@inproceedings{ao-etal-2024-ji,
title = "基于{C}hat{GPT}查询改写的文档检索方法(Document Retrieval Method Based on {C}hat{GPT} Query Rewriting)",
author = "Ao, Li and
Xinhui, Tu and
Yinghao, Xiong",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/fix-sig-urls/2024.ccl-1.2/",
pages = "15--26",
language = "zho",
abstract = "``查询改写是一种通过优化查询从而提高检索结果质量的技术。传统的基于伪相关反馈的方法受限于伪相关文档的质量。本文提出了一种基于ChatGPT查询改写的文档检索方法。这种方法不依赖伪相关文档,可以避免伪相关文档质量不高的问题。首先,利用BM25模型进行检索,获得初次检索结果集;同时借助ChatGPT生成新查询;然后分别将原始查询和新查询作为输入,利用重排模型对初次检索结果集进行重排,得到各自的文档相关性得分;最后,将两个查询的文档相关性得分进行融合,得到最终的文档得分。在多个检索测试集上的实验结果表明,相比于基准模型,基于ChatGPT查询改写的文档检索方法在nDCG@10指标上平均提升了约4.5个百分点。''"
}
Markdown (Informal)
[基于ChatGPT查询改写的文档检索方法(Document Retrieval Method Based on ChatGPT Query Rewriting)](https://preview.aclanthology.org/fix-sig-urls/2024.ccl-1.2/) (Ao et al., CCL 2024)
ACL