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Abstract

Accented speech classification plays a vital
role in the advancement of high-quality auto-
matic speech recognition (ASR) technology.
For certain applications, like multi-accented
speech classification, it is not always viable
to obtain data with accent variation, especially
for resource-poor languages. This is one of
the major reasons that contributes to the under-
performance of the speech classification sys-
tems. Therefore, in order to handle speech vari-
ability in Indian language speaker accents, we
propose a few-shot learning paradigm in this
study. It learns generic feature embeddings
using an encoder from a pre-trained whisper
model and a classification head for classifica-
tion. The model is refined using LLM’s fine-
tuning techniques, such as LoRA and QLoRA,
for the six Indian English accents in the In-
dic Accent Dataset. The experimental findings
show that the accuracy of the model is greatly
increased by the few-shot learning paradigm’s
effectiveness combined with LLM’s fine-tuning
techniques. In optimal settings, the model’s
accuracy can reach 94% when the trainable pa-
rameters are set to 5%.

Keywords : Accent-classification, few-shot,
LoRA, QLoRA, LLM, Whisper, Dravidian Lan-
guage

1 Introduction

In this digital era, speech data has become a valu-
able resource, alongside text data. In the field of
speech processing, recent developments in deep
learning have made it possible to create end-to-
end systems for tasks like speech classification
and recognition. Much of the ongoing research
in speech processing focuses on constructing end-
to-end devices for automatic speech recognition
(ASR) capable of handling diverse input data and
providing accurate transcriptions. While ASR sys-
tems have shown remarkable performance in many

cases, they face challenges when it comes to gener-
alizing and adapting to resource-poor or resource-
limited languages. Even though there are multilin-
gual ASR and classification systems that have been
trained on different Indian languages like Tamil,
Kannada, Malayalam, Telugu, and others, their ef-
fectiveness is still lacking. This is due to the fact
that speech is highly influenced by a variety of
factors, such as the speaker’s accent, gender, age,
and more, and the lack of data covering all these
variations (Bachate and Sharma, 2019; Malik et al.,
2021).

Apart from gender, the speaker’s accent (Huang
et al., 2001) is recognized as the second most influ-
ential speech variation that affects the performance
of speech recognition systems. An accent typically
refers to a unique way of speaking or pronouncing
a non-native language by a native speaker, influ-
enced by the speaker’s demographic background
or geographical location. Accent classification, at
its core, involves the categorization of regional or
demographic accents within spoken language. The
speaker’s accent classification is considered a pre-
liminary task for enhancing the capabilities of mul-
tilingual ASR systems.

The primary objective of this research is to tackle
the aforementioned accent variations by introduc-
ing a data-driven approach to address the challenge
of multi-accented speech classification. This pa-
per proposes a few-shot learning method for multi-
accented speech classification tasks as a means
to handle the diverse array of accents effectively.
The few-shot learning paradigm was chosen for
this work due to its ability to learn from small
amounts of data, which emphasizes how important
it is for successfully tackling accent classification
problems. The whisper ASR model serves as the
foundational framework for the task of classifying
accented speech. In this work, we primarily use the
encoder component of the model, to which we at-
tached a classification head, excluding the decoder
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component.
Furthermore, we used two of the most popu-

lar large language model (LLM) adapters, such as
Quantized Low-Rank Adaptation (QLoRA) and
Low-Rank Adaptation (LoRA), to make the train-
ing and fine-tuning processes efficient and memory-
friendly. In this work, we utilized the data de-
rived from six Indian languages, sourced from
the IndicAccentDB (Darshana et al., 2022) and
NISP (Kalluri et al., 2021) datasets. Both of these
datasets are significant for their inclusion of multi-
accented speech, featuring conversations in English
among native speakers.

Our main contributions are as follows:

• The pre-trained ASR model was employed in
conjunction with LLM fine-tuning adapters
such as Low-Rank Adaptations (LoRA) and
Quantized Low-Rank Adaptation (QLoRA) in
order to categorize individuals’ accents.

