
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 427–444
August 11-16, 2024 ©2024 Association for Computational Linguistics

In-Context Symbolic Regression: Leveraging Large Language Models for
Function Discovery

Matteo Merler∗, Katsiaryna Haitsiukevich∗, Nicola Dainese∗ and Pekka Marttinen
Department of Computer Science

Aalto University
{firstname.lastname}@aalto.fi

Abstract

State of the art Symbolic Regression (SR) meth-
ods currently build specialized models, while
the application of Large Language Models
(LLMs) remains largely unexplored. In this
work, we introduce the first comprehensive
framework that utilizes LLMs for the task of
SR. We propose In-Context Symbolic Regres-
sion (ICSR), an SR method which iteratively
refines a functional form with an LLM and de-
termines its coefficients with an external opti-
mizer. ICSR leverages LLMs’ strong mathe-
matical prior both to propose an initial set of
possible functions given the observations and
to refine them based on their errors. Our find-
ings reveal that LLMs are able to successfully
find symbolic equations that fit the given data,
matching or outperforming the overall perfor-
mance of the best SR baselines on four popular
benchmarks, while yielding simpler equations
with better out of distribution generalization.

1 Introduction

Classical Machine Learning regression methods
can be divided into two broad categories: statis-
tical methods, which learn an implicit statistical
(black-box) model of the relationship between the
observations, and rule-based methods, which in-
stead attempt to extract an explainable set of rules
that explicitly model the transformation between
the inputs and outputs (Lample and Charton, 2019).
Symbolic Regression (SR) is a particular subset of
the latter category, which searches the set of all pos-
sible explicit mathematical expressions to find the
equation that best fits the given set of observations.
This has the clear advantage of explainability, as
well as a potential for better generalization, if the
trend holds outside of the observed data.

The traditional approach for SR algorithms is
Genetic Programming (Willis et al., 1997) (GP),

*Denotes equal contribution.

which combines fundamental blocks for mathemat-
ical expressions (e.g., basic operators, trigonomet-
ric functions, etc.) into more complex formulas
using strategies borrowed from evolutionary biol-
ogy, such as mutations and fitness. The recent
success of Transformer models, first introduced
by Vaswani et al. (2017), has revolutionized vari-
ous fields of Artificial Intelligence, notably Natural
Language Processing (Brown et al., 2020; Achiam
et al., 2023; Touvron et al., 2023; Anil et al., 2023)
and Computer Vision (Dosovitskiy et al., 2021).
Transformer-based methods have also been pro-
posed for SR (Biggio et al., 2021; Kamienny et al.,
2022), typically by employing a model pre-trained
on a large amount of synthetic SR datasets.

Large Language Models (LLMs), also based on
the Transformer, have proven to possess unprece-
dented reasoning and generalization abilities, based
on their capability for In-Context Learning (ICL)
(Brown et al., 2020). This refers to the ability to
perform tasks based on the context provided in the
input text without any additional fine-tuning. With
the help of ICL, these models can be leveraged
for a wide range of different tasks, suggesting a
potential use case for Symbolic Regression.

In this paper, we examine the integration of
LLMs into the SR pipeline, with the aim of us-
ing them to search for new equations that could fit
the data. Inspired by the Optimization by Prompt-
ing (OPRO) approach presented by Yang et al.
(2023), we propose In-Context Symbolic Regres-
sion (ICSR)1. This approach leverages pre-trained
language models by providing a number of previ-
ously tested equations and their fitness scores in the
prompt, tasking them to generate a new candidate
that could be a better fit. The method is repeated
until convergence is reached or the computational
budget is exhausted. To the best of our knowledge,

1We release the code at: https://github.com/merlerm/
In-Context-Symbolic-Regression.

427

https://github.com/merlerm/In-Context-Symbolic-Regression
https://github.com/merlerm/In-Context-Symbolic-Regression

Large Language Model
x 10

Large Language Model

c0x + c1x^2 ...

2x + 0.23x^2 ...

Large Language Model

c0x^3 + c1sqrt(x) ...

Large Language Model

c0x^3 + c1x^2 ...

1.1x^3 + 0.8x^2 + x

Fit coefficients to data

Iteration 1
Fit coefficients to data

Iteration 2
Fit coefficients to data

Iteration n

Final result

Error: 1.64

Error: 1.64

Error: 7.17

Error: 2.01

Error: 1.11 Error: 1.02 Error: 0.01

Step 1:
Generate Seed Functions

Step 2:
Optimization Loop

Select n bests

Figure 1: High level overview of the ICSR approach. Given an initial set of observations, we prompt the LLM to
generate multiple initial guesses (seeds) of the true function that generated the observations. We then iteratively
refine our guesses within an optimization loop where we propose new functions (based on a set of the previous best
attempts), fit their coefficients and evaluate their fitness. The model only produces the functional form of a function,
while the unknown coefficients are fitted using non-linear least squares optimization.

only a contemporary work by Shojaee et al. (2024)
has ever explored the use of LLMs for SR. How-
ever, they focus on working with equations from
a scientific domain where natural language knowl-
edge can be directly incorporated, while this work
aims to generally explore the capabilities of LLMs
for SR without any additional information, in order
to lay a foundation that can be expanded later. We
discuss in depth the differences between the two
works in Section 2.

