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Abstract

Tashkeel, or Arabic Text Diacritization (ATD),
greatly enhances the comprehension of Ara-
bic text by removing ambiguity and minimiz-
ing the risk of misinterpretations caused by
its absence. It plays a crucial role in improv-
ing Arabic text processing, particularly in ap-
plications such as text-to-speech and machine
translation. This paper introduces a new ap-
proach to training ATD models. First, we
finetuned two transformers, encoder-only and
encoder-decoder, that were initialized from a
pretrained character-based BERT. Then, we
applied the Noisy-Student approach to boost
the performance of the best model. We evalu-
ated our models alongside 11 commercial and
open-source models using two manually la-
beled benchmark datasets: WikiNews and our
CATT dataset. Our findings show that our top
model surpasses all evaluated models by rela-
tive Diacritic Error Rates (DERs) of 30.83%
and 35.21% on WikiNews and CATT, respec-
tively, achieving state-of-the-art in ATD. In ad-
dition, we show that our model outperforms
GPT-4-turbo on CATT dataset by a relative
DER of 9.36%. We open-source our CATT
models and benchmark dataset for the research
community'.

1 Introduction

The Arabic language is characterized by its rich
morphology and complex syntactic structure. One
of the unique features of Arabic is the use of dia-
critics or Tashkeel, which are small marks above or
below the letters that indicate vowels or other pho-
netic aspects of pronunciation. These diacritics are
favorable for understanding the meaning of words,
as their absence can lead to ambiguities and mis-
interpretations. They are also crucial in improving
performance of applications such as text-to-speech
and machine translation (Fadel et al., 2019b). The
diacritics can be affected by the context of the sen-
tence as shown in the following example:
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Translation: The man drove the car.
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Translation: The man’s leg has wounds.

In the first sentence, " 3\." or "Saga" is interpreted

as "drove", denoting an action. However, when the
context changes, the same word, now pronounced
as "Saqu" takes on a completely different mean-
ing, becoming a noun that translates to "leg". This
change highlights the crucial role of diacritics in
quickly clarifying the meanings of sentences, as
the characters remain the same. At the same time,
the pronunciation varies depending on the context.
In the previous example, the meaning of the word
" »L." can be comprehended even without diacrit-
ics, as long as the reader considers the complete
sentence and understands the context provided by
the surrounding words. This fact raises the follow-
ing question: "Will a pretrained BERT model help
in improving the ATD models?".

In this paper, we propose a training strategy
based on a pretrained character-based BERT (Ken-
ton and Toutanova, 2019; Liu et al., 2019), and a
self-training approach called Noisy-Student (NS)
(Xie et al., 2020). Throughout the paper, we will
answer the following research questions:

* RQ1: Does the ATD model benefit from
Masked Language Model (MLM) pretraining?

* RQ2: Does training ATD model for more
iterations help?

* RQ3: Is the NS approach effective in ATD
models?

2 Related Work

Previous research has investigated a broad spec-
trum of approaches to address the diacritization
task, beginning with rule-based methods, moving
to classical machine learning models, and reaching
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sophisticated deep learning architectures (Almanea,
2021). In addition, comprehensive experiments
show that deep learning methods outperform non-
neural techniques, particularly when substantial
training data is available (Fadel et al., 2019a).

Fadel et al. (2019b) tested a refined version of
the Tashkeela dataset (Zerrouki and Balla, 2017;
Fadel et al., 2019a) using the Shakkala? model.
They also trained a character-level RNN with a
Block-Normalized Gradient (BNG) module. The
BNG technique normalizes gradients within each
batch, potentially speeding up training and improv-
ing generalization (Yu et al., 2017).

Abbad and Xiong’s (2020) ATD approach con-
sisted of a three-part pipeline: a multi-layer LSTM
and dense layers, a character-level rule-based cor-
rector for specific error correction, and a word-level
statistical corrector that leveraged context and dis-
tance information to resolve diacritization issues.
Furthermore, they developed an enhanced version
of the system and named it Multilevel Diacritizer
(Abbad and Xiong, 2021).

Madhfar and Qamar (2020) implemented 3 dif-
ferent ATD models. The first one was a baseline
model consisting of 3 deep Bidirectional Long
Short-Term Memory (BiLSTM) layers. The sec-
ond model was an encoder-decoder with 3 LSTM
layers for the encoder and 2 LSTM layers for the
decoder. The last model was based on Tacotron en-
coder (Wang et al., 2017) that uses CBHG module
(Lee et al., 2017).

