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Abstract
Training with mixed data distributions is a com-
mon and important part of creating multi-task
and instruction-following models. The diver-
sity of the data distributions and cost of joint
training makes the optimization procedure ex-
tremely challenging. Data mixing methods par-
tially address this problem, albeit having a
sub-optimal performance across data sources
and require multiple expensive training runs.
In this paper, we propose a simple and effi-
cient alternative for better optimization of the
data sources by combining models individu-
ally trained on each data source with the base
model using basic element-wise vector opera-
tions. The resulting model, namely Distribu-
tion Edited Model (DEM), is 11× cheaper than
standard data mixing and outperforms strong
baselines on a variety of benchmarks, yielding
upto 6.2% improvement on MMLU, 11.5% on
BBH, 16.1% on DROP, 6% on MathQA, and
9.3% on HELM with models of size 3B to 13B.
Notably, DEM does not require full re-training
when modifying a single data-source, thus mak-
ing it very flexible and scalable for training
with diverse data sources. The code is avail-
able at https://github.com/amazon-science/dem-
distribution-edited-model.

1 Introduction

Large Language Models (LLM) go through an ex-
tensive pretraining on billions or trillions of to-
kens (Brown et al., 2020; Zhang et al., 2022; Raffel
et al., 2020; Touvron et al., 2023a,b; Geng and Liu,
2023), but they typically require supervised fine-
tuning on diverse instruction-following datasets for
properly following human instructions (Ouyang
et al., 2022; Sanh et al., 2022; Iyer et al., 2022;
Chung et al., 2024). Supervised training is crucial
for ensuring that generated outputs meet user expec-
tations and perform well on downstream tasks (Rad-
ford et al., 2019; Gururangan et al., 2020).

The datasets for supervised training are often
of different sizes and follow different distributions.

Figure 1: The Distribution Edited Model (ΘD) results
from fine-tuning a pretrained model (Θ) on n individual
data distributions (Di) and combining the resulting mod-
els with basic element-wise vector operations. Here, the
combination is achieved by extracting distribution vec-
tors (∆ΘDi

), multiplying them by weight coefficients
(ωi), and adding their weighted sum to the base model.

Recent state-of-the-art fine-tuning approaches (Iyer
et al., 2022; Chung et al., 2024) demonstrate that
training on multiple data distributions requires care-
ful tuning of the mixing weights for each data
source to capture the combined distribution and
improve downstream task performance. Tuning
these weights in a data-mixing approach is a com-
putationally expensive process. Although, there
are techniques to speed-up the search (Xie et al.,
2023; Albalak et al., 2023), the process remains
time-consuming. Moreover, when one or more new
datasets are introduced, the weights for each dataset
need to be re-tuned. This requirement makes the
data-mixing approach inflexible and hard to main-
tain in a production environment.

To address these challenges when fine-tuning an
LLM on a set of diverse data distributions, we pro-
pose a simple and efficient approach that combines
individually trained versions of the base model us-
ing element-wise vector operations. Our method
focuses on the challenging setting of combining di-
verse data distributions that correspond to multiple
tasks from different domains such as math, reason-
ing, conversations and coding. In particular, our
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goal is to better capture a diverse data distributions
as opposed to editing the model on a single down-
stream task (Ilharco et al., 2022a; Schumann et al.,
2024). Hence, we call resulting model Distribution
Edited Model (DEM, shown in Figure 1). Our ex-
periments on a variety of downstream tasks show
that DEM is an effective, highly capable and low
cost alternative to the models trained using data
mixing methods.

The primary benefit of the proposed approach is
its ability to efficiently identify the optimal com-
bination of data sources for training a model. In-
stead of exhaustively training and validating on
all possible combinations of data sources, which
can be computationally expensive, we take a more
streamlined approach. First, we finetune the origi-
nal model on each individual data source indepen-
dently with early stopping to obtain the optimal
model. Second, we extract source distribution vec-
tors by subtracting the original model from the
finetuned ones. Lastly, we create the final model
by adding a weighted combination of these distri-
bution vectors to the base model, allowing it to cap-
ture the joint distribution of different data sources
in a controlled manner while enabling incremental
updates with new datasets.
Our contributions can be summarized as follows:

• We propose a simple and efficient approach for
training models on diverse data distributions that
offers a flexible way for tuning the contributions
of each data source individually without the need
of full data re-training (Section 4).

• We show that DEM reduces the training cost by
11× while improving the model performance.
Compared to standard data mixing approaches,
DEM yields up to 6.2% improvement on MMLU,
11.5% on BBH, 16.1% on DROP, 6% on MathQA
and 9.3% on HELM with 3B, 7B, and 13B mod-
els.

• We perform an exhaustive analysis of the prop-
erties of the distribution vectors and their cor-
responding models, finding that DEM is better
aligned with the individual models than the base-
line, while remaining close to the original model.

2 Related Work

Multi-task Fine Tuning Instruction-based multi-
task fine-tuning of language models has been pre-
viously shown to improve both zero and few-shot

performance on unseen tasks (Wei et al., 2022a;
Sanh et al., 2022). Instruction-tuning data can be
sourced from diverse task categories (such as math,
reasoning, dialog etc), and the model performance
is often sensitive to the data-mixing strategy. For
example, both (Chung et al., 2024) and (Iyer et al.,
2022) carefully tune the data-mixing weights for
various training data sources.

