral IT (2023) 13.7 0.4 0.5 55.4 50.2 58.0 54.5 29.7 16.3 40.3 53.5 59.3 56.0 60.4 58.6 47.6
Qwen 2.5 IT (2024) 6.5 46.2 46.3 54.2 54.1 61.0 56.4 44.7 7.5 45.1 47.4 60.7 59.0 62.9 60.9 47.1
Vicuna (2024) 7.0 0.3 0.4 53.1 29.9 37.2 40.1 21.3 2.8 5.9 31.3 29.5 23.4 16.5 23.1 18.2
Zephyr β (2023) 9.5 0.4 0.5 54.6 51.0 59.1 54.9 29.2 13.0 38.4 51.2 49.2 46.5 51.7 49.1 41.7

13 B Llama 2 Chat (2023) 7.7 0.5 0.5 51.5 50.1 58.1 53.2 28.1 10.7 39.1 49.6 41.3 39.8 43.7 41.6 37.4
Vicuna (2024) 9.3 0.4 0.5 54.2 47.5 54.2 52.0 27.7 7.9 22.5 41.1 40.7 32.6 35.8 36.4 30.1

70 B Llama 2 Chat (2023) 8.2 44.7 49.0 50.2 49.8 58.0 52.7 43.3 6.2 49.5 43.7 40.2 46.7 51.8 46.2 39.7
Llama 3.1 IT (2024) 10.5 44.2 50.0 57.0 55.4 60.1 57.5 46.2 12.7 42.7 52.1 61.3 60.0 62.0 61.1 48.5

UNK
Gemini Pro (2023) 5.3 21.1 39.1 38.9 31.7 33.8 34.8 28.3 12.0 24.6 44.2 40.0 36.6 34.7 37.1 32.0
GPT-4o 9.0 42.6 49.1 64.3 60.8 65.1 63.4 48.5 11.7 42.3 51.5 66.7 64.9 66.6 66.1 50.6
GPT-4o-mini-2 7.7 42.9 48.5 62.4 59.3 64.3 62.0 47.5 9.1 43.2 50.1 67.1 64.9 67.5 66.5 50.3

Table 4: closed-book evaluates LLMs in a closed book setting without the paper context. title-abs configuration
evaluates if additional context (title and abstract) helps in answering the questions. The metrics are Rµ (average
of rouge-1, rouge-2, and rouge-l), BLEURT-20 (BL), BERTScore F1 (BS), and LLM judges Llama 3.1 70B (L70),
GPT-4o (4o), and GPT-4o-mini-2 (4oM). ALS is the average over LLM judges, and Avg is the average over all metrics.

models (Llama 3.1 8B, Zephyr 7B, GPT-4o, and
GPT-4o-mini) perform better only in one of the
RAG/full-text settings in comparison to open-
domain question answering settings. The rest seven
models show a degradation or similar scores when
provided with paper context, likely indicating that
either there could be contamination affecting the
results or the models are able to generate shallow
answers without reasoning about the question.

We compute the maximum improvement
in scores when provided with paper context
(full-text setting), by computing the dif-
ference of best scores in closed-book and
RAG/full-text settings. Vicuna 7B model shows
the highest improvement in average scores (25
points) from closed-book to full-text setting,
indicating it is able to effectively use the papers
full-text to reason about the question.

Overall high score may not correlate with rea-
soning from the context. GPT-4o and GPT-4o-
mini models perform the best among all evaluated
models, and achieve the highest average score in
the full-text setting. However, the GPT models
also perform best in both the closed-book set-
tings, which indicates that the model is also able to

reason about the questions without providing the
context. Priming with the paper title and abstract
(title-abs) leads to 2-3 points improvement over
the full closed-book setting for both models. In
comparison to title-abs, the average score im-
proves by four points in full-text setting. This
might indicate the model is able to retrieve rele-
vant knowledge to the question from its parameters
without explicitly being provided with the paper,
in which case the model had been trained on the
source papers.9

Among the open-source LLMs, the best scores
are achieved by Llama 3.1 70B Instruct model,
however, its average score for full-text and RAG
setup is within one point difference of other open-
domain question answering setups, which means
the model is not using the provided context from
the paper for reasoning about the questions. Other
models with performances similar to Llama 3.1
70B, and also showcasing significant improvements
over the corresponding closed-book settings are
Vicuna 7B, 13B and Llama 2 13B Chat.