AlKhamissi et al. (2020) proposed two architec-
tures: the Two-Level Diacritizer (D2) and the Two-
Level Diacritizer with Decoder (D3). D3 builds
upon the capabilities of D2 by accepting partially
diacritized text as input. These models have a word-
level encoder as well as a character-level encoder.
The results of both encoders are combined by an
attention mechanism and fed to a unidirectional
LSTM layer to predict diacritics.

Darwish et al. (2021) created two Deep Neural
Networks (DNNSs); the first utilizes a character-
based BiLSTM model with unique features for
each character, while the second uses a word-level
BiLSTM layer and a subsequent dense layer with
Softmax activation.

Karim and Abandah (2021) studied the effect
of varying the training dataset size. Each time,
they trained a BiLSTM model and evaluated its
performance. The results demonstrated that error

*https://github.com/Barqawiz/Shakkala
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rates improve as the size of the training corpus
increases.

Al-Rfooh et al. (2023) finetuned a token-free
multilingual model called ByT5 (Xue et al., 2022)
to perform Arabic text diacritization as a sequence-
to-sequence task, similar to the translation task.

Recently, Skiredj and Berrada (2024) introduced
the Pre-FineTuned Token Classification for Ara-
bic Diacritization (PTCAD) model. This approach
treats Arabic text diacritization as a downstream
task for a pretrained BERT-like model. The ap-
proach starts with a pretraining phase on linguisti-
cally relevant tasks, such as Part-of-Speech (POS)
tagging and Segmentation, which are framed as
Masked Language Modelling (MLM) tasks. This
pretraining helps enhance the model’s contextual
understanding. Then, it moves into a finetuning
phase where diacritization is handled as a token
classification task. This phase leverages the contex-
tual insights gained earlier to enhance diacritization
accuracy.

Unlike Skiredj and Berrada’s (2024) method, we
consider a simpler approach where we directly pre-
train a character-level BERT model with no further
modifications or extra labeling.

3 Dataset Preparation

3.1 Training Data

As shown by Karim and Abandah (2021), training
on larger dataset improves the performance of the
ATD model. We used the whole Tashkeela dataset
(Zerrouki and Balla, 2017) for training which
consists of 1,658,325 samples. Initially, we filtered
out samples that had fewer than 6 characters or
more than 1024 characters, considering both letters
and diacritics as characters. Next, we removed
samples with a Diacritics-to-Letters (DTL) ratio of
less than 60%. We defined this ratio as follows:

# of diacritics
# of letters

In addition, we performed a cleaning process on
each sentence in the filtered list, removing non-
Arabic characters. This includes special characters,
English letters, Arabic and Indian numerals, as well
as punctuation marks in both English and Arabic.
After this cleaning process, the total number of
remaining samples was 1,330,539.

To pretrain the character-based BERT, we
scraped 18,543,025 data samples from various
sources, including X and online news websites.

DTL ratio =



Training on this data will help the model to un-
derstand the Modern Standard Arabic (MSA) as
well as the colloquial dialects. To align with the
architectural requirements of the ATD models for
subsequent finetuning, we capped the maximum
sequence length of the model at 1024 characters.
However, we set the maximum length of the train-
ing sentences during MLM pretraining to 512. Con-
sequently, all samples in the pretraining data were
truncated at the last space character when the length
of the sample exceeds 512 to preserve the context
of the last word in the sample.

3.2 Benchmark Data

The Tashkeela (Zerrouki and Balla, 2017) dataset
contains data from different sources, including both
MSA and classical Arabic. Around 98.85% of
the Tashkeela dataset consists of content obtained
from 97 books found in the Shamila® library. The
Shamila library is an Islamic electronic library with
hundreds of works covering Hadith, Figh, history,
preaching, Islamic rules, and Arabic language (Zer-
rouki and Balla, 2017). It can be misleading to
assess ATD models using a portion of this dataset
for the following reasons:

1. Most of the dataset’s books contain partial
or complete citations from the Holy Quran
and Hadith as well as from each other, which
might lead to data contamination eventually
impacting the evaluation results.

2. Most resources in the dataset are written in
classical Arabic. However, when evaluating
ATD models for today’s applications such as
text-to-speech or machine translation, relying
only on this dataset may lead to unreliable re-
sults. This is because the target users of these
applications typically use MSA or colloquial
dialects, which differ from classical Arabic.