Hyperparameter tuning of data-mixing weights
is a compute intensive process, and methods such
as DoReMi (Xie et al., 2023) and Online Data
Mixing (Albalak et al., 2023) have been proposed
to speed-up the process for pretrained data-mixing
either through a proxy-model training or through
a multi-armed bandit approach respectively. Ren-
duchintala et al. (2024) used a submodular function
to assign importance scores to tasks which are then
used to determine the mixture weights. Li et al.
(2024) built a framework to find multiple diverse
solutions in the Pareto front of many objectives. In
this work, we propose an alternative strategy for
training with multiple data sources by using vector
arithmetic to combine models fine-tuned on indi-
vidual datasets, rather than mixing training data in
specific proportions.

Model Weight Interpolation Recently, model
weight interpolation and task arithmetic techniques
have been shown to improve the performance of
pre-trained models on: single-task (Izmailov et al.,
2018; Matena and Raffel, 2022; Yüce et al., 2022;
Wortsman et al., 2022b) and multi-task (Ilharco
et al., 2022b,a; Li et al., 2022; Wortsman et al.,
2022a; Yadav et al., 2023; Daheim et al., 2024), out-
of-domain generalization (Arpit et al., 2022; Rame
et al., 2022; Jin et al., 2023; Ramé et al., 2023; Cha
et al., 2024), and federated learning (McMahan
et al., 2017; Li et al., 2020).

Going beyond simple weight averaging, (Matena
and Raffel, 2022) explored merging using Fisher-
weighted averaging for improving single-task
model performance by leveraging other auxiliary
tasks. Ilharco et al. (2022a) presented a model
merging technique based on producing task vec-
tors and performing arithmetic operations, such as
addition, subtraction to obtain a multitask check-
point and ‘forget’ unwanted behavior. Daheim et al.
(2024) proposed a new uncertainty-based correc-
tion of the task vector coefficients to improve the
performance by reducing the model mismatch.

While previous work focused on classification
tasks in NLP or vision, we extend vector-arithmetic-



based model editing to multi-task fine-tuning on
diverse data distributions. Our results show that
the proposed approach outperforms and is more
efficient than data-mixed fine-tuning.

3 Background: Data mixing

Let us consider a pretrained language model with
parameters Θ, and D1, D2, ..., Dn denote n differ-
ent supervised fine tuning datasets. Each dataset
can consist of a single or multiple tasks. The exact
tasks may have an overlap between these datasets,
however, the corresponding samples are unique to
each dataset. Standard data mixing (Chung et al.,
2024; Iyer et al., 2022) methods create training
batches by performing a weighted sampling from
each of the training datasets Di. The goal is to learn
a joint data distribution that can span all training
datasets.

4 Proposed Approach: Distribution
Edited Model (DEM)

In contrast to standard data mixing, we propose to
learn each data distribution separately and combine
them post training. In the following subsections,
we present two variants of that lead to a Distribu-
tion Edited Model that achieves this goal.

4.1 Combined Distribution Vectors
Let us assume a set of training data sources
(D1, D2, ..., Dn). First, we fine tune our pretrained
model (Θ) on each of these n datasets separately,
with a different set of hyper-parameters (chosen
for optimal validation loss). The corresponding
fine-tuned models are noted as ΘD1 ,ΘD2 , ...,ΘDn .
Next, we define a data distribution vector (DV)
∆ΘDi (corresponding to the dataset Di) as the
element-wise difference of parameters between the
pretrained model Θ and a fine-tuned model ΘDi ,
following a similar approach as presented in (Il-
harco et al., 2022a).

∆ΘDi = ΘDi −Θ, (1)

Instead of task specific model editing, as in prior
work, we focus on a mixture of large number of di-
verse NLP downstream tasks. These different tasks
are represented with their own data distribution and
we investigate how to combine different data DVs
that we can extract by fine tuning the pretrained
model using data from different distributions.

Lastly, we obtain a mixed data DV by comput-
ing a weighted combination of each ∆ΘDi with

corresponding weights ωi ∈ R. Finally we add
the pretrained model Θ to obtain our Distribution
Edited Model (DEM) as follows:

ΘD = Θ+
n∑

i=1

ωi∆ΘDi . (2)

4.2 Model Interpolation

Another way to combine the finetuned models
(ΘDi) is through model weight interpolation. In
this case, we do not extract data distribution vec-
tors (∆ΘDi), but rather use the finetuned models
directly that capture information about the data
distribution. Specifically, we take a weighted aver-
age of all the fine tuned models (ΘDi) where the
weights, ωi ∈ R sum to 1. More formally,

ΘD =
n∑

i=1

ωiΘDi ; s.t.
n∑

i=1

ωi = 1. (3)

Note that, Eq 3 is a special case of Eq 2 when∑n
i=1 ωi = 1. DEM using distribution vector

(Eq 2) provides more flexibility in terms of choos-
ing ωi per data source which can yield further per-
formance improvement (Section 6.1).