9This also might suggest potential for contamination af-
fecting the results. Although our question and answers are
revised and rewritten, there’s a chance that training on raw
open-review data might help the models in this task.
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RAG (Prompt <INS, Q, top-3 Chunks>) full-text (Prompt <INS, Q, Full-text>)
Size Model Rµ BL BS L70 4o 4oM ALS Avg Rµ BL BS L70 4o 4oM ALS Avg

2-3 B
Gemma IT (2024) 24.7 34.9 54.0 41.0 41.1 41.2 41.1 39.5 13.5 18.9 45.5 37.1 31.7 35.4 34.7 30.3
Phi-2 (2023) 28.7 35.2 54.2 27.3 51.4 56.4 45.0 42.2 16.2 24.6 49.0 53.1 48.1 54.7 52.0 41.0
Qwen 2.5 IT (2024) 7.1 43.1 44.4 32.5 30.1 40.8 34.5 33.0 17.5 24.7 46.8 45.7 37.7 41.9 41.8 35.7

6-7 B

Falcon IT (2023) 23.9 37.3 53.7 45.8 49.5 55.5 50.3 44.3 18.3 28.6 51.3 49.5 50.1 55.8 51.8 42.3
Galactica (2022) 20.7 29.3 49.8 17.3 40.6 47.9 35.3 34.3 20.5 24.9 49.8 53.1 52.3 57.8 54.4 43.1
Llama 2 Chat (2023) 24.1 35.6 53.8 56.8 53.8 57.6 56.1 47.0 15.1 30.2 52.0 59.4 56.7 62.5 59.5 46.0
Llama 3.1 IT (2024) 5.9 51.6 42.7 40.7 39.6 51.1 43.8 38.6 16.6 30.5 51.3 57.8 57.4 60.8 58.7 45.7
Longchat 32k (2023) 19.8 38.1 52.6 53.1 50.6 55.7 53.1 45.0 15.8 22.9 49.5 56.4 47.8 51.1 51.8 40.6
Mistral IT (2023) 24.4 38.4 55.2 55.9 54.1 58.0 56.0 47.7 18.6 24.4 50.4 54.3 50.5 55.6 53.5 42.3
Qwen 2.5 IT (2024) 8.9 48.4 45.7 54.3 53.5 60.0 55.9 45.1 17.0 29.3 48.0 53.8 49.5 50.9 51.4 41.4
Vicuna (2024) 23.8 33.3 53.2 50.2 42.7 48.9 47.3 42.0 15.8 29.0 52.3 61.2 58.1 62.3 60.5 46.5
Zephyr β (2023) 18.8 39.4 54.5 59.1 58.9 61.8 59.9 48.7 16.5 24.5 50.5 56.7 49.7 54.9 53.8 42.1

13 B Llama 2 Chat (2023) 22.0 39.0 55.3 58.5 53.1 57.3 56.3 47.5 15.4 30.1 52.0 58.2 57.4 62.2 59.3 45.9
Vicuna (2024) 25.6 35.4 54.6 53.7 49.5 53.6 52.3 45.4 16.0 28.2 51.9 62.1 59.5 62.9 61.5 46.8

70 B Llama 2 Chat (2023) 16.0 26.4 43.1 56.3 52.4 50.1 52.9 40.7 11.7 18.7 45.3 35.7 33.6 35.9 35.1 30.1
Llama 3.1 IT (2024) 23.0 37.9 54.0 57.0 55.5 58.2 56.9 47.6 18.2 28.9 52.7 61.4 61.6 63.9 62.3 47.8