• Extensive experiments on the combined In-
dicAccentDB, NISP, and Gujarati Digits
datasets have been conducted to show the effi-
cacy of LLM’s fine-tuning techniques. These
experiments involve reducing the trainable pa-
rameters by setting different low-rank values
ranging from 2 to 32.

• The significance of the few-shot learning
paradigm was demonstrated by obtaining an
average accuracy of 90% under LoRA and
93.3% under QLoRA.

• A multi-class accent classification task using
few-shot learning paradigm has been demon-
strated using only 2 hours and 30 minutes of
training data and observed to have 94% accu-
racy in the optimal setting where the training
parameters were reduced to 5% using LLM’s
adapters.

The paper contribution is detailed in the sections
that follow, which are arranged as follows: Sec-
tion 2 describes the related works, while Section 3
completely describes the methodology used in this
work. Section 4 holds the results and discussion,
and we conclude the work in Section 5.

2 Related Works

Previous research has extensively investigated how
various components of speech change with accents.
Notably, spectral features like formant frequencies

and temporal features such as intonation and du-
ration’s exhibit variation with accent (Arslan and
Hansen, 1997; Ferragne and Pellegrino, 2010). To
automate accent classification, these features have
been combined into different statistical models and
machine learning techniques.

Historically, Hidden Markov Models (HMMs)
and Gaussian Mixture Models (GMMs) have been
commonly used in accent classification (Deshpande
et al., 2005; Ghesquiere and Van Compernolle,
2002; Zheng et al., 2005). Some studies looked at
how the number of GMM components affected the
performance of classification (Chen et al., 2001),
while others compared HMMs to Support Vector
Machines (SVM) (Tang and Ghorbani, 2003). Fur-
ther studies explored the impact of GMM compo-
nent numbers on classification performance (Chen
et al., 2001). In (Pedersen and Diederich, 2007),
SVM has been used to classify Arabic and In-
dian accents using the most popular Mel-Frequency
Cepstral Coefficients (MFCCs) as the speech fea-
ture. Linear models, such as linear discriminant
analysis (LDA), have also found applications, as
seen in the identification of accents in Australian
English (Kumpf and King, 1997).

Conventional statistical models and machine
learning models have played a crucial role in ac-
cented speech classification. However, deep learn-
ing frameworks like deep neural networks (DNNs)
and recurrent neural networks (RNNs) have been
widely used in the latest speech recognition and
synthesis systems (Hinton et al., 2012; Zen and
Sak, 2015; Xu et al., 2014; Jiao et al., 2016; Lalitha
et al., 2019). Notably, for the accent classification
task, Telugu dialect datasets were created and clas-
sified using variants of RNN models like LSTM,
GRU, and BiLSTM with attention layers (Podila
et al., 2022).

However, there have been fewer studies evaluat-
ing neural networks for accent identification (Chan
et al., 1994) and (Rabiee and Setayeshi, 2010). Nev-
ertheless, in related areas like language identifica-
tion (LID), neural networks have been thoroughly
investigated (Montavon, 2009; Cole et al., 1989;
Lopez-Moreno et al., 2014). As a breakthrough,
convolutional neural networks (CNNs) and gated
recurrent units (GRUs) (Tzudir et al., 2021) have
been combined to classify accents with approxi-
mately 6 hours of speech data for resource-poor
languages. Moreover, transformers have been a
crucial breakthrough in both the natural language
processing (NLP) and speech processing domains.
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Most of the transformer-based studies (Shi et al.,
2021; Gao et al., 2021) have been mostly con-
ducted on accented speech recognition and not on
the accent classification task. Recently, the few-
shot paradigm has gained more popularity among
researchers because of its ability to learn from a
limited amount of data, which resolves the issues
with neural net networks, which require a lot of
data to train the model (Shrestha and Mahmood,
2019). To the best of our knowledge, the efficacy of
few-shot approaches in accent classification is still
unknown, despite the fact that these approaches
have been used in audio processing (Keshav et al.,
2023; Chou et al., 2018; Arik et al., 2018; Anand
et al., 2019).