4.3 Computational Cost

To better understand the advantages of DEM over
the data mixing approach we derive a formula to
measure the cost for each method. Let us assume
we have n different data sources and m number
of weights per data source. The hyperparameter
search space for both the approaches will have a to-
tal of mn weight combinations. Intuitively, search-
ing for data mixing weights is comparatively more
expensive than DEM since full data re-training is
required for validating each weight combination.
On the other hand, DEM requires finding the op-
timal weights after individual training using only
validation for each weight combination.

To formalize this, assume T and V as the average
number training and validation steps respectively.
The computational complexity for the weighted
data mixing will be O(mn(T + V )) and for the
proposed DEM approach will be O(n(T + V ) +
(mnV )). We can clearly see that O(mn(T+V )) ≥
O(n(T +V )+(mnV )), and with DEM we reduce
the number of training run by a factor of mn/n.

Additionally, we can compare the exact training
and validation cost of our proposed DEM approach
with the baseline. Assuming k steps of training or



validation and each step takes t seconds, we can
define the cost (c) in gpu-hours as follows:

c = (k ∗ t ∗ g)/3600 (4)

where g is the total number of GPUs used. The
exact cost for training (ctrain) and validation (cval)
depends on the corresponding values of k, t and g
and generally ctrain ≫ cval.

5 Experimental Setup

5.1 Dataset
Here, we list the fine-tuning datasets, we use to en-
hance instruction following capability of our base
pre-trained LLM. Previous work has shown that
they improve the instruction following capabilities
of the models (Chung et al., 2024; Iyer et al., 2022;
Gupta et al., 2022; Amini et al., 2019; Sanh et al.,
2022).

• Chain of Thoughts (CoT) (Wei et al., 2022b):
The CoT mixture (Chung et al., 2024) consists of
nine datasets with manually written CoT annota-
tions. Each task in these nine datasets have ten
manually composed instruction templates, and
the span arithmetic reasoning, multi-hop reason-
ing, and natural language inference.

• Math QA (Amini et al., 2019): This dataset con-
sists of 37K math-based multiple-choice word
problems. The problem set includes geome-
try, counting, probability, physics, gain-loss and
other general math topics.

• Public Pool of Prompts (P3) (Sanh et al., 2022):
P3 (Public Pool of Prompts) is a collection of
prompted English datasets for a diverse set of
NLP tasks, where each sample consists of a
prompted input and a target text. Prompts can
be considered as a functions that map an exam-
ple from a dataset to a natural language input
and target output. Promptsource (Bach et al.,
2022) is used to interactively create prompts and
gather prompt-specific metadata like evaluation
metrics. As of writing of this paper, over 2,000
prompts from 270+ datasets are publicly avail-
able on Promptsource.

• Instruct Dial (InstDial) (Gupta et al., 2022):
This is an instruction tuning dataset designed for
dialogues. It consists of 48 different dialogue
tasks from 59 open dialogue datasets which is
unified in text-to-text format suitable for decoder

# Params Context Dims # Heads # Layers

3B 2048 3200 32 26
7B 2048 4096 32 40
13B 2048 5120 40 40

Table 1: Characteristics of different OpenLLaMA model
sizes used in our experiments.

LLMs. It has been shown improve model perfor-
mance in unseen datasets, specially for dialogue
related tasks.

• Super Natural Instructions (SNI) (Wang et al.,
2022): This dataset consists of 1,616 diverse
NLP tasks in text-to-text format with instruc-
tions written by experts. It covers 76 distinct task
types, including but not limited to text composi-
tion, infilling, extraction, classification, sequence
tagging and paraphrasing.

5.2 Model Architecture
We use OpenLLaMA (Geng and Liu, 2023) as our
base LLM, which is trained on 1T tokens from the
RedPajama Dataset (Computer, 2023). It follows
the same architecture as the LLaMA model (Tou-
vron et al., 2023a) – a decoder-only LLM with
rotary positional embedding, SwiGLU activations
and RMS Norm for pre-normalization. In our ex-
periments, we cover three different sized models:
3B, 7B and 13B (see Table 1). We carry all ab-
lations with the 7B model, while the 3B and 13B
models are used to show generalization of the pro-
posed approach to other sizes. The experimental
results show that the properties of DEM are present
across different model sizes.

5.3 Training
We fine-tune the OpenLLaMA model on all in-
struction following datasets (Section 5.1), both sep-
arately and jointly. We use AdamW optimizer with
β1 = 0.9, β2 = 0.95, weight decay of 0.05, gra-
dient clipping of 1 and a constant learning rate of
2e-5 with a 2000 step warmup. We also adjust
batch size for different datasets based on the vali-
dation loss (see Appendix A for details). We use
a greedy sample packing approach to fit multiple
training samples into a single batch sample effi-
ciently, padding to the max sequence length with-
out overflowing into the next sample of a batch. To
select the optimal mixing weights for DEM (Eq 2),
we perform a grid search over ωi values. For each
coefficient combination we evaluate the validation



losses on the five datasets (Section 5.1), and se-
lect the model that minimizes their average (see
Section C for details). We use an equal weight of
ωi = 0.25 for all datasets in our experiments.

