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Abstract

Recent advancements have significantly en-
hanced the capabilities of Multimodal Large
Language Models (MLLMs) in generating and
understanding image-to-text content. Despite
these successes, progress is predominantly lim-
ited to English due to the scarcity of high-
quality multimodal resources in other lan-
guages. This limitation impedes the develop-
ment of competitive models in languages such
as Arabic. To alleviate this situation, we intro-
duce an efficient Arabic multimodal assistant,
dubbed Dallah, that utilizes an advanced lan-
guage model based on LLaMA-2 to facilitate
multimodal interactions. Dallah demonstrates
state-of-the-art performance in Arabic MLLMs.
Through fine-tuning six Arabic dialects, Dal-
lah showcases its capability to handle complex
dialectal interactions incorporating both tex-
tual and visual elements. The model excels in
two benchmark tests: one evaluating its perfor-
mance on Modern Standard Arabic (MSA) and
another specifically designed to assess dialectal
responses. Beyond its robust performance in
multimodal interaction tasks, Dallah has the po-
tential to pave the way for further development
of dialect-aware Arabic MLLMs.

1 Introduction

Large language models (LLMs) have revolution-
ized how machines understand and generate hu-
man language. Recent developments have signifi-
cantly expanded the scope of these models by in-
tegrating multimodal data, enabling sophisticated
interaction with both textual and visual informa-
tion. Despite these advances, applying NLP in
linguistically diverse environments presents unique
challenges, particularly in processing dialectal vari-
ations of languages and the integration of these
variations within multimodal contexts. These chal-
lenges are especially pronounced in Arabic, a col-
lection of languages and varieties characterized by
a rich tapestry of dialects that vary significantly
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Figure 1: Map highlighting the countries targeted by
Dallah for dialectal Arabic dataset construction.

across different regions.

Arabic dialects enrich the cultural landscape and
present complex linguistic variations that standard
NLP models, primarily designed for MSA, often
fail to solve. This linguistic diversity requires the
development of specialized models that can navi-
gate the rich world of dialectal Arabic and its inte-
gration with visual data. Addressing these needs is
crucial for improving user interaction and preserv-
ing linguistic heritage, as many dialects are under-
represented. Some may be at risk of diminishing in
the face of globalization and cultural homogeniza-
tion.

Multi-cultural and multi-modal LLMs (Alwa-
jih et al., 2024; Huang et al., 2023; Sengupta
et al., 2023) are vital against cultural homogeniza-
tion, where globalization tends to favour domi-
nant languages like Arabic. This can potentially
lead to the marginalization or even extinction of
less widely spoken dialects (Barnet and Cavanagh,
2014; Ahmedov and Shaxrizoda, 2024; Fahmi and
Liska, 2024). By including these low-resource di-
alects, we can ensure their continued relevance and
preserve the rich linguistic diversity of the Arabic-
speaking world.

To this end, we introduce a powerful multimodal
language model that specifically targets the unique
aspects of Arabic dialects. Our model, dubbed Dal-
lah, is built on the foundations of LLaVA (Liu et al.,
2023b), an advanced multimodal language model
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framework. We enhance LLaVA with the linguistic
capabilities of AralLLaMA (Alwajih et al., 2024),
an LLM proficient in Arabic and English. Dallah
is designed to understand and generate content in
Arabic, navigating the complex interplay between
different dialects and visual information effectively.

The following are the main contributions of our
work:

. We present Dallah, which combines the ro-
bust multimodal processing power of LLaVA
with the dialectal versatility of AraLLaMA,
creating a model uniquely equipped to handle
the linguistic and visual challenges presented
by Arabic dialects.

. We introduce a novel data filtering method that
optimizes the selection and usage of training
data, ensuring that Dallah is fine-tuned with
high-quality, relevant multimodal datasets that
reflect the linguistic diversity found within the
Arab world.

. Dallah supports wide dialectal coverage, suc-
cessfully fine-tuning over six major Arabic
dialects using limited but highly representa-
tive dialectal data.

. We introduce Dallah-Bench evaluation bench-
mark for Arabic dialects tailored to assess the
efficacy of multimodal language models in
real-world applications that require an under-
standing of dialectal variations.

. We have also built an understanding of which
model from the set {GPT4, GPT4-Turbo,
Command-R+] is best suited for evaluating
MSA and dialectal data compared to Human
evaluation.

