基于大模型数据增强的作文流畅性评价方法
Peng Qianwen (彭倩雯), Gao Yanzipeng (高延子鹏), Li Xiaoqing (李晓青), Min Fanke (闵凡珂), Li Mingrui (李明锐), Wang Zhichun (王志春), Liu Tianyun (刘天昀)
Abstract
“CCL2024-Eval任 务7为 中 小 学 生 作 文 流 畅 性 评 价 (Chinese Essay Fluency Evalua-tion,CEFE),该任务定义了三项重要且富有挑战性的问题,包括中小学作文病句类型识别、中小学作文病句改写、以及中小学作文流畅性评级。本队伍参加了评测任务7的三项子任务,分别获得了45.19、43.90和45.84的得分。本报告详细介绍本队伍在三个子任务上采用的技术方法,并对评测结果进行分析。”- Anthology ID:
- 2024.ccl-3.33
- Volume:
- Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
- Month:
- July
- Year:
- 2024
- Address:
- Taiyuan, China
- Editors:
- Hongfei Lin, Hongye Tan, Bin Li
- Venue:
- CCL
- SIG:
- Publisher:
- Chinese Information Processing Society of China
- Note:
- Pages:
- 294–301
- Language:
- Chinese
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2024.ccl-3.33/
- DOI:
- Cite (ACL):
- Peng Qianwen, Gao Yanzipeng, Li Xiaoqing, Min Fanke, Li Mingrui, Wang Zhichun, and Liu Tianyun. 2024. 基于大模型数据增强的作文流畅性评价方法. In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 294–301, Taiyuan, China. Chinese Information Processing Society of China.
- Cite (Informal):
- 基于大模型数据增强的作文流畅性评价方法 (Qianwen et al., CCL 2024)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2024.ccl-3.33.pdf