5.4 Evaluation Framework

We evaluate the instruction following capability of
the models using three publicly available bench-
marks, namely InstructEval (Chia et al., 2024),
LM-evaluation-harness (Gao et al., 2024) and
HELM (Liang et al., 2023). To have a holistic
evaluation, we choose a diverse set of held-out
datasets: (i) from InstructEval – MMLU, Big-
Bench Hard and DROP, (ii) from LM-evaluation-
harness – MathQA, and (iii) from HELM – twenty
sets from six diverse task-groups – Classification,
ClosedbookQA, OpenbookQA, Math, Reasoning
and Conversational (see Table 3). We perform 5-
shot evaluation on MMLU and HELM, and 3-shot
evaluation on BBH and DROP, inline with the stan-
dardized setup and previous work.

5.5 Baseline Models

The pre-trained OpenLLaMA serves as the non
instruction-tuned baseline for evaluation. Our pri-
mary instruction-tuned baseline is data mixing –
the model is fine-tuned using a weighted mixture
of 5 diverse datasets as described in 5.1 follow-
ing (Chung et al., 2024; Iyer et al., 2022) which has
been shown to produce SOTA performance with
large scale diverse datasets. This model requires
finding the optimal weights corresponding to each
training dataset such that the validation loss reaches
optimal value for each dataset at similar number of
training steps. We experimented with several com-
binations of weights and chose the one that leads
to the smallest validation loss (see Appendix B for
details). Additionally, we create a simpler baseline
where we concatenate all 5 training datasets and
the samples are shuffled randomly during training.
This technique is more cost-effective than the stan-
dard data mixing approach, as it does not require
any weight optimization.

6 Experimental Analysis

6.1 Downstream Task Performance

In this section, we first use the Instruct-Eval
framework to evaluate the performance of both
the pre-trained and fine-tuned models. The perfor-
mance on MMLU, BBH and DROP is shown in

Models MMLU BBH DROP MathQA

Open LLaMA 40.31 32.84 24.38 27.71
LLaMA (Touvron et al., 2023a) 35.10 30.30 - -
LLaMA2 (Touvron et al., 2023b) 45.30 32.60 - -

FlanPaLM (8B) (Chung et al., 2024) 49.3 36.4 - -
OPT-IML (30B) (Iyer et al., 2022) 43.2 30.9 - -
OPT-IML (175B) (Iyer et al., 2022) 47.1 35.7 - -

CoT 41.67 33.98 24.20 29.31
Math QA 39.71 32.70 24.31 25.03
P3 35.69 14.00 23.29 27.14
InstDial 39.31 23.09 21.81 26.60
SNI 46.55 35.88 34.53 28.31

Data Mixing 47.77 36.38 32.71 30.35
Concatenated Datasets 43.43 21.34 23.21 27.71
DEM - Interpolation (Ours) 50.14 40.11 36.31 31.22
DEM - Distribution Vector (Ours) 50.74 40.56 37.96 32.16

Table 2: Downstream task performance of models
trained on different instruction following datasets (Sec-
tion 5.1). We compare it with different pretrained and
fine-tuned baselines (Section 5.5) and our proposed ap-
proach in Section 4. The models are of size 7B, unless
specified. The performance numbers for models with
citation are taken from the corresponding paper, rest
are evaluated using InstructEval and LM-evaluation-
harness.

Table 2.1 In addition to the pretrained OpenLLaMA
model, we show the performance of LLaMA (Tou-
vron et al., 2023a) and LLaMA2 (Touvron et al.,
2023b) of same size as a reference. We also include
three other supervised fine tuned models of larger
sizes, namely FlanPaLM (8B) and OPT-IML (30,
175B).

We present the performance of fine tuned mod-
els on each dataset separately and observe that the
performance degrades compared to Open-LLaMA
model for P3, InstDial and MathQA. On the other
hand, we observe significant improvement with
CoT and SNI datasets in all four task families. We
compare these models with data mixing baseline
and note that it performs significantly better than
the pretrained OpenLLaMA, while the improve-
ment compared to the best single dataset fine-tuned
model (i.e. SNI) is much smaller, even worse for
DROP. The concatenated datasets baseline per-
forms significantly worse than data mixing method,
only improving for MMLU compared to OpenL-
LaMA and significantly worse than SNI fine-tuned
model. This highlights the importance of choosing
the optimal weights for data mixing and training a
strong baseline.

1The low performance on BBH after training on P3 is
inline with previous findings (Iyer et al., 2022). The T0pp
11B’s (Sanh et al., 2022) accuracy is 13.0, after being fine-
tuned only on the P3 dataset.



Models Classification Closedbook QA OpenBook QA Math Reasoning Conversational

OpenLLaMA 49.68 23.21 48.55 10.45 50.40 33.03

Data Mixing 56.52 28.71 44.36 5.15 51.13 34.51
DEM (Ours) 56.94 28.24 54.34 7.78 53.31 40.22

Table 3: Summary results of the HELM evaluations on held-out scenarios, grouped by task-category for the 7B
model. DEM outperforms data mixing approach in five out of six HELM task clusters.