Based on the existing literature, it is evident that
while extensive research has been conducted in
the field of speech processing techniques, there re-
mains a significant gap in the development of a
system that effectively addresses accent variation
and performs classification. In our research, we
aim to bridge this gap by introducing a novel ap-
proach that utilizes a few-shot learning paradigm
for accent classification. To the best of our knowl-
edge, this is the first work that poses multi-accented
speech classification as a few-shot learning prob-
lem to address the diversity in speech variations
caused by speakers’ accents. This approach is de-
signed to identify the accents of native speakers
from spoken non-native English speech datasets.

3 Materials and Methodology

3.1 Datasets

The IndicAccentDB was first presented in the work
MARS (Darshana et al., 2022), where a hybrid
CNN was used in multi-accented English speech
recognition. IndicAccentDB is comprised of audio
recordings containing six English accents spoken
by non-native speakers, each originating from six
different Indian languages such as Tamil, Telugu,
Malayalam, Hindi, Gujarati, and Hindi. Within
the dataset, 19 speakers were asked to recite sen-
tences from the Harvard sentences dataset, which is
renowned for its phonetically balanced and gender-
balanced content (Huang et al., 2001). There are 72
sets in the Harvard Sentences dataset, and each set
has 10 moderately long sentences. Together, these
19 speakers contribute 8,180 speech utterances to
the IndicAccentDB. The average length of the au-
dio files is about 5 seconds each. The detailed data
statistics for the IndicAccentDB are presented in

IndicAccentDB
Accents No. of Recordings
Tamil 1,640
Malayalam 1,563
Telugu 1,614
Gujarati 298
Hindi 827
Kannada 1,486

Table 1: Data Statistics for IndicAccentDB corpus

Table 1.
Apart from the IndicAccentDB, we also incor-

porated publicly available datasets such as NISP
(Kalluri et al., 2021) and Gujarati Digits (Dalsaniya
et al., 2020). The NISP corpus encompasses speech
recordings in five native Indian languages: Tamil,
Kannada, Malayalam, Hindi, Telugu, and Indian-
accented English. This corpus comprises record-
ings from 345 speakers, including 126 females and
219 males. It contains a total of 28,268 speech
utterances, with 14,691 in English and 13,577 in
native languages. In this work, we focused on a
subset of the Indian-accented English utterances
within this dataset.

Furthermore, the Gujarati digits (Dalsaniya et al.,
2020) corpus is specifically designed to support
speech recognition systems and features distinct
recordings of Gujarati digits. These recordings
were collected from various regions of Gujarat, in-
cluding the Saurashtra, North Zone, South Zone,
Central Zone, and Kutch Region, encompassing
diverse environmental conditions and background
noises. This dataset contains a total of 1,940 speech
utterances from 20 different speakers. Table 2 pro-
vides a more detailed overview of the data statistics
for both the NISP and Gujarati Digits datasets used
in this work.

Corpus Accents No. of Recordings
Tamil 280
Malayalam 187

NISP Telugu 167
Kannada 233
Hindi 276

Gujarati Digits Gujarati 250

Table 2: Data Statistics for NISP and Gujarati Digits
corpus

In this study, we utilized a subset of the Gu-
jarati Digits dataset in conjunction with the Indi-
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cAccentDB and a subset of the NISP datasets. For
multi-class classification, a total of six labels were
employed for the six Indian languages. As part of
the dataset’s pre-processing, the audio files were re-
sampled to 16 kilohertz. Then, a 400-point Fourier
transform was used to make an 80-channel log Mel
spectrogram for a 25-millisecond period with a 10-
millisecond step. The resulting spectrogram was
then used as input for the model’s training.