UNK

Gemini Pro (2023) 24.2 30.2 49.9 42.0 41.5 40.4 41.3 38.0 6.9 27.5 42.9 51.3 48.5 48.4 49.4 37.6
GPT-4o 28.5 36.5 55.6 51.9 53.4 53.9 53.1 46.6 26.2 40.3 57.4 66.2 66.6 67.5 66.8 54.0
GPT-4o-mini-2 25.4 38.0 56.0 57.2 57.9 58.9 58.0 48.9 22.4 40.8 56.9 68.0 67.2 68.8 68.0 54.0
GPT-4 - - - - - - - - 10.0 33.1 48.4 68.2 67.6 68.5 68.1 49.3

Table 5: RAG setup prompts the LLM with top-3 chunks extracted from the paper. full-text evaluation - LLMs
are provided with the paper’s full-text. If the full-text exceeds LLM’s context length, the base-LLM reasons over
paper chunks and generates answer candidates, followed by Llama 3.1 70B for answer selection.

Instruction-tuned models perform better than
their counterparts generally. The instruction-tuned
counterparts of Gemma, Falcon, Llama 2, and Mis-
tral perform better at retrieving the answers.

Overall, GPT-4o and GPT-4o-mini perform best
among all evaluated models in all task settings.

For closed-book and title-abs task settings,
we report the scores with surface-level metrics,
LLM judge scores and overall average scores in Ta-
ble 4. GPT-4o and GPT-4o-mini perform best
among evaluated models in both settings. Among
open-source models, Llama 3.1 70B Instruct and
Qwen2.5 7B Instruct models perform the best in
both closed-book and title-abs settings. In
RAG setting, Zephyr β 7B and GPT-4o-mini per-
form the best, followed by similar performances
from GPT-4o, Llama 3.1 8B Instruct, Llama 2 Chat
13B, Llama 2 Chat 7B, Mistral 7B Instruct, and
Qwen2.5 7B Instruct. However, the best over-
all score in RAG setting (Table 5) is similar to
closed-book and title-abs settings, indicating
that providing the context chunks does not lead to
significantly higher scores.

Best performance is observed in full-text set-
ting, with significant differences among scores of

proprietary and open models. For the full-text
setting (Table 5), a significant score difference is
observed among proprietary models (GPT-4o, GPT-
4o-mini) and best-performing open-source models
(Llama 3.1 70B Instruct and Vicuna 13B).

Human Performance Estimation: Evaluating
human performance on the SciDQA dataset is chal-
lenging due to the complex and domain-specific
nature of its questions. To assess human profi-
ciency, the authors compared human-written re-
sponses from 28 annotated QA pairs against those
generated by GPT-4.10 An author performs the task
by writing the answers to the given questions, by
reading and examining the paper. The annotator
found this task to be relatively challenging, particu-
larly for papers outside their expertise. During eval-
uation, each instance included a question, a ground
truth answer, an author-written answer after reading
the paper, and a GPT-4 generated answer; with eval-
uations focusing on comprehensiveness, factuality,
and clarity. Results showed that 32% of compar-
isons ended in a tie, indicating GPT-4’s adequacy
for simpler questions. Humans were preferred in

10GPT-4 shows simlilar performance to GPT-4o in our LLM
judge metrics, and this experiment was done earlier than GPT-
4o’s release.
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29% of cases, mainly due to factual inaccuracies in
GPT-4 responses. GPT-4 outperformed humans in
21% of instances; these cases were mostly related
to papers whose topics were outside the authors’
expertise. However, 18% of both answers were
rejected as unsatisfactory, particularly for complex
questions. Detailed performance metrics are avail-
able in the Appendix Table 7.