Next, we combine the models fine tuned on sin-
gle datasets with distribution vector and interpo-
lation method using Eq 2 and 3 respectively. The
corresponding results are shown in Table 2. We
observe that both approaches perform significantly
better than the best data mixing model for all 3 sce-
narios showing their effectiveness (see Appendix D
for MMLU performance per domain). We also
compare DEM with larger fine-tuned models (Flan-
PaLM (8B), OPT-IML (30B, 175B) and observe
that DEM performs better although these models
were trained on a larger mix of tasks and datasets
compared to our model. Additionally, DEM - Dis-
tribution Vector performs better than DEM - Inter-
polation due to more flexible choice of ωi (Sec-
tion 4.2) and we use it in the rest of the paper.

We further expand our evaluation setting to in-
clude HELM scenarios. Here, we compare the
performance of the pretrained model with DEM
and data mixing model on multiple HELM held-
out task clusters (see Table 3). DEM outperforms
the data mixing approach in five out of six HELM
task clusters. Surprisingly, for Math task category,
the fine-tuned model performance degrades as com-
pared to the pretrained model. Closer inspection
reveals that this degradation is partly due to the
fact that the instruction-tuned model does not out-
put the answer in the correct format (as expected
by HELM evaluation metric). The detailed HELM
evaluation results (including results on ‘seen’ tasks)
are reported in the Appendix D (Table 12).

6.2 Effect of Model Size Scaling

We evaluate the performance of the proposed DEM
approach with increasing model sizes using Open-
LLaMA 3B, 7B, and 13B models, quantifying the
impact with both smaller and larger models. We
trained the baseline Data Mixing model using the
method discussed in Section 5.5. On the other
hand, we fine-tuned the models on each dataset
separately and combined them using Eq 2, similar
to the 7B model as discussed in Section 6.1. We
use the same model mixing weight of ωi = 0.25

# Params Models MMLU BBH DROP MathQA

3B
Data Mixing 41.08 31.36 25.98 28.54
DEM 43.67 34.14 28.89 29.78

7B
Data Mixing 47.77 36.38 32.71 30.35
DEM 50.74 40.56 37.96 32.16

13B
Data Mixing 52.7 40.48 43.15 30.72
DEM 54.53 42.65 46.59 33.13

Table 4: Effect of model size on the performance of the
proposed approach. We observe performance improve-
ment using DEM for both smaller (3B) and larger (13B)
models compared to Data Mixing baseline.

(optimized for 7B model) for models of all sizes
and present the results in Table 4. We observe that
the model performance increases as we scale up the
model size from 3B to 13B for both Data Mixing
and DEM. Additionally, DEM yields performance
improvement for each model size, showing the ef-
fectiveness and generalizability of the proposed
approach with model size.

6.3 Impact of Different Training Datasets

In this section, we analyze the impact of each train-
ing dataset included in the mixture on the down-
stream task performance. For this, we progressively
add the data distribution vector corresponding to
each dataset to the base model (following Eq. 2)
and evaluate the resulting model. We use ωi = 0.25
for all datasets to keep the setup simple. The per-
formance of the resulting models are presented in
Table 5. We observe that these data sources yield
different levels of performance gains, as expected.
This can be due to the various levels of mismatch
between the train and test distribution. We observe
that combining the pretrained model with single-
task distribution vectors (e.g Math QA) or smaller
mix of tasks (e.g., CoT) leads to smaller improve-
ment whereas large scale multi-task distribution
vectors (e.g., P3 and SNI) yields a much larger per-
formance gain, in comparison. It can also be due to
the large diversity of tasks and samples in P3 and
SNI. InstructDial is an exception, which can be due



Training Dataset MMLU BBH DROP MathQA

Open LLaMA 40.31 32.84 24.38 27.71
+ CoT 41.30 33.68 25.46 28.44
+ MathQA 41.67 33.73 26.05 28.68
+ P3 47.12 36.58 30.82 30.35
+ InstDial 47.44 38.20 31.15 30.65
+ SNI 50.74 40.56 37.96 32.16

Table 5: Effect of progressively adding distribution vec-
tors (Eq 1) from different data sources to the pretrained
model using DEM (Eq 2). The performance increases
as we add more data sources.

OpenLLaMA vs. Euclidean

P3 35.1
InstDial 85.1
SNI 34.1
CoT 3.2
MathQA 4.1

Data Mixing 74.6
DEM 20.8

Table 6: Euclidean distance between the base model
(OpenLLaMA) and the fine-tuned models.

to the conversational nature of this dataset, making
it very different from the evaluation tasks.