The remainder of this paper is structured as fol-
lows: In Section 2, we provide an overview of
related work. Section 3 details our methodology,
including the processes for Arabic dataset trans-
lation and filtering, construction of dialectal Ara-
bic datasets, the architecture of Dallah, and the
training procedures employed. In Section 4, we
describe our implementation details and the bench-
marks used for evaluation. Section 5 presents our
experimental results, including both quantitative
and qualitative analyses. We conclude in Section 6
with a discussion of our findings and future work.
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2 Related Work

2.1 Large Language Models

Recent progress in NLP has been driven by ad-
vances in LLMs, starting with the foundational
Transformer model (Vaswani et al., 2017). This
innovation paved the way for language models like
the encoder-based BERT (Devlin et al., 2018), and
the decoder-based Generative Pre-trained Trans-
former (GPT) (Brown et al., 2020), as well as
encoder-decoder-based models like TS5 (Raffel
et al., 2020), which have significantly improved
linguistic understanding and performance in com-
plex language processing tasks. The develop-
ment of models such as OPT (Zhang et al., 2022),
LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), GPT-4 (Achiam
et al., 2023), and ChatGPT (OpenAl, 2023) Mis-
tral (Jiang et al., 2023), Mixtral (Jiang et al., 2024),
Phi-2 (Javaheripi et al., 2023), Phi-3 (Abdin et al.,
2024), and instruction-tuned variants of LLaMA-2
like Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023), have demonstrated the rapid evolution
of the field. These models benefit from extensive
training on large datasets and tailored instruction
sets, enhancing their effectiveness.

Arabic LLMs Building on the global momen-
tum, the scope of LLMs has extended into Arabic
language processing. The introduction of Jasmine
(Nagoudi et al., 2023) marked a significant mile-
stone, followed by AceGPT (Huang et al., 2023)
and Jais (Sengupta et al., 2023), which have en-
hanced Arabic conversational Al. Recently, Aral.-
LaMA (Alwajih et al., 2024) set a new standard
with its proficiency in the Egyptian Arabic dialect,
showcasing the flexibility of LLMs in handling
linguistically diverse data.

2.2 Multimodal Large Language Models

The integration of computer vision and natural lan-
guage processing has given rise to Visual Language
Models (VLMs). These models merge visual and
linguistic data, enhancing tasks that require visual
perception and language abilities. Models like
CLIP (Radford et al., 2021) bridge the gap between
visual recognition and language tasks, demonstrat-
ing the effectiveness of cross-modal applications.
Recent advancements show that LLMs improve
VLMs. Innovations such as Flamingo (Alayrac
et al.,, 2022), Blip-2 (Li et al., 2023), and



LLaVA (Liu et al., 2023b) have leveraged large
image-text pair datasets, enhancing cross-modal
coordination and learning efficiency. These mod-
els also employ specialized architectural features
for better integration. For instance, Flamingo
utilizes a perceiver resampler to integrate visual
data, and Blip-2 introduces a Q-Former (Li et al.,
2023) for aligning visual and language modalities.
LLaVA (Liu et al., 2023b) adjusts a linear pro-
jection layer to synchronize vision and language
modalities. Meanwhile, LLaVA1.6 (Liu et al.,
2023a) incorporates extensive instruction tuning
and a high-resolution vision encoder, achieving
outstanding results across multiple benchmarks.

Arabic Multimodal LLMs In Arabic NLP, Pea-
cock (Alwajih et al., 2024) represents the first work
in Arabic-centric MLLM capable of handling Ara-
bic multimodal interaction effectively. Addition-
ally, the multilingual PALO (Maaz et al., 2024)
has demonstrated the ability to process and inte-
grate multiple languages, including Arabic, into
multimodal contexts.

2.3 Multimodal Instruction Tuning Datasets

Development of MLLMs typically involves two
phases. The first phase focuses on aligning vi-
sual and linguistic features, utilizing datasets such
as COCO (Lin et al., 2014), LLaVA-Pretrain (Liu
et al., 2023b), and Laion (Schuhmann et al., 2022).
The subsequent visual instruction fine-tuning phase
enhances the models’ capabilities to follow com-
plex multimodal instructions. This phase often
involves transforming existing datasets into more
conversationally relevant formats using advanced
LLMs such as GPT-4, as seen in models like
LLaVA-Instruct (Liu et al., 2023b) and SVIT (Liu
et al., 2024). Recent works utilized GPT-4V (Ope-
nAl, 2023) to generate new captions and question-
answers, such as in ShareGPT4V (Chen et al.,
2023), LVIS-instructdv (Wang et al., 2023) and
Allava (Chen et al., 2024). Arabic MLLMs uti-
lized translated versions of LLaVA-Instruct (Alwa-
jih et al., 2024; Maaz et al., 2024) using different
tools for translation.

3 Methodology

3.1 Arabic Dataset Translation and Filtering

In the first step, we aimed to build an Arabic
MLLM using Arabic datasets. A major obstacle
facing Arabic MLLMs is the lack of resources.

This lack is largely due to the challenges of sourc-
ing relevant Arabic image-text pairs on a large
scale. To bridge this resource gap, we have imple-
mented a careful translate-and-filter pipeline con-
sisting of a translation stage and a filtering stage
inspired by (Mohamed et al., 2023; Alwajih et al.,
2024). This pipeline converts publicly available,
English-centric image-text and visual instruction
datasets into Arabic while maintaining data quality
and preventing error propagation due to translation.