6 Related Work

Manually Curated Scientific QA Datasets: The
QASPER dataset (Dasigi et al., 2021) involves
NLP practitioners creating questions from paper ti-
tles/abstracts, with answers derived from full-texts
by separate annotators. The QASA dataset (Lee
et al., 2023) is generated by AI/ML practition-
ers and paper authors who formulate surface, test-
ing, and deep questions. In contrast, the COVID-
QA dataset (Möller et al., 2020) is crafted by 15
biomedical experts, who develop questions and an-
notate corresponding text as answers, focusing on
COVID-19 research. QASPER has 40% questions
answered in less than five words, while 30% of
QASA QA pairs are sourced from only the intro-
ductions and abstracts, with 52% of answers show-
ing high unigram overlap with the text, indicating
easier retrieval. The ExpertQA dataset (Malaviya
et al., 2024) features 2,177 questions across 32
fields, created by 524 experts to simulate com-
plex, web-based information-seeking scenarios.
BioASQ-QA dataset (Krithara et al., 2023; Tsatsa-
ronis et al., 2015) involves expert-curated questions
ranging from yes/no, factoid, list, and summary
types, growing from 310 to 4,721 instances over
ten years. Since 2016, BioASQ-QA has focused
solely on titles and abstracts, reflecting the high
effort in manual curation.

Synthetically Generated Scientific QA Datasets:
BioRead (Pappas et al., 2018) and BioMRC (Pap-
pas et al., 2020) are cloze-style biomedical MRC
datasets that utilize text entities as answers, mask-
ing these entities in texts (passages in BioRead,
abstracts in BioMRC) and forming questions from
the last passage line or title. ScholarlyRead (Saikh
et al., 2020) generates QA pairs by extracting
noun phrases from abstracts and using a question-
generation model. As shown in Table 1, these syn-
thetically generated QA datasets generally feature
shorter answers than ours. PubMedQA (Jin et al.,
2019) starts with a labeled dataset where the title
is a question and the last abstract line is the an-

swer, creating 1000 instances with short answers
(yes/no/maybe) annotated based on the abstract. Its
synthetic counterpart uses syntax heuristics and
modification rules to craft similar QA pairs.

Other datasets: The ARIES dataset (D’Arcy
et al., 2023) compiles review comments and associ-
ated paper edits. Its synthetic subset uses a method
similar to ours to extract comment-edit pairs based
on textual overlap. Our dataset diverges by extract-
ing questions from review comments using LLMs,
not just from quoted responses but also from au-
thor rewrites. We employ human-expert annotation
to refine questions and answers, avoiding reliance
solely on textual overlap. This allows us to include
high-quality queries involving tables, equations,
and multi-paragraph reasoning. In a parallel direc-
tion, Kang et al. (2018) collect peer review datasets
for paper acceptance prediction and score predic-
tion for review aspects tasks.

SCIDQA stands out among QA datasets as its
questions are sourced directly from the peer re-
view process, ensuring they are natural, evaluative,
and of high quality due to the scientific discourse
among domain experts. This sourcing ensures that
the questions require a deep understanding of the
content, emphasizing depth as well as quality.

7 Conclusion and Future Work

We curate SCIDQA, dataset designed to challenge
language models on the QA task aiming to evaluate
their understanding of scientific papers. The dataset
consists of 2937 QA pairs, and extracts QA asked
by reviewers and answered by paper authors dur-
ing reviewer-author discussion during manuscript
review on OpenReview. Our multi-stage refine-
ment pipeline annotates for quality, decontextual-
izes the QA pairs, edits references, and establishes
the source document from different manuscript ver-
sions. Our dataset features questions necessitating
reasoning across multiple modalities beyond mere
text, including figures, tables, equations, appendix
and supplementary materials. SCIDQA also pro-
vides a testbed for evaluation of multi-document
comprehension properties of LLMs. We evaluate
the performance of several open-source and propri-
etary LLMs in generating the answer to questions
after comprehending the research paper. We posit
that SCIDQA will serve as a useful resource to
benchmark the performance of LLMs in scientific
text comprehension.
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8 Limitations