6.4 Properties of Distribution Vectors

To better understand the behavior of DEM, we ex-
amine the characteristics of the fine-tuned models
and their corresponding distribution vectors, as de-
fined in (Eq 1). We evaluate the similarity between
models by calculating the Euclidean distance and
the cosine similarity after converting their weights
into a single flattened vector representation.
Individual model distance from base. In Ta-
ble 6, we show the Euclidean distance from the
base model to each fine-tuned model. Datasets
with more examples (P3, Instruct Dial, and SNI)
lead to models that are further away from the base.
The largest change is caused by Instruct Dial (x3
compared to the second largest), since it introduces
a very specific domain (i.e., conversations), and
requires higher adaptation of the model. In con-
trast, smaller datasets (CoT, and Math QA) only
contribute small changes (3-4 points). As expected,
the distribution edited model (DEM) is closer to the
base model than the models trained on the largest
datasets. This is because DEM is derived from a
weighted average of the individual vectors. Finally,
we observe that the Data Mixing model has signifi-
cantly higher euclidean distance (x3) from the base

↓ Dist. Vector → P3 InstDial SNI CoT MathQA

InstDial 0.07 -
SNI 0.09 0.08 -
CoT 0.02 0.01 0.02 -
MathQA 0.01 0.01 0.01 1.0 -

Data Mixing 0.27 0.29 0.19 0.10 0.10
DEM 0.44 0.87 0.43 0.06 0.06

Table 7: Cosine similarity between distribution vectors.

Figure 2: tSNE representation of the fine-tuning datasets.
The centroids of the datasets are marked as larger points
with captions.

model compared to DEM, indicating that the Data
Mixing approach introduces a larger change.

Pairwise similarity between distribution vectors.
Next, in Table 7 we compare the pairwise cosine
similarity between the DVs from the fine-tuned
models. We show that most of the individual DVs
are almost orthogonal, except CoT and Math QA.
This suggests that fine-tuning on these datasets
does not lead to interference and introduces dif-
ferent abilities into the model.

To understand this, we sample 2,000 points from
each dataset and plot their embedding representa-
tions into a common space using tSNE (van der
Maaten and Hinton (2008), see Figure 2).2 We
observe a large number of CoT prompts that are
close to the centroid of the MathQA dataset, which
may explain the high similarity between their DVs.
Note that CoT also has a small overlap with P3 but
further away from their centroids, making the two
DVs almost orthogonal. All other datasets have
a minimal overlap between each other, and form

2We encode all texts after formatting them into their cor-
responding prompt using sentence-transformers/all-MiniLM-
L12-v2.

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2


Figure 3: Layer-wise Euclidean distance, comparison
between the base OpenLLaMA model, and the tuned
models. Darker colors mean higher absolute difference.
The euclidean distance values are normalized per-model
by the highest layer-distance for that model. The plots
are invariant to the scale of the weight change.

independent clusters. We also study the relation
between the combined DV and individual DVs (last
row in Table 7). We observe that DEM is oriented
towards the DVs from the models with the highest
euclidean distance from the pretrained model.

Finally, we compare how the data mixing model
is oriented relative to the individual DVs. The
cosine similarity with all DVs is less than 0.3, how-
ever, the model is oriented towards the DVs of big-
ger and more diverse datasets (InstDail, P3, SNI).
The similarity with the CoT and MathQA is a bit
higher, but it still remains within 0.1.

Layer-wise distance of individual models from
base. Finally, to fully understand the changes in the
models and why DEM is an effective strategy for
data distribution mixing, we zoom in even further
into the layer-wise euclidean distance (Figure 3)
between the individual task vectors and the base
model (OpenLLaMA 7B). From Figure 3, it is ev-
ident that the changes in the tuned models occur
mostly in the first three layers. The embedding
layers remain relatively stable across different do-
mains and dataset sizes, indicating that the funda-
mental properties are preserved. New knowledge
is primarily acquired by the 2-3 layers, which con-

Train/Val Runs time / step # steps # gpus Cost

DEM
- CoT 6.5 550 8 8
- Math QA 6.5 600 8 8.7
- P3 4.8 6000 32 256
- InstDial 5.2 23000 16 530
- SNI 5.24 6000 16 140
- Validation (10x) 2.1 500 8 23
Total 966

Data-Mixing (50x) 5.24 15000 16 11650

Table 8: Training cost (in gpu-hours) of 7B model on
different instruction following datasets computed using
Eq 4. Note that the number of steps is not equal to the
number of examples.

tributes to the success of the proposed approach.
Furthermore, this study suggests that when combin-
ing weights, it is not necessary to take into account
all the weights involved. Instead, it is possible
to safely remove or prune certain weights in the
combination without significantly impacting the
outcome, as also shown by Yadav et al. (2023).

6.5 Compute Cost Comparison

We use Eq. 4 to compare the real compute cost
of the proposed DEM approach with the baseline
data mixing method for 7B model on Nvidia A100
machines (with 8 gpus per node). Note that, this
cost is specific to our setup and it can change de-
pending on the model size, training parallelization
scheme and other factors. In Table 8, we present
the gpu-hours used by different training runs, as
well as the validation runs needed for finding opti-
mal model mixing weight ωi in Eq 2. In each case,
we did early stopping to obtain the best validation
loss, which results in varying number of training
steps (‘# steps’ in Table 8). As discussed in Ap-
pendix B, we use a combination of 10 weights to
get the best model for DEM, which costs 23 gpu-
hours. The total cost (training+validation) for DEM
is 966 gpu-hours.

For the baseline data mixing, we trained 50
models with different weight combination (the ex-
act weight selection process is described in Ap-
pendix B). Each run costs an average of 233 gpu-
hours, resulting in a total cost of 11650 gpu-hours.
This is more than 11 times the total cost of DEM.