Our approach presents several advantages com-
pared to models specifically trained for SR: as the
LLM is not fine-tuned for this task, improvements
in the underlying base model can improve ICSR
without any changes to the method itself. Further,
LLMs provide a natural language interface that
can be leveraged to include additional information
about the problem, like the domain of the equation
and the interpretation of the observation values.
The models could also be asked to explain the rea-
soning behind the proposed functions, potentially
leading to a more interpretable process.

In summary, we make the following contribu-
tions: 1) We propose ICSR, the first general frame-
work to leverage LLMs for the SR task. 2) We com-
pare the method with a range of competitive SR
baselines, matching or outperforming state of the

art results on four popular SR benchmarks: Nguyen
(Nguyen et al., 2011), Constant (Li et al., 2023d), R
(Krawiec and Pawlak, 2013) and Keijzer (Keijzer,
2003). 3) We show that the equations generated
with our method tend to exhibit lower complexity,
which correlates with stronger out of distribution
performance.

2 Related Work

Symbolic Regression. GP has traditionally
formed the backbone for SR methods (Smits and
Kotanchek, 2005; Schmidt and Lipson, 2011; Vir-
golin et al., 2021). Typically, from an initial pop-
ulation, an iterative tournament is played where
functions with the highest fitness are selected to ’re-
produce’ with some random mutation, as in Koza
and Poli (2005).

More recently, Deep Learning methods have
been applied to enhance the available toolkit for SR.
Udrescu and Tegmark (2020) proposed an iterative
simplification of the problem relying on insights
from physics and outsourcing the function approx-
imation part to a neural network. Petersen et al.
(2021) used a Recurrent Neural Network (RNN)
with a risk-seeking policy to perform a hierarchi-
cal search over the space of user-defined operators
and mathematical functions. The main drawback

428

of these methods, including GP, is the fact that
the algorithms start from scratch for every new ex-
pression, with very limited abilities of knowledge
preservation between tasks.

To address this limitation, numerous
Transformer-based methods inspired by language
modelling have been developed. SymbolicGPT
by Valipour et al. (2021), NeSymReS by Biggio
et al. (2021) and CL-SR by Li et al. (2023d)
proposed different generative Transformer models
specifically trained for SR. These models generate
a functional form (’skeleton’) of the equation with
a special token for coefficients which are fitted via
an external numerical optimizer. Subsequently,
Kamienny et al. (2022) presented E2E, a Trans-
former model able to produce the full expression
including the coefficient values. While retaining
knowledge between tasks, Transformer-based
methods are quite limited in refining their solutions
for the given set of points. To this end, Shojaee
et al. (2023) presented a method integrating a
pre-trained Transformer with Monte Carlo Tree
Search to guide the equation generation merging
the strength of the search and model pre-training.
The proposed framework can be also viewed as a
combination of a pre-trained model and an iterative
refinement process. However, none of the prior
methods employ a foundation model (Bommasani
et al., 2021), such as an LLM, in order to leverage
mathematical knowledge, but either pre-train an
SR model (Biggio et al., 2021; Kamienny et al.,
2022), or learn from scratch for every new function
(Petersen et al., 2021).

Mathematical Reasoning with LLMs. As
LLMs form the backbone of the method presented
in this work, we rely entirely on their mathematical
reasoning capabilities, such as ICL (Brown et al.,
2020), to explore the solution space. Mirchandani
et al. (2023) show that LLMs are able to recognize
patterns from in-context examples and can extrap-
olate them to complete related tasks in the input.
Similarly, Gruver et al. (2023) find that LLMs can
extrapolate zero-shot the pattern from a timeseries
(although they do not extract any functional repre-
sentation). Furthermore, Fu et al. (2023) present
a study in which they find that Transformer mod-
els can learn higher-order optimization methods
(similar to Newton’s method).

Contemporary to our work, Shojaee et al. (2024)
also propose to perform SR with an LLM aided by
an external coefficient optimizer. However, they

focus exclusively on the case where LLMs can
leverage scientific knowledge for SR, by including
a description of the input and output variables in the
LLM prompt. In contrast, we focus on the general
case where no extra knowledge is given and test
on standard benchmarks within the SR community
and include a wider range of established baselines,
with the aim to directly evaluate the capability of
LLMs on the task of SR. Furthermore, we pro-
pose advancements in the structure of the prompt,
including the coordinates of the points to be re-
gressed, the score of previous attempts, and more
in-context examples. Finally, rather than asking the
LLM to optimize a Mean Squared Error (MSE) ob-
jective, we employ a more advanced loss function,
presented in Section 4, which jointly optimizes for
the accuracy and complexity of the function for
improved generalization properties.

3 Background

The Optimization by Prompting (OPRO) frame-
work was introduced by Yang et al. (2023) for
prompt optimization, i.e., for increasing the per-
formance of models (such as LLMs) that receive
a textual prompt in the input and have to perform
a specific task (such as mathematical reasoning).
Closer to our interest, the authors also present ex-
periments on classical optimization problems (Lin-
ear Regression and Travelling Salesman Problem),
suggesting that OPRO can solve such tasks.