We utilize the latest version of the Google Trans-
late API (Google Cloud) for the translation stage
which is the best translation method as shown by
(Zhu et al., 2023). We also conducted back trans-
lation as required by the subsequent filtering stage.
During the filtering stage, we ensure the quality
of our translations by employing a sentence em-
bedding model (Meng et al., 2024; Wang et al.,
2024). We assess the quality by calculating the
similarity of embedding between the original and
back-translated sentences for both question and an-
swer pairs, retaining only those translations that
meet our quality standards. Essentially, we keep
examples with questions and answers above a pre-
defined threshold, which we have empirically set
at 80%. Figure 3 illustrates the translation and
filtering process. Unlike the methods used in (Mo-
hamed et al., 2023; Alwajih et al., 2024), we em-
ploy an English sentence embedding model based
on Mistral-7b (Wang et al., 2024) to calculate the
similarities. This last model is more powerful than
embedding models used in Mohamed et al. (2023);
Alwajih et al. (2024) as shown by MTEB leader-
board (Muennighoff et al., 2022). Refer to Figure 2
for examples illustrating our pipeline’s effective-
ness.

3.2 Dialectal Arabic Dataset Construction

Due to the absence of Arabic dialectal data tailored
for vision tasks, we randomly select six subsets
from our translated LLaVA-instruct 150k dataset.
We aim to ensure that each subset included diverse
content types, such as conversations, complex rea-
soning, and detailed descriptions, from the LLaVA-
instruct dataset. Our goal is to capture the dialects
of Egypt, Mauritania, Morocco, Palestine, Saudi
Arabia, and Yemen. These dialects represent a
broad spectrum of Arabic dialects.

These subsets are then assigned to native profes-
sional translators from the aforementioned coun-
tries in order to translate them from MSA into their
respective dialects. Table 1 displays the number of
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Original Arabic Translation English Back Translation Similarity
What are the surfers holding? Sosxtaio Jow 15k What does my browser load? 0.513672
it JEET [ i fitzge 56 e alyio 90 6,0all w28 so290ll Sl |0 i in the photo is an ice skater. 0.549805
snowboarder. =)l
Where is the surfer located? 59 paw o &y ol Where is Server's headquarters? 0.580566
What is the condition of the street where | 6,La| ad a>g5 sl g,Ludl &> s Lo | What is the condition of the street where 1.00000
the stop sign is located? Seadoull the stop sign is located? :
The kitchen counter is cluttered with ol . s 8 e
various items, contributing to the messy | &l %8 453 f"_‘i:‘jlb‘d 5ol | WHEE tt:Z <;ct>cr’1d|;|iorr\1 ?Sflt: ;ts;;iet where |4 900391
appearance of the kitchen. ' P Sig !
The kitchen counter is cluttered with | L)l wilpdl (e @sles wladsi a>gi (o2 Yes, there are suspensions on the foldable:
various items, contributing to the messy vanassll o @l wny oo «osdall phone, adding a touch of personalization 0.800293

appearance of the kitchen.

ezl sl @bVl

and elegance to the device.

Figure 2: This figure illustrates the translation and filtering process used in constructing the Arabic dataset for
Dallah. The red rows represent examples that were removed due to low similarity scores between the original
English text and the back-translated English text. The green rows show the retained examples that met the similarity
threshold, ensuring high-quality translations for effective model training.
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Figure 3: Illustration of the translation and filtering
process for constructing high-quality Arabic multi-
modal datasets. Examples illustrating the results of
this pipeline are in Figure 2.

samples per country, while Figure 1 illustrates the
targeted countries on the map. Refer to A.2 for
more details.

Stage Source #Sample
Pretraining LLaVA-Pretrain LCS (Arabic+English) 800k
Inst. Tuni LLaVA-Instruct English 150k
nst. Tuhing LLaVA-Instruct Arabic 139k
Egypt 738

Mauritania 495

. . Morocco 505
Dialectal Tuning Palestine 353
Saudi Arabia 784

Yemen 604

Total 1.I1M

Table 1: Number of samples used for each stage in the
training of Dallah.

3.3 Architecture

The Dallah model follows the structure of
LLaVA1.5 (Liu et al., 2023a) and comprises three
key elements:

1. Vision Encoder: The vision encoder (V,,) em-
ploys the CLIP-Large model (Radford et al.,
2021) to process input images (X) into 576
visual tokens at a resolution of 336x336 with
a patch size of 14, producing a sequence of
patch features V = {v; € R f‘ij

2. Projector: A connector (FPy), designed as
a two-layer multi-layer perceptron (MLP),
maps the visual patch sequences {v; };‘4:1 to
the text embedding space {h; }jj‘il, allow-
ing for effective integration between the pre-
trained LLLM and the vision encoder.