Multiple questions in our dataset necessitate com-
prehension and reasoning over multiple documents.
The questions in the dataset often mention the ref-
erence text for previous works that need to be re-
ferred to for answering the question. However,
in our experiments we do not search and include
those documents for answer generation. Addition-
ally, 7% questions are dependent on figures, but
the Nougat parser does not extract images and only
extracts the figure captions. We do not evaluate any
visual or multimodal LLM. We extract figures for
the specific figure-related questions using PDFFig-
ures (Clark and Divvala, 2016), summarize it using
Llama 3.2 and make that available. Large-scale
evaluation of free-form generation is still challeng-
ing. We provided both surface-level and LLM-
as-a-judge metrics to show the full picture of the
performance, however, extensive meta-evaluation
studies might be needed to carefully understand the
limitations of such metrics in our setting. Addition-
ally, the dataset could be used to generate difficult
questions from a manuscript. Our dataset does
not have any judgment statements about paper ac-
ceptance/rejection. However, the questions dataset
could still be used for training a question generator,
and complex questions could be misused by review-
ers as grounds for rejection. Another limitation
is disentangling the effect of potential contamina-
tion from performance of various evaluated models,
which is difficult to do for models that don’t discuss
their training data (which includes majority of both
closed and open weight models). Finally, similar
to other existing datasets, our dataset focuses on
curating QA pairs from a specific domain (machine
learning), rather than all scientific fields of study.
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A Curation of SCIDQA- Data
Pre-processing, Annotation and Editing

Curation from OpenReview We selected top-
tier machine learning and deep learning venues,
designated as A* rankings by ICORE Portal
(CORE), with publicly accessible reviewer-author
discussions on OpenReview. During the dataset
compilation phase, NeurIPS, ICLR, ICML, and
TMLR were the A* venues with available discus-
sions. However, only discussions from ICML work-
shop papers and accepted papers from TMLR were
accessible, with rejected papers from TMLR not be-
ing included. To ensure high quality, we excluded
ICML workshop papers. Further, TMLR was also
excluded to maintain diversity and avoid a narrow
focus on only accepted papers. We curate 11400
papers from ICLR (2018-2022) and NeurIPS (2021-
2022), with major focus to include newer papers
to decrease the risk of contamination with LLM
pretraining datasets.

PDF to Text Conversion OpenReview portal
hosts the multiple versions of PDF files for papers
submitted to ICLR and NeurIPS, which also in-
cludes the versions uploaded during the discussion
phase. We downloaded the last manuscript submit-
ted prior to the conference deadline, and refer to it
as the initial version, as well as the final manuscript,
known as the camera-ready version. In case of re-
jected manuscripts, the camera-ready version is not
uploaded, and hence, we either take the latest ver-
sion submitted during discussion with reviewers,
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or take the initially submitted manuscript. For con-
verting PDFs to text, we employed Nougat (Blecher
et al., 2023), a visual transformer model designed
for the optical character recognition (OCR) task.
Nougat parses research paper PDFs into markdown
format and has been trained on a dataset compris-
ing papers from arXiv, Pubmed Central, and the
Industry Document Library. We opted for Nougat
as it is the current state-of-the-art, showcasing su-
perior performance in extracting tables, mathemati-
cal text (equations), and general text compared to
GROBID (GRO, 2008–2024), another widely used
OCR tool.

Regex Filtering OpenReview has nested discus-
sions, i.e. authors and reviewers reply to corre-
sponding messages, creating a time-stamp chain
of discussion. Reviewers post the initial review
message, generally consisting of paper summary,
strengths and weakness, questions to authors, and a
recommendation score. Segments of reviewer mes-
sages may be quoted in markdown or paraphrased
by the authors in their replies to address specific
content. Subsequently, reviewers may ask addi-
tional clarifying questions based on the authors’
responses, or express satisfaction or dissatisfaction.
There are instances where, despite the reviewers’
questions, the authors do not provide responses. To
extract nested discussions containing at least one
question and answer, we employed regex pattern
matching, searching for cues such as ‘Question:’,
‘Q’, etc. Using this method, we extracted 18,658
reviewer-author discussions for 11,400 papers that
contained questions and answers. We use the fol-
lowing regex pattern to identify discussions that
contain some questions:

Regex for Extraction

"que[ 0-9]*?[:-] .*[^\n]"
"Q[ 0-9]*?[:-] .*[^\n]"
"question[ 0-9]*?[:-] .*[^\n]"
"^> .*[^\n]"

LLM-based QA Extraction The prompt pro-
vided to PaLM text-bison-001 model to extract QA
pairs is presented in Figure 3.