The key idea of the method is the use of a so-
called meta-prompt, a higher level prompt which
contains a description of the task to be optimized
and previous attempts (examples) in solving it with
their corresponding scores. An example of such
task can be querying the model to find a linear func-
tion that fits a set of points. In this case, the prompt
is augmented by the functions that have been tried
out and the mean squared error on the data, ob-
tained with an external evaluation procedure. The
assumption behind it is that LLMs have the ability
to extrapolate the pattern formed by the examples,
thanks to ICL, and propose a better alternative. The
meta-prompt is given as input to the LLM and the
model’s output is then evaluated and added back to
the meta-prompt if the score is good enough. This
approach can then be iterated until a satisfying re-
sult is achieved or a certain computational budget
is exhausted.

429

4 Method

We consider a regression dataset D with N observa-
tions and target variables {xi, yi}Ni=1, also denoted
with (X,Y) more compactly, to be used for pro-
ducing a function f̂ that well approximates the data.
To leverage the OPRO approach for SR, we need to
design a meta-prompt suitable for the task and fill
it with the available observations (X,Y), an initial
set of k functions F̂0 = {f̂ (1)

0 , f̂
(2)
0 , . . . , f̂

(k)
0 } (ei-

ther hand-written or model-generated) and a mea-
sure of their fitness (score) on D. For our purposes,
we frame the refinement process as a minimiza-
tion problem over an objective function, also called
the error function, such that generated equations
with the lowest error have the highest fitness. The
goal is then to iteratively refine the set of functions
F̂i, i ∈ [1, . . . , n] for each iteration i, until a suffi-
ciently low error is obtained by one of them or a
maximum number of iterations is reached; we de-
note this process as the optimization loop. Due to
the finite size of the LLM context window, we only
keep the k best performing previous attempts in the
set F̂i, where k is a design choice (k = 5 in this
study). The meta-prompt used in the experiment
can be found in Appendix C.

Seed Functions. At the first iteration, F̂0 is
empty as there are no previous guesses from the
model. Thus, an initial population of seed func-
tions is required to kickstart the optimization loop.
Instead of relying on a fixed set of initial functions,
which could be restrictive in general, we ask the
model to generate the initial seed functions (with
the prompt provided in Appendix C). This results in
a complex and diverse set of functions, from which
the LLM can refine its future predictions with the
optimization loop. In our implementation we re-
peat this initial process ns times, as some of the
generated functions can be undefined for certain in-
put points (e.g., log(x) for negative numbers). We
set ns = 10 for this work and explore its impact in
Section 5.5 through an ablation study.

Error Function. The immediate choice for the
objective function would be an MSE, or a similar
error metric, over the regression dataset D. How-
ever, simply minimizing this error can result in
overfitting on the training points in D. As overfit-
ting in SR often occurs due to a growing number
of terms in the generated equation, we adapt from
Shojaee et al. (2023) a fitness function r(f̂ |D) with
an extra penalty term for the complexity C of the

generated expression, defined as the following:

r(f̂ |D) =
1

1 + NMSE(f̂ |D)
+ λe

(
−C(f̂)

L

)
, (1)

where f̂ is the predicted function, C is the complex-
ity defined as the number of nodes in the expression
tree, L is the maximum sequence length (set to 30),
and λ is a hyperparameter to trade-off between the
fit to the data and the complexity. The Normalized
Mean Square Error (NMSE) is calculated as

NMSE(f̂ |D) =

∑N
i=1(yi − f̂(xi))

2

∑N
i=1 y

2
i + ϵ

, (2)

where ϵ is a small regularizing constant. Finally,
we use err(f̂ |D) = r(f̂ |D)−1 as our error function
to frame ICSR as a minimization problem. We
explore the choice of the λ parameter in Section 5.5
with a sensitivity analysis.

Parameter Fitting. We utilize the LLM only
to generate functional forms (skeletons), while
the unknown coefficients associated to the pre-
dicted functional form are optimized by Non-linear
Least Squares (NLS) (Kelley, 1999) available from
SciPy’s (Virtanen et al., 2020). This not only yields
better coefficient values, due to the superior opti-
mization performance of NLS over LLMs, but also
allows for more efficient exploration of the space of
functions, by grouping them in equivalence classes
of unique functional forms. In our implementation,
we optimize the function’s coefficients five times
starting from different random initial values, to
avoid local minima, similarly to Li et al. (2023d).

For other details about the OPRO implementa-
tion, we follow the original work. Specifically, we
also sample multiple functions for every iteration
(asking the model to generate 5 functions for ev-
ery call) in an attempt to improve the stability of
the loop and we experiment with a decreasing tem-
perature parameter to balance exploration/exploita-
tion (with a higher initial temperature encouraging
the exploration of the underlying functional space,
and a lower temperature at the later stages forcing
smaller tweaks to the trajectory). To avoid satu-
rating the model’s context window, we limit the
amount of training points that are included in writ-
ten form to a certain threshold, empirically set to 40.
We discuss this in more detail in the Limitations
Section 6.1.