3. Language Model (LLM): The Arabic LLM
(Fp), based on AralLLaMA (Alwajih et al.,
2024)! processes sequences of text embed-
dings {h;}~ " in the d-dimensional space,
outputting corresponding next predictions
{h;}X,. A tokenizer and embedding module
maps text sequences {y; fi 61 to the embed-
ding space and back to output text sequences

This structure equips the model to handle various
multimodal understanding tasks, taking an image
and instruction text sequence as input and generat-
ing a text sequence as output. Figure 4 illustrates
Dallah architecture.

'AralL.LaMA is an enhanced version of LLaMA-2 (Tou-
vron et al., 2023a).
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Figure 4: Dallah model architecture, showcasing the in-
tegration of the vision encoder, projector, and language
model.

3.4 Training

Training of Dallah consists of three stages: (i) pre-
training using data LLaVA-Pretrain (MAS Arabic
and English), (ii) visual instruction supervised fine-
tuning using LLaVA-Instruct (Arabic MSA and En-
glish), and (iii) further visual instruction supervised
fine-tuning using dialectal data. Table 1 details the
datasets used in each stage. Training data com-
prises pairs of images and text (X,Y), with the
text sequence Y formatted as a single-turn in the
pre-training phase and multi-turn conversation in
the visual Instruction Supervised Fine-tuning stage.
Y = (qu,Yal, e ,YqT,YaT). Here, T represents
the number of conversation turns, Y; the user’s
prompt, and Y;! the model’s response.

34.1 Pre-training

During this phase, the goal is to enhance the align-
ment between the vision and text data within the
embedding space. For this, image-caption style
data (X,Y,) is extracted from the conversation,
where X is the image and Y, is a corresponding
text description. The probability of generating Y,
given the image is calculated as:

Na

p(YalX) = [ [ Foluil Ps o Vo(X)),
i=1

where N, is the length of Y. The training objective
is to maximize the log-likelihood of Y, autoregres-

’ *;jé Pre-trained and frozen 6 Train from scratch ‘

Output text Output text
1% LLM

Projection &

Instruction
Instruction

N
Image IZ' -

Fine-tuning

N
Image m -

Pre-training

Figure 5: Training schema for Dallah, detailing the pre-
training and visual instruction supervised fine-tuning
phases.

sively:

Na

maxg > log Fy(yil Py o Vo (X)),

i=1
This framework permits the adjustment of learnable
parameters of projector layers during pre-training.
LLM and vision encoder learnable parameters are
frozen during pre-training, as shown in Figure 5.

3.4.2 Visual Instruction Supervised
Fine-tuning

The full image-text pairs (X,Y) in their multi-
turn conversation format are used for fine-tuning.
The set of tokens corresponding to the model’s re-
sponses is denoted as A = {y|y € Y., for any t =
1,...,T}. The training objective is to maximize
the log-likelihood of the model’s responses autore-
gressively:

N
max; , > " I(yi € A)log Fy(yi| Py o Vip(X)),
=1

where N is the total number of tokens in Y, 0 is
asubset of 6, and I(y; € A) is 1 if y; belongs to
A, and 0 otherwise. Training the projector layers’
learnable parameters while the vision encoder is
kept frozen during this phase. For LLM, we utilize
LoRA (Hu et al., 2021) to train the LLM. Figure 5
visualizes both pre-training and visual instruction
supervised fine-tuning stages.

4 Experiments

4.1 Implementation Details

Model Configurations. In this work, we develop
the Dallah model based on the LLaVA1.5 frame-
work. Specifically, we employ the CLIP-ViT-L/14
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as the visual encoder with a standard resolution of
336 x 336. We also use AralLLaMA, a language
model tailored specifically for Arabic, and employ
a two-layer MLP as the interface to connect the
visual encoder with the LLM.

For the construction of Dallah, a three-stages
training process is implemented. Initially, we estab-
lish a base MSA MLLM in two stages pretraining
and MSA fine-tuning, followed by an adaptation
stage for Arabic dialects. The following are details
of these different stages:

Stage 1: Pre-training stage. During this initial
stage, training is conducted for a single epoch only
on the projector as described in 3.4.1 using the
translated LCS-558 (Liu et al., 2023b) dataset. This
dataset includes data filtered for Arabic and 300K
samples of English samples. The optimization is
done using the AdamW optimizer with a learning
rate of 1 x 1073, combined with a cosine learning
rate schedule. The overall batch size is maintained
at 32. This phase required approximately 28 hours
of training on a single A100 GPU.

Stage 2: Instruction-tuning stage. In this satge,
the visual encoder is frozen, tuning is applied to the
visual projector, and the LLM is fine-tuned using
LoRA as described in 3.4.2. Here we employ the
150K LLaVA-Instruct dataset in English alongside
a translated and filtered Arabic version. The learn-
ing rate is set to 2 X 10~* with a batch size of 8,
maintaining the same settings as in the first stage.
This training phase took around 58 hours using a
single A100 GPU.