As a result, we created the CATT benchmark
dataset. This dataset comprises 742 sentences,
which we scraped from an internet news source
in 2023. It covers multiple topics including sci-
ence and technology, economics, politics, sports,
arts, and culture. The CATT dataset was manually
diacritized by two expert native Arabic speakers
and then validated by a third expert. This dataset
contains names of people and places in both Ara-
bic and English. As for the English names, they

3https://shamela.ws

Class Name Diacritic
Fatha <
Kasra o
Dhamma Q
Tanween Fath <
Tanween Kasr o
Tanween Dhamm C‘J
Shadda <
Shadda + Fatha 3)
Shadda + Kasra <
Shadda + Dhamma é;
Shadda + Tanween Fath &
Shadda + Tanween Kasr i;
Shadda + Tanween Dhamm C:';
Sukoon <

No Tashkeel <NT>

Table 1: Arabic Diacritics

are written in Arabic letters and diacritized based
on their pronunciation. Also, the numbers in the
sentences are written in textual form rather than the
numeric form. This helps in evaluating the models
without the need for a text normalizer (TN).

Moreover, we used WikiNews (Darwish et al.,
2017) benchmark dataset to evaluate all models.
This dataset comprises 400 manually diacritized
MSA sentences. It covers multiple topics, most of
which are similar to CATT’s topics, from the years
2013 and 2014.

Data Chars Words Lines
BERT Pretraining 2.06B 359.96M  18.54M
Tashkeela 213.86M  42.43M 1.33M

Table 2: Data Summary (After Preparation)

4 Experiments

We pretrained a character-based BERT model to
find the effect of MLM pretraining on the diacriti-
zation performance. The model has 6 layers with
dmoder = 912 and number of heads = 16. The
model was trained using MLM loss for 6 epochs
with a batch size of 512, using the data shown in
Table 2.

For ATD models, we selected two transformer
architectures: Encoder-Decoder (ED) with 3 lay-
ers and Encoder-Only (EO) with 6 layers. We set
the number of layers to 3 in the ED model to en-
sure comparability with the EO model in terms
of the total number of layers. All our ATD mod-
els were trained with the following configurations:
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Figure 1: Encoder-Decoder (ED) Model
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Figure 2: Encoder-Only (EO) Model

dmodel = D12, number of heads = 16, batch
size 32, and dropout 10%. We used the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a learning rate of 3 x 1075 and a weight de-
cay of 1 x 1072. Each model was trained on a
single dedicated A100 GPU. All ATD models in
our experiments were trained for a maximum of
200 epochs with an early stopping criteria.

Generally, we define the input text X with a
total number of characters 1" as a series of charac-
ters x1, X2, s, ..., xT Where each character repre-
sents an undiacritized Arabic letter. Correspond-
ingly, the output sequence Y consists of diacritics
Y1, Y2, Y3, . . .,y with each diacritic y; associated
with the respective letter x;. In EO models, we ex-
press the relationship between letters and diacritics
as follows:

P(yi|l‘1,...,$T)

In other words, we predict the diacritic y; condi-
tioned only on the input text x1,...,z7. In ED
models, on the other hand, we consider the ATD
task as a translation task, where the input text repre-
sents the source language and the output diacritics
sequence represents the target language. We ex-
press the relationship between letters and diacritics
in ED models as follows:

- Yi-1)

P(yi | z1,...,27,91, ..

where the diacritic y; is conditioned on both the
input text x1, ..., 27 and the previous diacritics
y1,---,Yi—1. In fact, native Arabic speakers rely
on both the textual content and diacritics to bet-
ter disambiguate the intended meaning of the sen-
tence. For example, the sentence &) o Al is

a complete and valid Arabic sentence that can
be interpreted as "I bought a toy" or "A toy was
bought". The only way to differentiate between
them in the textual form is by adding diacritics as

follows: w-j ;qu‘ which means "I bought a toy"

or i...j & Jf..:\ which means "A toy was bought".
In both cases, the diacritics of the second word
heavily depend on the diacritics of the first word.
Therefore, by conditioning on both the input text
and the previous diacritics, the model can achieve
better performance. Figure 1 and Figure 2 show
both transformer architectures.

Our experiments involved training a total of four
models using both the ED and EO architectures.
For both architectures, we used the pretrained
character-based BERT as the basis for initializing
the weights. Consequently, we obtained one ED
model and one EO model with weights that reflect
the knowledge encoded in the pretrained BERT.
Additionally, we trained the other two models, con-
sisting of one ED model and one EO model, where
the weights were randomly initialized. These mod-
els allowed us to explore the impact of different
weight initialization strategies on the performance
and behavior of the models.