430

Method SR training Evaluated Model Pre-trained Flexible Problem specific Complexity
examples expressions size model vocabulary refinement penalty

ICSR (Ours) 0 O((50 · 5 + 10) · 5) 8B ✓ ✓ ✓ ✓

gplearn 0 O(1000 · 20) - ✗ ✗ ✓ ✗

DSR 0 O(200K) 8K ✗ ✗ ✓ ✗

uDSR* 0 O(200K) 8K ✓/ ✗ ✗ ✓ ✗

NeSymReS 100M O(10 · 10) 26M ✓ ✗ ✗ ✗

E2E 3M O(100) 86M ✓ ✗ ✗ ✗

TPSR 3M O(200 · 3) 86M ✓ ✗ ✓ ✓

* The uDSR method potentially allows using a pre-trained model as a prior. However, as reported in the original paper,
while this is useful in a low-budget search it has tendencies to worsen the performance.

Table 1: Qualitative comparison across baselines. We compare different properties for all baselines. Evaluated
expressions is the total number of equations a method considers for modeling a given training set. Pre-trained
model refers to the use of an underlying model as opposed to training from scratch for each problem. Problem
specific refinement refers to the use of a search algorithm on the space of possible skeletons.

5 Experiments

We empirically evaluate ICSR and compare it
against a set of competitive baselines, checking
both in-domain and out of distribution performance
of the proposed approach.

5.1 Benchmarks
For our experiments, we choose four popular SR
benchmarks containing functions with one or two
input dimensions: Nguyen (Nguyen et al., 2011),
Constant (a modified version of some of the
Nguyen equations with different numerical values
for the coefficients (Li et al., 2023d)), R (Kraw-
iec and Pawlak, 2013) and Keijzer (Keijzer, 2003).
The symbolic equations and ranges for both the
training and testing points are reported in Ap-
pendix D. We leave for future work the evaluation
of ICSR on higher dimensionality benchmarks.

5.1.1 Metrics
While we use the error function err(f̂ |D) during
the optimization loop (see Section 4), we follow
the literature in reporting the coefficient of deter-
mination R2 (Glantz et al., 2017) to evaluate the
quality of our method. This staple metric in SR
can be interpreted as follows: a function will get a
positive score if it is more accurate than the average
prediction and will get a score of 1 for a perfect
prediction. The coefficient is computed as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

, (3)

where yi is the ground truth value, ŷi is the pre-
dicted value and ȳ is the average of all yi.

We report the R2 metric computed on a set of
unseen testing points, obtained from a dense grid

within the same range of input point values as dur-
ing training (for in-domain performance) or its
extended version (for out of distribution perfor-
mance). We follow Li et al. (2023d) and Biggio
et al. (2021) in removing the 5% worst predictions
in all methods to ensure robustness against outliers.
We further report the complexity C of the generated
equations, calculated as the number of nodes in
its expression tree. For all methods, we repeat all
experiments across five different random seeds and
report the average values together with the standard
error of the mean. For ICSR, we allow up to 50
iterations in the optimization loop and end it earlier
if the R2 score on the training set exceeds 0.99999.

5.2 Baselines

To evaluate the performance of the proposed
method we opted for the following list of com-
petitive baselines: gplearn (Stephens, 2022), a
classical GP approach; DSR (Glatt et al., 2022)
and uDSR (Landajuela et al., 2022), two search-
based methods; NeSymReS (Biggio et al., 2021)
and E2E (Kamienny et al., 2022), selected as repre-
sentatives for Transformer-based model pre-trained
over a large-scale SR dataset; and TPSR (Shojaee
et al., 2023), which augments E2E with a decoding
strategy guided by Monte-Carlo Tree Search, as
an efficient combination of pre-training and search.
The details of the baseline model and the hyperpa-
rameters can be found in Appendix B.

We compare various properties of the considered
methods in Table 1. Thanks to the use of LLMs,
ICSR is able to leverage a much larger model size
without the need for SR-specific training examples,
as opposed to the other Transformer based meth-
ods. Furthermore, our method is far more sample

431

Method Nguyen (C̄ = 5.2) Constant (C̄ = 4.3) R (C̄ = 8.3) Keijzer (C̄ = 5.0) Overall avg.

R2 (↑) C (↓) R2 (↑) C (↓) R2 (↑) C (↓) R2 (↑) C (↓) R2 (↑) C (↓)