Stage 3: Dialectal instruction-tuning stage.
This stage is similar to stage 2, but is focused on di-
alectal data for six different Arabic dialects and par-
allel data for MSA. The settings remain the same
as in the second stage with learning rate 2 x 1075,
over five epochs. This training phase took approxi-
mately 2 hours using a single A100 GPU. Table 1
details the data used in the aforementioned stages.

4.2 Benchmarks

We evaluate our model using two benchmarks:
LLaVA-Bench for MSA evaluation and compar-
ison with counterpart Arabic MLLMs and Dallah-
Bench to assess the model’s capabilities in six Ara-
bic dialects.

4.2.1 LLaVA-Bench for MSA

The Ara-LLaVA-Bench is the Arabic version of
the LLaVA-Bench, translated using Google API

Peacock PALO Dallah

89.74
86.96
82.86
80 78.07 1943
7367 _74.56
008 1290
69.35

64.25 63.78

Average Score (%)
]
g}v
B

e OF

EOF HOX

GPT-4. Command R + GPT-4-Turbo Human
Evaluator

Figure 6: Average score comparison by evaluator and
model.

and reviewed by Arabic native annotator. The
LLaVA-Bench includes 30 images selected from
the COCO2014 validation dataset. Each image is
accompanied by three types of questions: conver-
sion, detailed descriptions, and complex reasoning,
amounting to 90 questions.

4.2.2 Dallah-Bench for Dialects

We select a subset of 20 questions from the
Henna (Alwajih et al., 2024) dataset to assess the
model’s response to dialects, naming it Dallah-
Bench. We task native professionals from each
dialect to translate these from MSA into the afore-
mentioned six Arabic dialects.

5 Results
5.1 LLaVA-Bench for MSA

Evaluator Model Arch. CC DD CR Avg
Peacock & 8566 8025 8252 8286
GPT-4 a0 @ 8730 8631 8724 8696
Dallah K so6s 9079 8880 8974
Peacock & 7449 6654 6678  69.35
CommandR+ — py @ 7661 7532 8215 78.07
Dallah K 7537 771 8578 7943
Peacock & 6735 625 6286 6425
GPT-4-Turbo a0 @ 692 7002 7376  70.98
Dallah K a7 075 7652 729
Peacock & 6856 6100 6178 6378
Human Q
PALO 7511 6778 7811  73.67
Dallah K 7856 6944 7567 7456

Table 2: Evaluation of Arabic LLaVA-Bench in MSA
using four different evaluators: GPT-4, GPT-4-Turbo,
Cohere Command R+, and Human. We consider Human
Evaluation to be the gold standard. CC: Conversations,
DD: Details, CR: Complex Reasoning.

We evaluate Dallah using the LLaVA-Bench

325



benchmark described in 4.2.1, specifically de-
signed for multimodal models. We compare Dallah
against two baselines: Peacock, an Arabic MLLM
based on the InstructBlip architecture integrated
with AralLLaMA, an LLLM based on LLaMA-2; and
PALO, a multilingual MLLM based on the LLaVA
architecture integrated with Vicuna, an LLM based
on LLaMA-2. PALO supports Arabic, along with
nine other languages. We utilize both model-based
evaluation and human evaluation. We describe each
of these next.

Model Evaluation. We follow the original
methodology of LLaVA-Bench (Liu et al., 2023b)
by calling the APIs of three different models: GPT-
4, Cohere Command R+ 2, and GPT-4-Turbo. We
slightly modify the prompts to accommodate Ara-
bic instead of English.

Human Evaluation. We conduct a human eval-
uation of three models using LLaVA-Bench. We
present three well-educated annotators with images
and questions-answer pairs generated by Dallah
and two other baseline models, Peacock and PALO.
To ensure integrity, the names of the models are hid-
den throughout the evaluation process. Annotators
are asked to rate the models’ responses on a scale
from 1 to 10, based on correctness>, helpfulness4
and question-answer consistency”.

Figure 6 presents the average scores (%) of the
models Peacock, PALO, and Dallah as evaluated
by four different evaluators: GPT-4, Command R+,
GPT-4-Turbo, and Human.

5.1.1 Analysis

We report the main results in Table 2. In the GPT-
4 evaluation, the scale of scores is higher than in
other evaluations. The overall scores for Cohere
Command R+ and GPT-4-Turbo are close to those
of the human evaluation, with GPT-4-Turbo being
the closest numerically to human evaluation.
From Table 2, it is observed that the Dallah
model outperforms the baseline models in most
dimensions of the LLaVa-Bench across all evalua-
tion methods. Peacock generally showed the lowest
performance, which could be attributed to multi-
ple factors, including the scale of training data and

*https://docs.cohere.com/docs/command-r-plus

3Correctness: The accuracy and factual correctness of the
model’s response to the given question.

“Helpfulness: The degree to which the model’s response
provides useful and informative assistance to the user.