For each model in our experiments, we selected
two checkpoints. The first checkpoint was chosen
after training the model for 5 epochs, while the sec-
ond checkpoint was chosen as the best checkpoint
achieved after training for a longer period. The best
checkpoint of ED model was at epoch 175 while
the best checkpoint of EO was at epoch 192. The
purpose of this selection process was to study the
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impact of extended training duration on the models,
even when they were exposed to the same amount
of data.

Moreover, we randomly sampled 1M sentences
from the pretraining dataset to be pseudo-labeled
using the NS (Xie et al., 2020) technique. We used
the best checkpoints of both ED and EO models to
pseudo-label two copies of the sampled data. Fi-
nally, a new ED model as well as a new EO model
were trained on Tashkeela data combined with the
pseudo-labeled 1M sentences. Both models’ pa-
rameters were initialized from the best checkpoints.
Table 3 shows the details of the combined dataset
after the filtration process described in section 3.1.

Data Chars Words Lines
Tashkeela 213.86M  42.43M 1.33M
Tashkeela + NS (ED) | 292.01M 56.2IM 2.22M
Tashkeela + NS (EO) | 290.59M 5595M 2.20M

Table 3: The combined datasets using NS pseudo-
labeling by both ED and EO models (After Preparation).

5 Results

There are two methods to evaluate ATD models:
one with Case Ending (CE) and one without Case
Ending (No CE). In the No CE approach, the di-
acritic on the last letter is excluded during perfor-
mance evaluation, while the CE approach includes
the diacritic in the evaluation. The presence or
absence of the diacritic on the last letter mostly
depends on grammatical rules. Error rates without
CE reflect the performance specifically on the core
word, while error rates with CE represent the over-
all performance of the model (Madhfar and Qamar,
2020).

We compared our models with 9 models, namely,
CBHG (Madhfar and Qamar, 2020), Sakhr*, Farasa
(Darwish and Mubarak, 2016), D2 and D3 mod-
els (AlKhamissi et al., 2020), Alkhalil Tashkeel’,
Mishkal®, Multilevel Diacritizer (Abbad and Xiong,
2021), and Shakkala. Moreover, we compared the
performance of our models with the performance of
two Large Language Models (LLMs) on the ATD
task: GPT-4-turbo’, and Command R+%. During
evaluation, all preprocessing steps are applied to
both the reference text and the output of all models

*https://tashkeel.alsharekh.org

Shttps://tashkeel.alkhalilarabic.com

®https://tahadz.com/mishkal

"https://chatgpt.com

8https://huggingface.co/CohereForAl/c4ai-command-r-
plus

to ensure fair comparisons. In the case of long sen-
tence diacritization, we follow a process of splitting
the sentence into smaller segments based on punc-
tuation. Each small sentence is then diacritized in-
dividually, and finally, the segments are combined
to reconstruct the original text with diacritics.

The results in Tables 4 and 5 show that our
models achieved state-of-the-art performance in
the ATD task, outperforming all 11 models. Our
ED model achieved the lowest DER and Word Er-
ror Rate (WER) on the CATT benchmark dataset
with and without CE. Moreover, both ED and EO
models achieved low DER and WER scores on the
WikiNews benchmark dataset compared to other
ATD models.

The evaluation of GPT-4 on the WikiNews
dataset shows a high level of performance. How-
ever, when GPT-4 is evaluated on the CATT dataset,
its performance appears to be comparatively nor-
mal. This difference in performance can likely
be attributed to the fact that GPT-4 was trained
on web data predating December 2023. Based on
the observed significant performance gap between
testing GPT-4 on CATT and WikiNews, we be-
lieve that GPT-4 was most likely trained on the
WikiNews dataset. It is worth noting that the
WikiNews dataset was published in 2017 (Darwish
et al., 2017), while the CATT dataset was created
in March 2024.

CATT Benchmark Dataset
CE (%) No CE (%)
Model DER | WER | DER | WER
CBHG 10.808 | 42.680 | 8.313 | 34.386
Command R+ | 13.169 | 48.518 | 11.329 | 44.158
GPT-4 9.515 | 38.311 8.113 | 33.505
Sahkr 13.841 | 56.661 | 11.125 | 47.993
Farasa 17.825 | 65.783 | 15.414 | 60.114
D2 13.310 | 49.417 | 10.036 | 38.391
D3 58.313 | 98.710 | 48.018 | 95.186
Alkhalil 14232 | 53.413 | 11.568 | 45.777
Mishkal 16.482 | 60.844 | 10.796 | 40.215
Multilevel 16.503 | 58.076 | 13.434 | 50.147
Shakkala 13.494 | 50.387 | 10.386 | 40.643
EO (Ours) 8.805 | 35.597 | 7.117 | 29.759
ED (Ours) 8.624 | 34.191 | 6.989 | 28.477

Table 4: Benchmark results on CATT dataset.