ICSR (Ours) 0.996 ± 0.002 6.4 ± 0.5 0.9991 ± 0.0004 4.6 ± 0.4 0.996 ± 0.001 7.5 ± 0.3 0.981 ± 0.004 8.2 ± 0.7 0.993 ± 0.002 6.7 ± 0.4
gplearn 0.75 ± 0.15 7.2 ± 0.8 0.74 ± 0.22 5.6 ± 0.7 0.97 ± 0.01 7.6 ± 1.3 0.09 ± 0.43 10.5 ± 1.4 0.6 ± 0.2 7.7 ± 1.0
DSR 0.983 ± 0.005 5.8 ± 0.3 0.96 ± 0.01 6.9 ± 0.7 0.95 ± 0.03 5.7 ± 0.5 0.84 ± 0.03 6.3 ± 0.3 0.93 ± 0.02 6.2 ± 0.5
uDSR 0.9998 ± 0.0001 20.4 ± 1.1 0.9997 ± 0.0001 21.9 ± 1.5 0.993 ± 0.004 15.3 ± 0.5 0.980 ± 0.005 22.4 ± 1.5 0.993 ± 0.002 20.0 ± 1.2
NeSymReS 0.976 ± 0.007 6.3 ± 0.2 0.97 ± 0.01 5.9 ± 0.2 0.92 ± 0.02 6.2 ± 0.5 0.87 ± 0.02 6.2 ± 0.2 0.93 ± 0.01 6.2 ± 0.3
E2E 0.9976 ± 0.0005 18.1 ± 1.1 0.996 ± 0.002 16.8 ± 1.2 0.68 ± 0.20 22.3 ± 1.3 0.82 ± 0.05 20.2 ± 0.9 0.87 ± 0.06 19.4 ± 1.1
TPSR 0.9998 ± 0.0001 13.7 ± 0.6 0.9993 ± 0.0001 11.5 ± 0.7 0.996 ± 0.001 13.3 ± 0.7 0.92 ± 0.03 17.2 ± 0.8 0.979 ± 0.008 14.0 ± 0.7

Table 2: Comparison across baselines. We evaluate each method on all benchmarks with five random seeds,
reporting the averages for the coefficient of determination R2 and the function complexity C with the error of the
mean. We further report the average ground truth complexity for each benchmark, indicated with C̄.

efficient when compared to search-based methods
like DSR and uDSR. The LLM is slower in gen-
erating a single expression, but is able to produce
more meaningful equations, thanks to the large pre-
training bias, as opposed to methods like gplearn
and DSR which have to be trained from scratch on
each problem. ICSR is also the only method with a
natural language interface and a flexible vocabulary,
which we discuss further in Section 6.

5.3 Comparison across Baselines

For comparison of ICSR with the baselines, we
choose Llama 3 8B (Meta, 2024) as the underlying
LLM. The results (see Table 2) show that the ICSR
approach is very robust, consistently achieving very
high scores across all benchmarks while producing
expressions with a lower average complexity. The
overall average columns show that ICSR outper-
forms all baselines, with only uDSR matching its
R2 score at the cost of significantly higher com-
plexity. In general, it is important to consider both
metrics simultaneously, as simpler functions can
lead to a sightly lower R2 value while bringing
other advantages, such as better out of distribution
generalization, which we explore in Section 5.4.
As seen in the headers in Table 2, the complexity
values of the ground truth equations align much
more closely to the ones recovered by ICSR as op-
posed to the ones for other high-performing base-
lines, such as uDSR or TPSR. The improvement
in complexity compared to TPSR is particularly
noteworthy, as both methods are using the same
objective function: this could be a sign that LLMs
tend to produce more human-readable expressions
thanks to their pre-training bias. It is also worth not-
ing that ICSR can potentially improve over time by
simply increasing the performance of the underly-
ing LLM backbone without any additional training,
while that is not the case for the other methods.

125 150 175 200
Domain increase (%)

0.0

0.2

0.4

0.6

0.8

R2 score

ICSR
DSR

uDSR
NeSymRes

E2E
TPSR

125 150 175 200
Domain increase (%)

0%

15%

30%

Fraction of negative R2

Figure 2: Comparison across baselines on out of dis-
tribution data. We compared the proposed method
with the baselines by increasing the input domain for
the generated functions. Whenever the R2 becomes
negative, we fix it to 0 when computing the average for
the figure on the left and report the fraction of negative
values in the figure on the right.

0 2 4 6 8
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ground Truth: f(x) = √x , = 2.0
ICSR: f(x) = 1.00x0.4983, = 3.0
uDSR: f(x) = log(0.19x3 − 2.3x2 + 8.4x+ 1)

− sin(√ 2x), = 16.0

ICSR
uDSR
Training Points
Ground Truth

(a) Nguyen 8.

−2 −1 0 1 2
x

−3

−2

−1

0

1

2

3

Ground Truth: f(x) = x(x+ 1)
2 , = 3.0

ICSR: f(x) = 0.50(x+ 0.50)2 − 0.12, = 5.0
uDSR: f(x) = 0.26x3 + 0.53x2 − 0.50x− 1.00

cos(x)
+ exp(sin(x)), = 13.0

(b) Keijzer 6.

Figure 3: Out of distribution examples. Qualitative
examples demonstrating the generalization capabilities
of ICSR and uDSR on two experiments. The higher
complexity from the uDSR examples introduces unnec-
essary terms that harm the out of distribution perfor-
mance (area shaded in red).