3.2 Proposed Methodology

3.2.1 Model Architecture
Whisper (Radford et al., 2023), an advanced au-
tomatic speech recognition (ASR) model, cur-
rently stands as the state-of-the-art (SOTA) in
speech recognition. Trained on an extensive dataset
comprising 680,000 hours of multilingual and
multitask-labeled data sourced from the web, it
adopts a transformer architecture. The model in-
volves both encoder and decoder components to
process audio files and generate corresponding tex-
tual outputs.

In this study, we leveraged the pre-trained
whisper-large-v2 ASR model for a classification
task. This variant of the whisper is a multi-lingual
model with 1550 million parameters. The encoder
within the whisper model undergoes a specific ar-
chitectural sequence: initial processing through a
short stem consisting of two convolution layers,
utilizing a filter width of 3, and activation by the
GELU activation function. The second convolution
layer introduces a stride of two. Following this,
sinusoidal position embeddings are incorporated
into the stem’s output.

Subsequently, the encoder applies transformer
blocks. Notably, the transformer employs pre-
activation residual blocks. A concluding layer nor-
malization step is then applied to the output of the
encoder. The decoder component was omitted, as
the absence of a transcription task negated its ne-
cessity. Instead, we utilized a classification head
on top of the encoder to facilitate classification
tasks. Then this model is optimized using the LLM
fine-tuning adapters and trained as seen in Figure
1.

3.2.2 LLM’s Fine-Tuning Techniques
Recently, large language models (LLMs) have
gained increased attention within the research com-
munity, particularly in the field of natural language
processing (NLP) applications. This surge in pop-
ularity has led to a gradual expansion of their util-

Figure 1: The proposed model includes data processing,
feature extraction, encoder block of Whisper, and a
classification head added on top of it, which is followed
by LLM’s fine-tuning techniques.

ity into other domains, including computer vision
and speech. This paradigm involves large-scale
pre-training on diverse web data, followed by fine-
tuning for specific downstream tasks. However,
fine-tuning LLMs for such tasks often necessitates
substantial computing resources, rendering them
inaccessible to many.

Parameter Efficient Fine-Tuning (PEFT) (Liu
et al., 2022) addresses this issue by loading and
fine-tuning the model in a memory-efficient man-
ner while ensuring the model’s performance. De-
spite the fact that these methods were initially ap-
plied to language models, they could be modified to
improve the usability and accessibility of sophisti-
cated models like Whisper in a variety of domains,
including speech processing.

The PEFT methodology proves invaluable in
fine-tuning LLMs. It achieves this by selectively
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fine-tuning only a small subset of parameters in
a pre-trained model, significantly mitigating com-
putational and storage expenses. In our work, we
leverage two popular PEFT methods: LoRA (Low-
Rank Adaptation) (Hu et al., 2021) and its evolu-
tion, QLoRA (Quantized Low-Rank Adaptation)
(Dettmers et al., 2021), for the fine-tuning of the
Whisper language model.

In the context of training the neural networks, the
most fundamental procedure involves the iterative
updating of weight matrices through the use of
gradient descent. Nevertheless, when it comes to
LLMs, the process of updating the weight matrix
(Wo) in the pre-trained model presents challenges
in terms of both compute and memory resource
use.

LoRA (Hu et al., 2021) effectively addresses this
by introducing two low-rank matrices (B and A) as
an update matrix that approximates the large weight
matrix. During training, Wo remains fixed without
receiving gradient updates, while the smaller ma-
trices B and A house the trainable parameters for
LLMs fine-tuning. Consequently, when inputs are
processed, they undergo multiplication by both Wo
and the newly introduced update matrices (B and
A), with the loss computed by aggregating the out-
put vectors of Wo, B, and A.

QLoRA (Dettmers et al., 2021) is a further en-
hanced version of LoRA with improved memory
efficiency. In QLoRA, the pre-trained model is
loaded onto GPU memory using quantized 4-bit
weights, a notable advancement from the 8-bit
weights employed in LoRA. Importantly, QLoRA
maintains comparable effectiveness to its predeces-
sor, LoRA.