5.1 RQ1: Does the ATD model benefit from
MLM pretraining?

Tables 6 through 11 detail our experiments’ results

on the CATT and WikiNews datasets. The exper-

iments clearly show the advantages of MLM pre-

training since it consistently boosted performance
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WikiNews Benchmark Dataset

CE (%) No CE (%)

Model DER | WER | DER | WER
CBHG 8276 | 36032 | 5448 | 21.528
Command R+ | 21.470 | 54.335 | 17.755 | 49.611
GPT-4 0.551% | 2.276% | 0.326% | 1.024%
Sahkr 7.843 | 38413 | 5.628 | 29.921
Farasa 19.584 | 69.536 | 17.752 | 66.601
D2 9231 | 32622 | 6.164 | 21.744
D3 58.558 | 109.028 | 48.234 | 99.408
Alkhalil 14912 | 46793 | 12.145 | 35.699
Mishkal 15.246 | 54.187 | 8.558 | 27.337
Multilevel 12.431 | 45054 | 9318 | 36.217
Shakkala 9.978 | 37.241 | 6593 | 24.988
EO (Ours) 5425 | 22.132 | 3.105 | 12.679
ED (Ours) 6.070 | 20.745 | 3.744 | 11.982

Table 5: Benchmark results on WikiNews dataset.

across all tested models, regardless of the num-
ber of training steps, the CE conditions, or the
used benchmark dataset. Table 6 indicates that ini-
tializing the encoder part of the ED model with
pretrained MLM weights boosted the performance
by a relative ratio of 12.28% when evaluated on
the CATT dataset. Similarly, Table 7 shows that
initializing the EO model with pretrained MLM
weights improved the performance by a relative
ratio of 15.94% when evaluated on the WikiNews
dataset. Our results indicate that weight initializa-
tion from pretrained MLM weights can boost the
performance of both ED and EO models compared
to random initialization.

5.2 RQ2: Does training ATD model for more
iterations help?

By analyzing the results presented in Tables 6 and
7, and Tables 8 and 9, we can see that the training
for more iterations consistently enhances model
performance across all metrics, CE conditions, and
datasets. It is notable that for few training iterations,
the EO model outperforms the ED model on the
CATT benchmark dataset as shown in Tables 6 and
8. In the other hand, when we trained both models
for more iterations, the ED model surpasses the
EO model in all performance metrics on the same
dataset. Moreover, Tables 7 and 9 show the per-
formance of both models on the WikiNews dataset.
They demonstrate that with fewer training steps,
the EO model performs better in terms of DER and
WER under both CE and No CE conditions. How-
ever, only the DER for the EO model was better
than the DER of the ED model as we trained them
for more iterations. The performance difference
between EO and ED could be attributed to the vari-

ation in model architecture. Specifically, the EO
model had all 6 layers initialized using pretrained
MLM weights, while in ED, only the 3 layers of
the encoder part were initialized with pretrained
MLM weights. Generally, our experiments show
that training for more iterations can improve the
ATD model performance.

CATT Benchmark Dataset
CE (%) No CE (%)
Model DER | WER | DER | WER
EO — From Scratch | 9.613 38.685 | 7.631 | 31.610
EO - MLM 9.260 | 37.492 | 7.411 | 30.969
ED — From Scratch | 10.359 | 39.753 | 8.003 | 31.654
ED - MLM 9.087 | 35.757 | 7.272 | 29.483

Table 6: The impact of MLM pretraining vs. training
from scratch, after training for more iterations when
evaluated on CATT benchmark dataset.

WikiNews Benchmark Dataset

CE (%) No CE (%)
Model DER | WER | DER | WER
FO — From Scratch | 7.009 | 25.857 | 4527 | 16.761
EO - MLM 5.892 | 23785 | 3.469 | 14.116
ED — From Scraich | 7.271 | 24.870 | 4.464 | 14.202
ED - MLM 6376 | 21.954 | 4.001 | 12.926

Table 7: The impact of MLM pretraining vs. training
from scratch, after training for more iterations when
evaluated on WikiNews benchmark dataset.