7 Conclusions and Future Work

We proposed a simple and efficient approach for
training on diverse data distributions that trains



checkpoints individually on each data source and
then combines them with basic element-wise vec-
tor operations. DEM siginficantly outperforms the
standard weighted data mixing in terms of down-
stream performance and overall compute cost. Our
experiments demonstrate that DEM works with
both single-task (e.g. Math QA) and multi-task
data distributions (e.g. SNI, P3), and that they can
be incrementally added to the pretrained model, re-
sulting in improved downstream performance. We
further performed extensive analysis to better un-
derstand the properties of the learned distribution
vectors, finding that DEM is better aligned with the
individual models than baseline while remaining
close to the original model.

In future, it is important to evaluate the pro-
posed approach using other model architectures
e.g. encoder-decoder or mixture of experts model
to better understand its effectiveness with other
model designs. Additionally, DEM can be further
improved by using more sophisticated methods for
combining the individual checkpoints that can re-
duce the negative effects of interfering data distri-
butions.
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Limitations

While this paper proposes an efficient and effective
alternative to data mixing for training multi-task
and instruction-following models, it is important to
acknowledge its limitations:

• Task granularity. The distribution vectors of
DEM are applicable to data distributions that
span a single or multiple tasks. Our experimen-
tation focused on existing data sources with dif-
ferent granularities ranging from several hundred
tasks (e.g. P3) to a single one (e.g. MathQA),
hence, the resulting distribution vectors captured
varying task granularities. A detailed investiga-
tion of granularities and how to automatically
group the data is an open area of investigation.

• Architecture type. The proposed approach makes
no specific assumptions regarding the architec-

ture and should be, in principle, applicable to any
architecture variant including Mixture-of-Expert
models (Fedus et al., 2022; Xue et al., 2024; Jiang
et al., 2024; Sukhbaatar et al., 2024; Hu et al.,
2024). Due to budget constraints, the evaluation
of different architecture types was not included
in the experiment plan. Therefore, the compati-
bility of DEM with different architecture types
remains to be evaluated.

• Storage Requirements. DEM reduces the compu-
tational cost of training models, but it requires
storing a number of distribution vectors in the
hard drive. For very large models, this creates
the need for large storage capacity that may not
be always available. One straight-forward solu-
tion to this problem is to use parameter-efficient
methods to train the distribution vectors instead
of full training or discard the distribution vectors
once the optimal combination has been identi-
fied.
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Appendix

A Training Hyperparameters

In this section, we describe the detailed hyperpa-
rameters that we used for fine tuning the OpenL-
LaMA model using different datasets separately for
DEM and combined for Data Mixing and Concate-
nated Datasets. In all these cases, we use a constant
learning rate of 2e-5 with a 2000 step warmup. We
tested other learning rate schedules with cosine and
linear decay in preliminary experiments, however,
they lead to worse performance. We use AdamW
optimizer with β1 = 0.9, β2 = 0.95, weight decay
of 0.05 and gradient clipping of 1. We also adjust
batch size for different datasets based on the vali-
dation loss. We use example packing to fit multiple
training examples into a single sample of a batch
for efficient training. This is a greedy packing ap-
proach where we pack training examples until we
reach the max sequence length that we can fit into
the model. We do not overflow an example into
the next sample of a batch (as generally done dur-
ing pretraining (Brown et al., 2020)), rather use
padding to fill the sample. The full setting is pre-
sented in Table 9. We show the batch size using
total number of token after sample packing. The
number of training steps indicates the step with
best validation loss, and its variable for different
datasets. Note that for InstDial, this value is partic-
ularly high because of the different kind of samples
(i.e. dialog) that consists of this dataset.

Dataset / Batch Learning # Training
Method Size Rate Steps

CoT 65k 2e-5 550
MathQA 65k 2e-5 600
P3 262k 2e-5 6k
InstDial 131k 2e-5 23k
SNI 131k 2e-5 6k
Data Mixing 131k 2e-5 15k
Concatenated Datasets 131K 2e-5 17K

Table 9: Training hyperparameters for different models.

B Choosing Data Mixing Weights

Based on initial experiments, we determined the
following hyperparameter ranges for the baseline
data mixing approach – CoT: [0.05, 0.1, 0.15, 0.20],
Math QA: [0.05, 0.1, 0.15, 0.20], P3: [0.25, 0.30,
0.35, 0.40], InstructDial: [0.30, 0.35, 0.40, 0.45],
Super Natural Instructions: [0.15, 0.20, 0.25, 0.30].
Out of the 1024 possible weight combinations

Models MMLU BBH DROP

Open LLaMA 40.31 32.84 24.38
DEM - Distribution Vector

ω = 0.25 50.74 40.56 37.96
Random Search, x50 50.98 40.55 40.83

Table 10: Downstream task performance of the DEM w/
Distribution Vector. We compare the weight selection
strategies: single-coefficient vs. random search with 50
iterations.

above, we randomly selected 50 combinations for
training and selected the best weight setting based
on validation-loss. The optimal data mixing setting
was the following: P3 - 0.30, SNI - 0.20, Instruct-
Dial - 0.40, MathQA - 0.05, CoT - 0.05 The total
cost for this hyperparameter search procedure is
listed in Table 8).