432

Method Nguyen Constant R Keijzer

R2 (↑) C (↓) R2 (↑) C (↓) R2 (↑) C (↓) R2 (↑) C (↓)

ICSR (λ = 0.05) 0.996 ± 0.002 6.4 ± 0.5 0.9991 ± 0.0004 4.6 ± 0.4 0.996 ± 0.001 7.5 ± 0.3 0.981 ± 0.004 8.2 ± 0.7

ICSR (λ = 0) 0.9990 ± 0.0004 18.6 ± 0.5 0.9994 ± 0.0001 17.6 ± 0.6 0.988 ± 0.005 19.9 ± 0.8 0.92 ± 0.05 16.6 ± 0.6
ICSR (λ = 0.1) 0.992 ± 0.003 6.1 ± 0.5 0.9978 ± 0.0006 4.3 ± 0.3 0.989 ± 0.004 6.5 ± 0.4 0.980 ± 0.005 7.8 ± 0.6
ICSR (λ = 0.5) 0.94 ± 0.03 4.4 ± 0.4 0.983 ± 0.003 3.0 ± 0.2 0.972 ± 0.005 4.07 ± 0.07 0.95 ± 0.02 6.4 ± 0.6
ICSR (λ = 1) 0.92 ± 0.03 3.7 ± 0.3 0.89 ± 0.04 2.5 ± 0.2 0.95 ± 0.01 3.4 ± 0.2 0.77 ± 0.05 4.8 ± 0.5

Seed only (ns = 10) 0.95 ± 0.03 11.4 ± 0.8 0.982 ± 0.003 8.0 ± 0.7 0.990 ± 0.005 10.3 ± 0.5 0.93 ± 0.03 10.8 ± 0.8
Seed only (ns = 5) 0.986 ± 0.003 12.4 ± 0.7 0.986 ± 0.003 10.0 ± 0.7 0.995 ± 0.001 10.7 ± 0.6 0.88 ± 0.04 12.7 ± 0.8
Seed only (ns = 1) 0.91* ± 0.04 14.5* ± 0.8 0.95* ± 0.03 13.5* ± 0.9 0.97* ± 0.02 12.8* ± 0.7 0.66* ± 0.07 16.0* ± 0.7

Random Guessing 0.960 ± 0.006 3.9 ± 0.2 0.971 ± 0.005 4.4 ± 0.2 0.91 ± 0.03 4.7 ± 0.2 0.77 ± 0.04 4.0 ± 0.2
* Some runs failed to generate valid seed functions. Only 88% of the experiments for nguyen, 93% for constant, 87% for R and 95% for keijzer finished
with at least one valid function.

Table 3: Sensitivity analysis and ablation studies. We perform sensitivity analysis on the values of the complexity
penalty parameter λ and two ablation studies: one using only ns initial seed functions without improving them
and the other one using random guessing, rather than ICSR, for proposing new functions. All ablations on ns are
performed without the optimization loop, only keeping the best generated seed function. We report the averages for
the coefficient of determination R2 and the function complexity C with the error of the mean for all experiments.
We highlight in bold the best performance across different values of λ.

5.4 Out of Distribution Performance

We further explore the advantage of producing func-
tions with a lower complexity value by testing the
out of distribution capabilities of the expressions
recovered by ICSR and the other baselines. We
exclude gplearn from these experiments, as we ob-
serve its performance to be significantly lower com-
pared to the rest of the methods. To include out-of-
domain test points, we extend the input range by
100% to all directions (in which the function is de-
fined). We compute the R2 value on the extended
range, reporting the results in Figure 2. Note that
the R2 value can quickly become increasingly neg-
ative when the functions diverge significantly. In
order to keep the results stable, we treat all negative
values as 0 when computing the average and report
the fraction of experiments with a negative R2.

In general, we observe a sharp decline in perfor-
mance for all methods, with the fraction of negative
R2 values quickly increasing towards the further
extensions of the range. Specifically, ICSR is the
highest performing method in the 175% and 200%
domain increases, with the second lowest and low-
est number of failures respectively. Generally,
methods with lower complexity such as NeSym-
ReS, E2E and TPSR tend to perform better than
uDSR, with the exception of DSR which exhibits
the poorest out of distribution performance even
with a low average complexity. The comparison be-
tween ICSR and uDSR is particularly meaningful:
as reported in Table 2, the two methods are tied for
the best overall average performance, but ICSR out-
performs uDSR when extrapolating further outside

of the training range thanks to the lower complex-
ity of the recovered expressions. We present some
qualitative examples that demonstrate the differ-
ence between the methods in Figure 3.

5.5 Sensitivity Analysis and Ablation Studies

In this section we first investigate the impact of
the λ parameter and then test the importance of
the iterative refinement of the equations with the
optimization loop. Finally, we compare ICSR with
a baseline where the LLM was not given any in-
formation about the observations. All results are
reported in Table 3.

Lambda Parameter. In our sensitivity analysis
we considered the complexity penalty parameter
λ = [0, 0.05, 0.1, 0.5, 1]. We noticed that the small-
est penalty λ = 0.05 was already sufficient to con-
siderably reduce the complexity of the selected
functions and increasing the penalty further had a
relatively smaller impact on complexity. Therefore
we used λ = 0.05 for our experiments. With λ = 0
the complexity is not considered and the equations
overfit on the observations: the R2 score tends to
improve slightly at the cost of a large increase in
complexity, with expressions composed of many
different terms attempting to fit perfectly the train-
ing set. As the value for the parameter λ increases,
both the R2 score and the complexity tend to de-
crease, resulting in equations that underfit the data,
as they do not have enough terms to properly cap-
ture all the observed dependencies. These results
align with Shojaee et al. (2023), who introduced
the fitness function we use. They chose 0.1 as the

433

final parameter value, which we find performing
similarly to 0.05, but slightly underfitting on some
benchmarks, particularly R.