SConsistency: The coherence and logical flow within the
model’s responses, ensuring they are free from contradictions.

the model architecture, where the best model in
the Peacock suite is based on InstructBlip and was
trained with frozen Q-former components.

Dallah and PALO show close results across all
evaluations, with Dallah having a slight advantage.
Dallah surpasses PALO by an average of 1.74%
across all evaluations. Both models share the same
LLaVA architecture but differ in their LLMs; Dal-
lah uses AralLLaMA, an Arabic LLM, giving it
an advantage, whereas PALO utilizes Vicuna, a
multilingual LLM based on LLaMa-2 (Touvron
et al., 2023a). The training data are almost identi-
cal, though Dallah’s data went through a careful
filtering method to ensure quality. Also, Dallah is
trained on high-quality human-translated dialectal
data.

These results demonstrate Dallah’s effectiveness
in MSA, exhibiting strong reasoning capabilities
and substantial knowledge.

5.2 Dallah-Bench for Dialects

Evalutator Command R+ GPT-4-Turbo Human
Country DA CA DA CA DA CA
Egypt 7.82 8.04 | 7.00 596 | 6.59 7.22

Mauritania ~ 7.11 7.86 | 3.59 504 | 441 6.36
Morocco 8.82 8.59 | 7.54 6.68 | 6.50 5.27
Palestine 8.00 832 | 5.32 6.36 | 873 7.68

Saudi 8.50 891 | 5.77 6.46 | 7.50 8.27
Yemen 8.36 9.00 | 5.04 477 1749 17.73
Average 8.10 8.45 | 5.71 5.88 | 6.87 7.09

Table 3: Evaluation of Dallah model on dialect bench
using three evaluators: Cohere Command R+, GPT4-
Turbo, and Humans from respective countries. DA:
Dialect Authenticity, CA: Content Accuracy. Prompts
for the evaluation can be found in Figure 7.

We assess Dallah’s performance in dialects us-
ing Dallah-Bench described in 4.2.2. We employ
two types of evaluations: human evaluation and
model-based evaluation.

Human Evaluation. To evaluate the model re-
sponses related to dialect questions about the im-
age, we ask native speakers from each respective
country to score the models on a scale from 1 to 10
using the following criteria:

* Context Accuracy Score: This criterion fo-
cuses on the accuracy of the model’s response
in relation to the question posed, irrespective
of the dialect or language used. It assesses
how well the response addresses the content
and context of the question.
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 Dialect Authenticity Score: This criterion
assesses the authenticity of the dialect used
in the response, independent of the content’s
accuracy. It evaluates how authentically the re-
sponse represents the specific dialect in ques-
tion.

Model Evaluation. We craft a prompt to assess
Dallal’s responses and subsequently call the APIs
of two different models, Cohere Command R+ and
GPT-4 Turbo. In the prompt, we request that the
evaluator models rate Dallah’s response on a scale
from 1 to 10 based on the Dialect Authenticity
Score and Content Accuracy Score. We utilize
GPT4V to extract a detailed description of the
image content and include this description in the
prompt to give context to the model. Figure 7 il-
lustrates the prompt used to instruct the models for
evaluation.

5.21

In our analysis in Table 3, we compare the perfor-
mance of Dallah based on two evaluators, Cohere
Command R+ and GPT-4-Turbo, against human
evaluations across several Arabic dialects. The
mean absolute differences in scores for dialect au-
thenticity and content accuracy are calculated to
quantify the closeness of model evaluations to hu-
man judgments. Cohere Command R+ consistently
shows a smaller deviation from human scores, with
an average difference of 1.47 in dialect authenticity
and 1.36 in content accuracy, compared to GPT-4-
Turbo’s 1.64 and 1.68, respectively. This suggests
that Cohere Command R+ is better aligned with
human evaluations, offering a more accurate reflec-
tion of human perception in dialect authenticity and
content accuracy assessments.

Model vs. Human Evaluation

5.2.2 Dallah Performance on Dialects

The evaluation of Dallah’s performance on vari-
ous Arabic dialects using model-based and human
evaluators in Table 3 provides crucial insights into
its linguistic capabilities. The dialect authenticity
and content accuracy scores indicate that Dallah
can generate generally well-received outputs, with
some variations across different evaluators and di-
alects.

The higher ratings from Cohere Command R+
indicate that Dallah excels in producing authentic
dialect responses that align well with Command
R+’s evaluation framework. However, the lower
scores from GPT-4-Turbo reveal that some dialects
are underrepresented in its training data, leading to

You are a specialized chatbot trained to evaluate the authenticity of Arabic
dialects. For each question presented, you will receive an answer along with
the

specified dialect.

Your task is to assess the authenticity of the dialect used in the answer on a
scale from 1 to 10, where 10 signifies perfect authenticity. And also to assess
the accuracy of the answer from the given context.