A.1 Annotation details

The annotators achieved an 85% agreement rate
in filtering the type of questions as relevant, irrele-
vant or ambiguous. Half of the disagreements per-
tained to the ambiguous category, with discrepan-

Prompt for QA Extraction using PaLM
You are a helpful assistant. Read the follow-
ing paragraph and find all question-answer
pairs in it.

Author Response to Reviewer

Add ‘Q:’ before each question and
‘A:’ before answers. The question-answer
pairs are:

Figure 3: Prompt for PaLM model to extract question-
answer pairs from Reviewer-Author discussions.

cies arising from one annotator marking instances
as ‘ambiguous’ to speed up annotation versus an-
other favoring detailed assessment. In such cases,
the annotation disagreement does not imply dis-
agreement regarding the inclusion of the instance
in the dataset. The annotators resolved the remain-
ing disagreements through discussion and refined
the annotation guidelines to eliminate ambiguities
before proceeding with the rest of the dataset.

The annotation process was facilitated by pro-
viding details such as the paper title, submission
venue, area chair recommendations, and the ex-
tracted questions with their corresponding answers.
To minimize the workload, questions from the same
paper but different reviewers were assigned to the
same annotator. Annotators were encouraged to
consult the original review texts for additional con-
text, enhancing the accuracy of their annotations.
Some instances of QA pairs that are marked as
relevant, irrelevant, or ambiguous are presented
in Table 6.

We present scenarios depicting the requirement
of editing QA pairs, and the references text to im-
prove dataset quality in Figure 4 and Figure 5.

Source Document Annotation Scenarios depict-
ing cases where initial vs revised manuscripts are
appropriate for answering the reviewer questions
are presented in Figure 6.

Evidence Extraction We extract evidential para-
graphs, figures, tables, and lines in paper text from
the author responses. We also extract evidences for
a smaller subset of the dataset automatically where
there is a high overlap between a paper section and
the answer.
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Figure 4: Rewriting QA pairs in a third-person narrative is crucial for models to recognize that questions seek factual
answers based on the author’s reasoning in the paper, rather than personal opinions. Furthermore, incorporating
contextual information enhances the comprehension of questions that necessitate prior contextual knowledge for
accurate interpretation.

Relevant for SCIDQA
Q: How is the expectation of TCE algorithm computed in Equation 18?
A: The expectation is calculated with respect to the ...
Q: In section 3.4.1, is it possible to apply ReMERT to non-episodic or continuing task?
A: ReMERT might not provide proper weights to . . . .

Irrelevant for SCIDQA
Q: Can the inversion method by Chen et al. 2022 be used to improve the latency?
A: We believe that this may be possible, however it will require further analysis.
Q: Can you correct the typos in Section 3.4?
A: Yes, we will correct them in the revised version.

Ambiguous
Q: Can this inversion method be used in tandem with online filtering/smoothing (e.g. 4DVar, EnKF)?
A: We believe that this may be possible, potentially leveraging ideas from Chen et al. [2021].
Q: Why don’t the authors compare to PINNs?
A: PINNs are typically employed to retrieve individual solutions, not learn distributions over data sets. When using
them to solve the individual problems, inference is much slower since the network needs to be trained for each
inferred solution. Iterative solvers seem like a better alternative in our setting.

Table 6: Categorization of questions for inclusion in the SCIDQA dataset. Information-seeking questions, whose
answers are ascertainable within the research paper text, from a collection of synthetically extracted question-answer
pairs using PaLM text-bison-001 model are categorized as relevant, and added to the SCIDQA dataset.
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Figure 5: References in question and answer texts are uniformly renumbered (e.g., r1, r2, or 1, 2, or A, B) to
preclude the LM from leveraging specific reference markers as shortcuts for answer retrieval. To facilitate accurate
answer formulation by the LM, textual information pertaining to paper references is incorporated into questions,
deterring reliance on mere reference numbers. Similarly, references in answers are renumbered and supplemented
with the relevant reference text as necessary.

(a) Initial version is preferred as the revised copy explicitly
mentions the answer.

(b) Revised version is preferred as the answer is originally
absent.

Figure 6: We present scenarios where the initial and
the revised manuscript versions are most appropriate for
answering the reviewer’s question. For each question
in the dataset, we annotate the preferred manuscript
version.