Optimization Loop. The results suggest that the
seed functions generation step plays a key role in
our approach, as with ns = 10 the results already
show a high fitness on the test set, although they
still underperform the full method in terms of both
R2 and complexity. We notice that using the best
seed functions without refinement can outperform
the results with ICSR for some values of λ (e.g.
λ = 0, 0.1) in the most complex benchmarks (R
and Keijzer). This is because the performance is
reported on the set of test points and can decrease
when refining, due to overfitting on the training
points. It’s also worth noting that some of the
experiments with only a single initial call did not
result in any valid seed functions, showing the need
for repeating the generation process multiple times.
In the prompt used to generate the seed functions
(reported in Appendix C) we specifically ask for
a diverse and complex set of functions that can
be optimized, which is likely why the complexity
on the seed functions is much higher, as it will be
lowered later in the optimization loop. Overall,
both parts of the method are necessary for the best
possible performance; repeating the seed function
generation step multiple times allows the model to
generate a large number of potential initial expres-
sions, resulting in a solid set of initial candidates
for the optimization loop to build upon.

Random Guessing. As some of the benchmarks
contain common equations such as simple polyno-
mials, the LLM could simply be randomly gener-
ating functions that fit the data points, instead of
actually making use of the information provided
in the prompt. To ensure that this is not the case,
we compare ICSR with a ’Random Guessing’ base-
line, where the LLM was prompted for 60 times
(matching the budget used for ICSR, which uses
10 prompts to generate the seed functions and 50
prompts for the optimization loop) to generate five
random functions, without any information about
the observations or previous guesses (the prompt is
reported in Appendix C). The results show that this
baseline underperforms ICSR on all four bench-
marks, especially on Keijzer, the hardest one. Em-
pirically, we observe that the functions generated
by the LLM in this way are all extremely simple,
mostly constrained to basic polynomials. This con-
firms that LLMs are able to extract patterns from

the prompt and are not simply randomly generating
the solutions.

6 Discussion

Optimizing for out of distribution. A general
framework for optimizing the out of distribution
performance of a predictive model (such as a sym-
bolic equation) is to regularise its complexity, fol-
lowing the Occam’s Razor principle that simpler
explanations are preferable to more complex ones,
all other things being equal. In our work we use
the working definition of complexity as the num-
ber of nodes in the expression tree of an equation.
However, more optimal choices could be available:
for instance, equations containing expressions not
defined on all the real domain (such as logarithms
and square roots) could be penalised more, as they
could be undefined when extrapolating to larger
domains. Knowing in advance the full domain in
which an equation is supposed to hold could also
greatly improve out of distribution performance
by filtering out invalid candidate functions. In the
case of ICSR, it could also be leveraged as ex-
tra information by the LLM. Furthermore, we ob-
serve that numerous equations that we derive with
ICSR have extra terms with very small coefficients
(e.g. O(10−3)) that do not contribute significantly
to the shape of the equation and could be safely
suppressed, resulting in expressions with a lower
complexity. This could be done by modifying the
optimization procedure of the coefficients, to elimi-
nate coefficients under a certain threshold, which
would be a hyperparameter of the method.

Vocabulary. In general, most SR methods are
limited to a predefined vocabulary of operators and
tokens, while LLMs can virtually explore any pos-
sible function and combination. An example of this
is with the xx2

1 function in the Nguyen benchmark:
in Biggio et al. (2021), the authors mention that
it is not included in the set of equations that their
model can fit, while our approach can recover the
exact expression. We also observe a similar trend
with the other baselines for this specific expres-
sion. In our prompts (see Appendix C) we include
a vocabulary for the LLM, but this is meant more
to guide the LLM into the correct search space
and is by no means a hard restriction: for exam-
ple, we observe that ICSR can produce the erf
function even if it wasn’t reported in this list. Fur-
thermore, any function that can be found in the
model’s pre-training corpus (fundamentally the In-

434

ternet) can be potentially added to the prompt at
any time if desired, which is impossible for other
fixed-vocabulary methods.

6.1 Limitations

Although promising, the approach presented in this
work still suffers from some key limitations that
hold back its potential as a full Symbolic Regres-
sion method.

Size of the context window. LLMs are provided
with a context window, which represents the maxi-
mum number of tokens they can process as input
at the same time. For instance, Llama3, used for
ICSR, has an 8k token context window. This lim-
its the amount of information that we can include
in the prompt, in terms of training datapoints and
previously attempted functions with their errors.
However, with context-window size increasing,
commercially available LLMs like GPT-4 Turbo
(Achiam et al., 2023) and Claude 3 (Anthropic,
2024), which process over 100k tokens, this issue
is likely to be alleviated or lifted completely.