In your explanation of the score, mention the words that belong to the dialect
and those that lower the score because they are from Modern Standard Arabic
(MSA). Explain the relevance and completeness of the response.

Your explanation should be concise, clear, and in @ maximum of 50 words.

Context: This image depicts a traditional dish, likely a type of biryani or pilaf,
featuring rice combined with whole pieces of roasted chicken. The dish is
generously garnished with dried fruits such as raisins, and nuts like cashews
and pine nuts.

Dialect: Egyptian. .

Question: $6,9.a)l 59 s @SV (59 dgosall do=lll £9i al

Answer: #l,é pz) lpsd 55 8,9.0)l (58 LI @SV,

(1®H

"Dialect Authenticity Score": "9",
"Dialect Authenticity Reason": "The response uses mostly Egyptian dialect
words like "slI" and "gl,9.",

"Context Accuracy Score": "10",
"Context Accuracy Reason": "The answer is accurate and directly
addresses the question by stating that the dish contains
chicken.."

Figure 7: Method employed to evaluate dialect authen-
ticity and content accuracy using both model and human
evaluators. Human evaluators are also provided with an
image for each question to facilitate better judgment.

misunderstandings of dialectal responses and lower
scores in content accuracy.

Moreover, the variation within individual di-
alects and the representation of each dialect in the
LLM, along with the limited data used in the fine-
tuning, affect the performance of these systems. It
is important to note that spoken dialects often differ
from written forms. Written dialects are typically
closer to MSA as they lack acoustic cues, which
may influence human evaluators. When reading the
written model responses, evaluators might perceive
them as MSA. When spoken aloud, however, the
text may sound dialectal.

Furthermore, we attempt to compare our results
with GPT-4V. However, GPT-4V consistently re-
sponded in MSA even when prompted with dialects.
This highlights our model’s superiority over GPT-
4V in handling dialectal variation as our model
responds in dialect.

Additionally, the human evaluation highlights
the importance of incorporating cultural and lin-
guistic subtleties in model assessments. Future
work could explore more sophisticated evaluation
metrics or integrate additional human feedback to
refine Dallah’s performance further. We provide
qualitative analysis in A.3. This analysis offers
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insights into the model’s handling of MSA and
various dialects.

5.2.3 Feasibility of Model Evaluations for
Arabic Dialects

Given the findings from the comparative analysis,
model evaluations, particularly using Cohere Com-
mand R+, demonstrate potential as useful tools for
assessing dialect authenticity in Arabic dialects.
While these evaluations do not completely align
with human judgments, they offer a sufficiently
close approximation that can be valuable in scenar-
ios where rapid or large-scale evaluations are neces-
sary. However, for applications requiring accurate
understanding and cultural sensitivity, human as-
sessments should ideally complement these model
evaluations to ensure accuracy and relevance in the
context of specific Arabic dialects.

6 Conclusion

The paper introduces Dallah, an advanced multi-
modal large language model tailored for Arabic
dialects, which demonstrates superior performance
in processing both standard Arabic and regional
dialects. Developed through innovative data filter-
ing and training, Dallah achieves state-of-the-art
performance in the LLaVA-benchmark. Dallah
maintains dialect authenticity and content accu-
racy, showing promising results in benchmarks and
evaluations. Extensive testing shows the model’s
robustness in MSA and across various dialects and
contexts. This model marks a significant step in
enhancing Arabic NLP, with future goals to expand
dialect coverage and refine evaluation metrics for
better user interaction insights.

Limitations

We identify a number of limitations for our work,
as follows:

* Representation of Arabic Culture: Vision
models, LLMs, and datasets used in build-
ing MLLMs inadequately represent Arabic
figures, places, and culture. As shown in Fig-
ure 10, Dallah struggles with recognizing Ara-
bic figures, unlike those from the USA. This
highlights the need for more diverse cultural
datasets.

* Hallucination Control: Dallah, like many
LLMs, is prone to hallucinations, generating
inaccurate information. Advanced techniques

and more robust datasets are needed to miti-
gate this issue and ensure reliability.

* Dialect Variation and Mixing: The model
sometimes mixes similar dialects, such as
Yemeni and Saudi, and struggles with di-
alects close to MSA. This can be improved
with more extensive data collection and fine-
tuning.

* Arabic Text Recognition in Images: Dal-
lah cannot effectively recognize Arabic text
within images due to the lack of annotated
datasets. Developing such datasets is essential
to enhance the model’s multimodal capabili-
ties.

Ethics Statement

Energy Efficiency. Our Dallah models, like many
large MLLMs, require significant pre-training time
and are not energy-efficient. We acknowledge this
critical issue and support continued research to-
wards developing energy-efficient models.

Data. Our pre-training datasets are translated from
publicly available English data, encompassing di-
verse genres, communities, and varieties. Our Dal-
lah models demonstrate potential in applications
involving several Arabic varieties, serving broad
populations.