CATT Benchmark Dataset
CE (%) No CE (%)
Model DER | WER | DER | WER
EO — From Scratch | 11.199 | 43.294 | 8.725 | 34.751
EO - MLM 10.037 | 39.904 | 7.919 | 32.598
ED — From Scratch | 13.208 | 48.171 | 9.913 | 36.985
ED - MLM 11.345 | 42.841 | 8.805 | 34.066

Table 8: The impact of MLM pretraining vs. training
from scratch, after training for fewer iterations when
evaluated on CATT benchmark dataset.

WikiNews Benchmark Dataset

CE (%) No CE (%)

Model DER | WER | DER | WER
EO — From Scratch | 8.226 | 29.958 | 5.232 | 18.716
EO - MLM 6915 | 26.221 | 4.263 | 16.120
ED — From Scratch | 10.518 | 34.805 | 6.999 | 22.478
ED - MLM 8.681 | 29.224 | 5741 | 18.617

Table 9: The impact of MLM pretraining vs. training
from scratch, after training for fewer iterations when
evaluated on WikiNews benchmark dataset.
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CATT Benchmark Dataset
CE (%) No CE (%)

Model DER | WER | DER | WER
EO + Long Training | 9.613 | 38.685 | 7.631 | 31.610
+ MLM 9.260 | 37.492 | 7.411 | 30.969

+ NS 8.805 | 35.597 | 7.117 | 29.759

ED + Long Training | 10.359 | 39.753 | 8.003 | 31.654
+ MLM 9.087 | 35.757 | 7.272 | 29.483

+ NS 8.624 | 34.191 | 6.989 | 28.477

Table 10: Performance comparison of our training tech-
niques on the CATT benchmark dataset.

WikiNews Benchmark Dataset

CE (%) No CE (%)

Model DER | WER | DER | WER
EO + Long Training | 7.009 | 25.857 | 4.527 | 16.761
+ MLM 5.892 | 23.785 | 3.469 | 14.116

+ NS 5.425 | 22.132 | 3.105 | 12.679

ED + Long Training | 7.271 | 24.870 | 4.464 | 14.202
+ MLM 6.376 | 21.954 | 4.001 | 12.926

+NS 6.070 | 20.745 | 3.744 | 11.982

Table 11: Performance comparison of our training tech-
niques on the WikiNews benchmark dataset.

5.3 RQ3: Is the NS approach effective in ATD
models?

We tested the impact of the NS approach on both
the EO and ED models as shown in Tables 10 and
11. Our results show that NS approach further
improved both ED and EO models, showing a con-
siderable reduction in both DER and WER. After
evaluating on the CATT dataset, the ED model
achieved the best overall performance. However,
the EO model outperformed the ED model specifi-
cally in DER under all CE conditions when evalu-
ated on the WikiNews dataset.

6 Conclusion

This paper proposed a new approach to training
ATD models. The proposed approach was to ini-
tialize ATD models’ parameters from a pretrained
character-based BERT model, then training the
models for longer iterations. After that, we used the
NS approach to further improve the performance
of our models. We evaluated our approach by com-
paring it to 11 commercial and open-source mod-
els using two benchmark datasets: WikiNews and
CATT. Our results show that our models outper-
formed all other models in both DER and WER.
We open-source our CATT models and dataset for
the research community to advance research in this
area.

Limitations

Although this research advances the progress in the
ATD task, it has some limitations. These limita-
tions include:

* Specific input assumption: Our model is de-
signed to work only with Arabic text. It does
not handle numbers or special characters often
found in real-world data. Filtering out these
unwanted characters and numbers may alter
the sentence structure, potentially resulting in
incorrect ground truth diacritics. For example,
consider the sentence &5y o A3 (trans-

lation: I bought 3 books). If the number  is

removed, the sentence becomes S~ N} A,

which results in an incorrect grammatical
structure (correct structure: S~ o _£3l) that

may also lead to incorrect diacritization. A
correct normalization should replace the nu-
meral with an equivalent Arabic word. Mean-
ing, the sentence should be transformed to
g__,J.( O o A, where &\ represents the
number 3 in Arabic. Therefore, it is suggested
to have a normalization layer before the dia-
critizing text in a sequential pipeline.

* No handling for partially diacritized input:
The models are not conditioned to process
partially diacritized text, as we filter those
diacritics out before the text is fed into the
model.
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