Figure 7: Priming LLMs with Questions
(closed-book). This task evaluates the ability
of LLM to recall the answer without any relevant
context.

Figure 8: Open-Domain Question Answering - Priming
with Question and Title/Abstract (title-abs). This
task evaluates the impact of additional context on LLM
ability to recall the answer without reasoning about the
question.

B Experiments

B.1 Experimental Setup

We present figures for the experimental setup of
the following:

1. Open-Domain Question Answering - Priming
with Questions (closed-book) in Figure 7.

2. Open-Domain Question Answering - Priming
with Question and Title/Abstract (title-abs)
in Figure 8.

3. Retrieval Augmented Generation (RAG)
in Figure 9.

4. Comprehending the full-text (full-text)
in Figure 10. The figure presents the scenario
where the full-text cannot fit into the models’
context length.

We experimented with the parameters (tempera-
ture=0.1, 0.9, top_p=0.1, 0.5, 0.9) on a smaller sub-
set of 20 QA pairs, and selected temperature=0.1
and top_p=0.9 after manually inspecting LLM an-
swers. We carried out three runs initially, but upon
observing no significant difference in performance,
we reported the final numbers in the paper using a
single run.
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Figure 9: RAG setup ranks paper subsections based on their relevance to the question, and top-3 subsections are
provided to the base-LLM, which generates the answer.

Figure 10: Comprehending the full-text (full-text) of the research paper by passing model context-length
segments to the base-LLM and generating answers from each segment. Llama 3.1 70B selects the best answer
among generated candidate answers. For models with 128k context length, such as Gemini, GPT-4o, and GPT-4o-
mini, the entire text is provided to the base-LLM in a single chunk and answer selection phase is not required.

B.1.1 Chunk Creation Algorithm
Chunking for RAG Setup RAG setup ranks top-
k chunks from the full-text which are then provided
to the LLM to generate the answer. The chunking
strategy is presented in Algorithm 1, and ensures
that the individual chunks fit into the model con-
text length. It also ensures that the collective top-k
chunk lengths also fit the model context length,
and sentences from different paper sections or para-
graphs are not collated together in a single chunk.
We found this setting to work better than naive
chunking and truncating by paragraphs or sections.

Chunking for FT Setup In the full-text set-
ting, the chunk length is determined by the LLM’s
context length. If the model context length is N,
we reserved 500 tokens for the instruction and the
question, and utilized the rest N - 500 tokens for
context. The chunking strategy is presented in Al-
gorithm 2.

For Gemini, GPT-4o, GPT-4o-mini, and GPT-4;
chunking is not required and the answer selection
phase is not included in final answer generation.
For models with 128k context-length, Qwen v2.5
models (1.5B and 7B) and Llama 3.1 70B mod-
els (8B and 70B), the prompt with entire full-text
does not fit on our GPUs, so we create chunks as
it is done with other smaller context-length LLMs.
However, for full-text generations with Qwen
v2.5 and Llama 3.1 models, the base-LLM is used
for final answer selection. With other base-LLMs,

all generated candidate answers concatenated to-
gether exceed the context-length of base-LLM so
Llama 3.1 70B is used for final answer selection.

Algorithm 1 Chunk Creation Algorithm for RAG

1: Input: Full-text document
2: Output: List of chunks
3: Split the full-text into paragraphs (demarcated

by \n).
4: for each paragraph P do
5: Split P into individual sentences (using the

NLTK library).
6: Initialize an empty list chunks
7: for every 10 consecutive sentences in P do
8: Join the sentences to build a chunk.
9: Add the chunk to chunks

10: Slide the window by nine sentences
(i.e., keep a single overlapping sentence be-
tween consecutive chunks).

11: end for
12: end for

B.2 Answer Selection Prompt for Llama 3.1
70B

The prompt provided to Llama 3.1 70B model to
generate a single answer during the answer selec-
tion phase in full-text setup is presented in Fig-
ure 11.

20923



Algorithm 2 Chunk Creation Algorithm for
full-text

1: Split the full-text into paragraphs (demarcated
by \n).