4 Results and Discussion

4.1 Experiments

The experiments were carried out in a hardware
environment equipped with a T4-XLarge, 4 cores,
16 GB of RAM, 1 GPU, and 40 GB of disk space.
We conducted experiments utilizing the ’whisper-
large-v2’ model with two Large Language Model
(LLM) settings: one employing the LoRA adapter
and the other employing the QLoRA adapter.

Following preprocessing, the audio files under-
went segmentation into training, testing, and vali-
dation sets. The specific details of this segmenta-
tion are outlined in Table 3. The whisper-large-v2
model was loaded with 8-bit precision into memory
using the INT8 and bitsandbytes Python libraries

during training with LoRA. On the other hand
double-quantization was used to load the model
with 4-bit precision in QLoRA, and a datatype of
NF4 (normalfloat4) was used to reduce perplexity.

Language Total Recordings Train Test Validation

Tamil 1,920 403 1,355 162
Malayalam 1,750 201 1,415 156
Telugu 1,781 437 1,188 134
Kannada 1,719 229 1,309 181
Gujarati 548 205 233 110
Hindi 1,103 289 674 140

Total 8,821 1,764 6,174 883

Table 3: Train, Test, and Validation split statistics

The whisper model was trained under both
LoRA and QLoRA configurations, employing vary-
ing rank projections from 2, 4, 8, 16, 24, and 32
with a training epoch of 10. The training process
utilized a batch size of 8 and a learning rate of 10-3.
During training, around 2 hours and 30 minutes
of data were used, while testing was conducted on
approximately 8 hours of data.

4.2 Discussion
The effectiveness of the whisper model along with
the LLM’s fine-tuning techniques in multi-accented
speech classification has been evaluated in this sec-
tion through qualitative analysis of corpora (Dar-
shana et al., 2022; Kalluri et al., 2021; Dalsaniya
et al., 2020). Precision, Recall, F1-Score, and Ac-
curacy are the primary metrics we use in our eval-
uation. Precision measures how often the model
correctly predicts positive samples among all posi-
tive predictions. Recall measures the accuracy of
the model’s positive predictions among the actual
positive samples. Accuracy measures the total num-
ber of correct predictions made by the model for
the entire corpus, whereas Precision and Recall are
combined to score the model’s accuracy for each
class in the F1-Score.

Rank LoRA (Accuracy) QLoRA (Accuracy)

32 93% 96%
24 91% 95%
16 90% 95%
8 85% 94%
4 89% 86%
2 92% 94%

Table 5: Accuracy comparison between LoRA and
QLoRA
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Rank and Trainable Parameters Languages
LoRA QLoRA

Precision Recall F1-Score Precision Recall F1-Score

Rank - 32,
Trainable
Parameters-80%

Tamil 0.93 0.96 0.95 0.97 0.95 0.96
Malayalam 0.95 0.93 0.94 0.96 0.96 0.96
Telugu 0.93 0.92 0.92 0.96 0.96 0.96
Kannada 0.95 0.98 0.97 0.96 0.98 0.97
Gujarati 0.89 0.77 0.82 0.95 0.93 0.94
Hindi 0.90 0.88 0.89 0.91 0.92 0.92

Rank - 24,
Trainable
Parameters-61%

Tamil 0.93 0.94 0.93 0.96 0.96 0.96
Malayalam 0.90 0.95 0.93 0.95 0.97 0.96
Telugu 0.90 0.89 0.90 0.96 0.93 0.95
Kannada 0.93 0.96 0.95 0.96 0.97 0.97
Gujarati 0.88 0.70 0.78 0.99 0.86 0.92
Hindi 0.85 0.76 0.80 0.88 0.92 0.90