Human Annotation. The human annotators in-
volved in this project are Arabic native speakers
and well-educated individuals with PhD degrees
and extensive NLP experience. No Institutional
Review Board (IRB) review or approval was re-
quired for this project since we only used publicly
available data, which does not require access to any
social networking account or password.
Applications. While Dallah, like many MLLMs,
can be misused. It also holds promise for bene-
ficial applications in education, health, and more.
Responsible deployment and use are crucial to max-
imizing its positive impact. It would also help keep
Arabic varieties in use in written form in the digital
age.
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A Appendices

We organize content here as follows:
* Translation and Filtering Details (A.1)
* Dialect Translation Examples (A.2)
* Qualitative Analysis (A.3)

A.1 Translation and Filtering Details

As described in Section 3.1, we employed a care-
ful translation and filtering process to ensure the
quality of the Arabic dataset used for training the
Dallah model. Figure 2 demonstrates this process,
highlighting the importance of maintaining high
translation accuracy. Examples with low similarity
scores between the original English text and back-
translated English text were removed, as shown in
the red rows. These include mistranslations such
as “What does my browser load?”” and “The bird
in the photo is an ice skater,” which were incor-
rectly back-translated from the original prompts.
Conversely, examples with high similarity scores,
as shown in the green rows, were retained, ensur-
ing that both the questions and answers remained
consistent and accurate. This careful filtering pro-
cess was crucial in developing a robust and reliable
Arabic multimodal language model capable of han-
dling complex dialectal interactions.

A.2 Dialect Translation Examples

Figure 8 showcases examples of translations from
MSA to regional dialects from six Arabic-speaking
countries: Egypt, Mauritania, Morocco, Palestine,
Saudi Arabia, and Yemen. These translations were
performed by native speakers, ensuring cultural
and contextual accuracy. Such examples highlight
the complexities involved in developing a dialect-
aware multimodal language model like Dallah.

A.3 Qualitative Analysis

The qualitative evaluation of Dallah’s responses
showcases its effectiveness in generating accurate
and contextually relevant answers across various
Arabic dialects. This evaluation is based on ex-
amples illustrated in Figures 9, 10, 11, and 12 ,
highlighting Dallah’s capability to handle MSA

and diverse dialectal interactions in both textual
and visual contexts.

In the context of food descriptions in Figure 9,
Dallah was asked to describe a traditional dish,
including the preparation steps. The response pro-
vided a detailed and coherent step-by-step guide,
demonstrating the model’s understanding of culi-
nary terms. This example highlights Dallah’s profi-
ciency in generating detailed content. Additionally,
in the same figure, Dallah demonstrated the ability
to generate detailed and accurate descriptions of an
image containing a group of children and was ca-
pable of providing potential risks about the activity
in the image when asked about potential risks.

As shown in Figure 10, Dallah illustrates its
ability to describe the appearance of persons and
Arabic figures but fails to identify these figures. In
contrast, the model was capable of identifying the
US president, which is due to the lack of represen-
tation for Arabic figures and culture.

Dallah also demonstrated its ability to manage
dialectal variations and maintain contextual accu-
racy as shown in Figure 11 and 12. When address-
ing questions in a specific dialect, the model ac-
curately reflected local linguistic features and id-
iomatic expressions. The ability to switch between
dialects and maintain contextual accuracy is cru-
cial for multilingual and multicultural applications,
highlighting Dallah’s comprehensive training on
diverse dialectal datasets.

Dallah’s qualitative performance underscores its
potential as a robust multimodal language model
tailored for Arabic dialects. Its capability to gen-
erate accurate, contextually relevant, and dialect-
specific responses makes it a valuable tool for vari-
ous applications, from education to cultural preser-
vation. The model’s strength in handling diverse
dialectal variations and integrating visual and tex-
tual information is particularly noteworthy, paving
the way for further advancements in Arabic NLP.
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Figure 8: Examples of Human Translation of MSA to Dialects Across Six Arabic-Speaking Countries
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Figure 9: Three examples demonstrating Dallah’s chat capabilities in Modern Standard Arabic (MSA). The first
example involves describing a traditional dish and its preparation steps. The second example showcases Dallah’s
ability to describe an image and identify potential risks for children in the activity depicted. The third example
highlights Dallah’s proficiency in providing nutritional advice and describing various types of food.
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Figure 10: Dallah is capable of answering questions related to images. However, Dallah couldn’t identify Arabic
figures in the first and second examples, while it was able to recognize the US president. Like many LLMs, Dallah
is prone to hallucinations. Red color font in the responses highlights examples of Dallah’s hallucinations.
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Figure 11: Examples of Dallah’s answers in different dialects from the evaluation datasets.
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Figure 12: In this examples, Dallah was asked "What is the strange thing in this picture?" using six different

dialects. Dallah responded to each question in the corresponding dialect, demonstrating a degree of dialectness
The responses conveyed the same meaning with slight variations across the different dialects
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