2: for each paragraph do
3: if the length of paragraph is less than N −

500 then
4: The entire paragraph is treated as a

chunk
5: else
6: Split the paragraph into a list of sen-

tences, say S = [s1, s2, . . . , sn]
7: Initialize an empty chunks_list = [ ]
8: Initialize an empty string chunk c = “”
9: for sentence s in S do

10: if token_count(c) +
token_count(s) < N − 500 then

11: Add sentence s to the chunk c
12: continue
13: else
14: Add chunk c to the

chunks_list
15: Reinitialize the empty chunk c
16: Add sentence s to the chunk c
17: continue
18: end if
19: end for
20: end if
21: end for

Answer Selection Prompt - Llama 3.1
You are provided with a question and some
potential answers about a research paper
submitted to a top-tier computer science
conference in the domain of ML and DL.
Your task is to select the best answer from
the provided answer options, which com-
prehensively answers the question. Do not
include any additional text other than the
answer and select only one answer from the
provided options.

Figure 11: Prompt provided to Llama 3.1 70B to se-
lect one candidate answer among multiple candidates
generated from multiple chunks.

B.3 LLM Judge Prompts
The prompt provided to models to generate an eval-
uation of relevance, accuracy, completeness, and
conciseness aspects is presented in Figure 12. The
prompt provided to the Llama 3.1 8B model to ex-
tract the overall score from the evaluation statement
is presented in Figure 13.

Preferred
Answer → /
Score ↓

Tie Human GPT-4 None

GPT-4 32.5 30.4 37.0 34.6
Human 34.8 34.4 38.5 34.0

Table 7: Average scores of Human and GPT-4 generated
answers on a subset of SciDQA dataset across instance
categories. The average score (R-1, R-2, R-L, BL, BS)
of human and GPT-4 generated answers are grouped by
preference.

B.4 Comparison with human-written answers
Table 7 demonstrates the comparison of human-
written answers with GPT-4. We present the av-
erage scores of surface-level metrics for GPT-4
answers and human-written answers, which are
further grouped by categories that indicate which
answer was preferred.
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Prompt for LLM Judge
You are an expert evaluator tasked with assessing the quality of a model-generated answer
compared to a gold standard correct answer in a long-form question-answering context. Your goal
is to provide a quantified evaluation across multiple dimensions. Please follow these steps:
Carefully read the original question, the model-generated answer, and the gold correct answer.
Evaluate the model-generated answer on the following dimensions, providing a score from 1-10
for each (where 1 is poor and 10 is excellent): a) Relevance (1-10): How well does the answer
address the specific question asked? b) Accuracy (1-10): To what extent is the information
provided correct and aligned with the gold answer? c) Completeness (1-10): How thoroughly does
the answer cover all aspects of the question compared to the gold answer? d) Conciseness (1-10):
Does the answer provide information efficiently without unnecessary details?
Calculate an overall quality score by taking the average of the five dimension scores. In your
answer for each dimension, provide a justification why not a higher score and why not a lower
score.
Structure your response as follows:
Evaluation:
1. Relevance: [Score] - [Explanation]
2. Accuracy: [Score] - [Explanation]
3. Completeness: [Score] - [Explanation]
4. Conciseness: [Score] - [Explanation]

Overall Quality Score: [Average of the four above scores]

Figure 12: Prompt provided to Llama 3.1 70B model during answer selection phase in full-text.

Prompt for Extraction of Scores from LLM Evaluation Statements
You are provided with an evaluation of an answer in the following format:

Evaluation:
1. Relevance: [Score] - [Explanation]
2. Accuracy: [Score] - [Explanation]
3. Completeness: [Score] - [Explanation]
4. Conciseness: [Score] - [Explanation]
Overall Quality Score: [Average of the four above scores].

Carefully read the evaluation provided next, and extract the final overall quality score
from the discussion. Do not include any explanation, you should only provide the final numeric
score for overall quality from the evaluation statement.

Figure 13: Prompt to extract the final overall quality score from the evaluation statements generated by LLM Judges.
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