Rank-16,
Trainable
Parameters-40%

Tamil 0.91 0.91 0.91 0.95 0.95 0.95
Malayalam 0.91 0.93 0.92 0.95 0.95 0.95
Telugu 0.86 0.86 0.86 0.93 0.92 0.93
Kannada 0.95 0.96 0.96 0.97 0.97 0.97
Gujarati 0.84 0.58 0.69 0.95 0.93 0.94
Hindi 0.81 0.83 0.82 0.91 0.94 0..92

Rank-8,
Trainable
Parameters-20%

Tamil 0.82 0.90 0.86 0.94 0.98 0.96
Malayalam 0.88 0.96 0.92 0.96 0.94 0.95
Telugu 0.82 0.75 0.79 0.93 0.93 0.93
Kannada 0.90 0.94 0.92 0.96 0.97 0.96
Gujarati 0.76 0.41 0.53 0.96 0.83 0.89
Hindi 0.79 0.67 0.73 0.91 0.88 0.90

Rank-4,
Trainable
Parameters-10%

Tamil 0.86 0.91 0.89 0.90 0.91 0.91
Malayalam 0.87 0.95 0.91 0.88 0.87 0.87
Telugu 0.93 0.84 0.88 0.84 0.85 0.85
Kannada 0.93 0.96 0.94 0.92 0.92 0.92
Gujarati 0.93 0.73 0.82 0.66 0.62 0.64
Hindi 0.86 0.77 0.81 0.69 0.70 0.70

Rank-2,
Trainable
Parameters-5%

Tamil 0.93 0.94 0.93 0.96 0.95 0.95
Malayalam 0.91 0.95 0.93 0.95 0.96 0.95
Telugu 0.94 0.86 0.90 0.93 0.92 0.93
Kannada 0.95 0.96 0.96 0.96 0.96 0.96
Gujarati 0.91 0.75 0.82 0.93 0.84 0.88
Hindi 0.78 0.86 0.82 0.85 0.90 0.87

Table 4: Multiclass Classification Report for LoRA and QLoRA.
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Table 4 shows the outcomes of multi-class clas-
sification using LoRA and QLoRA adapters at dif-
ferent rank values. Notably, the whisper model
performs well in both LoRA and QLoRA settings
across most rank values. Particularly, it excels
when double quantized and operating in 4-bit pre-
cision under QLoRA settings.

The rank values in these adapters represent the
low-rank matrix dimension learned during fine-
tuning, impacting the model’s trainable parame-
ters. The rank values parameter in both LoRA and
QLoRA is used to reduce the number of trainable
parameters. Reducing the trainable parameters min-
imizes the computational cost and memory usage
of the model. Optimal performance occurs at a rank
value of 2 for both LoRA and QLoRA, utilizing
only 5% of trainable parameters compared to the
pre-trained model’s total parameters.

Table 5 highlights significantly improved perfor-
mance for both LoRA and QLoRA at this optimal
rank value of 2, achieving an overall accuracy of
92% and 94%, respectively. Throughout the ex-
periments, the model consistently performs better
when trained on roughly two and a half hours of
speech data, emphasizing the significance of the
few-shot learning paradigm.

5 Conclusion and Future Works

In this work, we aimed to mitigate the impact of ac-
cent variation on speech classification systems. Our
approach leveraged a data-driven method employ-
ing few-shot learning to perform multi-accented
speech classification across six Indian language
speakers’ English accents. This was achieved
by utilizing the IndicAccentDB alongside subsets
from the NISP and Gujarati Digits Corpora, utiliz-
ing the pre-trained whisper ASR model.

Furthermore, we demonstrated the efficacy of
LLM fine-tuning techniques such as LoRA and
QLoRA, which make it possible to fine-tune large
language models in a manner that is both memory-
efficient and computationally efficient. As can be
shown in Table 5, our studies produced remark-
able overall accuracies of 92% and 94% when the
settings were optimized.

Future endeavors will focus on encompassing
other speech variations, such as age group and gen-
der, using the few-shot learning paradigm. This
approach will be particularly valuable in scenarios
where data availability for these diverse attributes
is limited, continuing to enhance the robustness of

speech classification systems.
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