C Choosing DEM Weights

In order to select the optimal mixing weights for
DEM - Distribution Vector (Eq 2), we perform a
grid search over ωi values. For each coefficient
combination we evaluate the validation losses on
the five datasets used for fine-tuning (Section 5.1),
and select the model that minimizes their average.
However, exhaustive grid search is expensive as
the number of combinations grows exponentially.
Thus, we simplify Eq 2 and optimize a single coef-
ficient ω for all datasets. We found ω = 0.25 (out
of 10 values) to produce the best validation loss
and use it for all our experiments.

We chose the weights for DEM - Interpolation
(Eq 3) in a similar manner as DEM - Distribu-
tion Vector by randomly sampling weights from
the search grid and normalizing them to sum to
1. Additionally, we also tried the same weights as
data mixing and equal weight of 0.2 for each of
5 datasets. The simplest strategy of equal weight
performed on par with the best weight combination
in terms of average val loss. So, we chose this and
reported the corresponding results in Table 2

To measure the effect of using a single coeffi-
cient, we perform a limited budget experiment with
50 weight combinations, which are produced us-
ing individual weights for each distribution vector
(Eq 1), sampled uniformly from the interval [0, 1].
Our results show that the best single-coefficient
models perform better or on par with the sampled
models in terms of average validation loss. This
formulation was also adopted in other model inter-
polation works (Ilharco et al., 2022a; Yadav et al.,



2023). In Table 10, we show the differences in
performance on three benchmarks (MMLU, BBH,
DROP) using the Open LLaMa 7B model. The two
strategies have similar performance on MMLU and
BBH but the random search has an advantage of 3
points on DROP. However, this increase comes at
the expense of 5x increase in cost (10 evaluations
for uniform vs. 50 evaluations for random search).
The best distribution weights we found are: CoT -
0.1, InstDial - 0.12, MathQA - 0.1, P3 - 0.23, SNI -
0.45. We hypothesize that the single-vector weights
will not be an optimal choice if there is high nega-
tive correlation between the vectors, i.e., the data
distributions are conflicting.

D Fine-Grained Results

In Table 11 we show the model performance per
domain on the MMLU benchmarking datasets. It
covers five different categories, on all of which
DEM outperforms the other alternatives.

In Table 12 we show the per-dataset results
on HELM benchmark. We can see that our ap-
proach significantly outperforms data mixing and
improves over the baseline model in most of the cat-
egories. Due to space limitations we show different
datasets on different rows.



Training Dataset STEM Humanities Social Sciences Others Average

Open LLaMA v2 33.4 36.8 45.1 47.3 40.3
LLaMA 1 (Touvron et al., 2023a) 34.0 30.5 38.3 38.1 35.1
LLaMA 2 (Touvron et al., 2023b) 42.9 36.4 51.2 52.2 45.3

Public Pool of Prompts (P3) 25.4 32.9 44.2 41.2 35.7
Instruct Dial 31.9 37.8 44.5 43.5 39.3
Super Natural Instructions (SNI) 38.4 42.6 53.9 52.9 46.5
Chain of Thoughts (CoT) 34.4 38.3 47.1 48.1 41.7
Math QA 32.8 36.6 44.1 46.5 39.7

Data Mixing 39.2 44.8 55.6 52.6 47.8
Concatenated Datasets (1-5) 37.9 41.4 49.8 46.1 43.4
DEM - Interpolation (Ours) 39.7 47.2 58.5 56.2 50.1
DEM - Distribution Vector (Ours) 40.4 47.8 58.8 57.0 50.7

Table 11: MMLU domain specific task performance of models trained on different instruction following datasets
(Section 5.1). We compare it with different pretrained and fine-tuned baselines (Section 5.5) and our proposed
approach in Section 4.

Models MMLU BoolQ NarrativeQA NaturalQ closed NaturalQ open QUAC TruthfulQA IMDB CivilComments RAFT Wikifact

OpenLLaMA-v2 39.37 72.3 63.96 26.08 61.15 33.03 18.65 93.2 53.96 60.0 24.89
Data Mixing 43.96 85.3 71.24 21.84 19.5 34.52 42.35 87.0 64.8 69.09 21.94
DEM (ours) 46.61 82.4 71.24 28.1 69.39 40.22 29.82 96.6 53.75 67.27 26.82

Models ReasonAbstract ReasonNatural bABI Dyck GSM-8K Math-Eq Math-CoT LSAT Legal Imputation EntityMatch

OpenLLaMA-v2 18.51 21.1 45.25 52.0 5.5 12.58 8.33 20.43 48.67 81.66 83.89
Data Mixing 20.58 29.64 54.52 40.0 0.5 8.79 1.52 24.35 62.37 76.4 85.62
DEM (ours) 23.24 34.73 56.62 48.4 6.3 11.06 4.52 18.26 58.49 71.56 85.32

Table 12: Detailed HELM results on 22 scenarios. HELM datasets that are part of model-training (BoolQ, GSM-8K
and IMDB), are excluded from the aggregated results presented in Table 3