What to include in the prompt? Including all
needed information in the prompt might not be
enough, as some research suggests LLMs cannot
fully utilize extended contexts (Liu et al., 2024c).
In practice, we observe that when too many points
are included, the model often continues generating
points, especially with two-dimensional functions.
Limiting training points in the prompt to 40 (cho-
sen empirically) helps, while all input points are
still used for coefficient optimization. Some direc-
tions to help the model leveraging the information
in the data could be to sample the most informative
subset of points to fit in the prompt, or present the
LLM with higher-level descriptions of the points,
rather than feeding them directly to the model. Fi-
nally, we hypothesize that presenting the data in
different modalities, such as images of the points
and plots of the functions, by using multimodal
foundation models, might be helpful to incorporate
all information available. We experimented with
Vision-Language Models, but our attempts in that
direction, reported in Section A of the Appendix,
were not fruitful so far.

Dimensionality. Using an LLM for higher di-
mensional inputs is possible, but dimensionality
exacerbates the issues presented above. As the
number of variables grows, so does the space ded-
icated to the input points in the prompt, which

will naturally confuse the model and obfuscate the
structure in the datapoints even further. Specifi-
cally fine-tuning an LLM on this kind of examples
might show some improvement, but scaling this
approach for higher dimensional problems remains
a challenge.

7 Conclusion

We show that LLMs paired with the ICSR approach
are able to perform Symbolic Regression tasks on
classical SR benchmarks. The proposed method
matches or outperforms a variety of established
SR baselines, while producing simpler expressions
that more closely resemble the complexity of the
ground truth equations and result in better out of
distribution performance. This work exposes yet
another task that LLMs can be leveraged for, thanks
to specialized techniques such as ICSR, and shows
promise for integrating these models with mathe-
matical reasoning methods.

7.1 Future Work

As this is one of the first works published on this
topic, much work remains to be done. LLMs al-
low the inclusion of domain-specific natural lan-
guage information into the prompt, as explored
by Shojaee et al. (2024). The natural language in-
terface could be further exploited by employing
explicit Chain of Thought-like (Wei et al., 2022;
Kojima et al., 2022) techniques, allowing the model
to output even more well-informed guesses at ev-
ery step and resulting in an interpretable method.
Another interesting direction would be to consider
tree-based search algorithms on top of the LLM,
analogously to the TPSR (Shojaee et al., 2023) ap-
proach. As our work proves the intrinsic ability of
LLMs to perform SR without taking into considera-
tion any additional inputs, we have hope that future
work can build upon ICSR to further leverage foun-
dation models for SR.

Acknowledgements

We are grateful to Alexander Ilin and Alberto
Zabeo for the fruitful discussions. We thank Aalto-
IT (IT Services of Aalto University, Finland) for
provided support with computational resources.
This work was supported by the Research Council
of Finland (Flagship programme: Finnish Center
for Artificial Intelligence FCAI, and grants 352986,
358246) and EU (H2020 grant 101016775 and
NextGenerationEU).

435

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Mal-
colm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Saman-
gooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Bar-
reira, Oriol Vinyals, Andrew Zisserman, and Karen
Simonyan. 2022. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 23716–
23736. Curran Associates, Inc.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Anthropic. 2024. Introducing the next generation
of Claude. URL: https://www.anthropic.com/
news/claude-3-family.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne,
Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. 2023. Fuyu-8b: A multimodal ar-
chitecture for ai agents. URL: https://www.adept.
ai/blog/fuyu-8b.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz,
Aurelien Lucchi, and Giambattista Parascandolo.
2021. Neural symbolic regression that scales. In
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 936–945. PMLR.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan.
2023. Transformers learn higher-order optimization
methods for in-context learning: A study with linear
models. arXiv preprint arXiv:2310.17086.

Stanton A. Glantz, Bryan K. Slinker, and Torsten B. Nei-
lands. 2017. Dedication. McGraw-Hill Education,
New York, NY.

Ruben Glatt, Felipe Leno da Silva, VAN HAI BUI,
Can Huang, Lingxiao Xue, Mengqi Wang, Fangyuan
Chang, Yi Murphey, and Wencong Su. 2022. Deep
symbolic optimization for electric component siz-
ing in fixed topology power converters. In AAAI
2022 Workshop on AI for Design and Manufacturing
(ADAM).

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and An-
drew Gordon Wilson. 2023. Large language models
are zero-shot time series forecasters. In Advances in
Neural Information Processing Systems, volume 36,
pages 19622–19635. Curran Associates, Inc.

Pierre-alexandre Kamienny, Stéphane d'Ascoli, Guil-
laume Lample, and Francois Charton. 2022. End-
to-end symbolic regression with transformers. In
Advances in Neural Information Processing Systems,
volume 35, pages 10269–10281. Curran Associates,
Inc.

Maarten Keijzer. 2003. Improving Symbolic Regres-
sion with Interval Arithmetic and Linear Scaling. In
Genetic Programming, Lecture Notes in Computer
Science, pages 70–82, Berlin, Heidelberg. Springer.

C. T. Kelley. 1999. Iterative Methods for Optimization,
pages 22–25. Society for Industrial and Applied
Mathematics.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov.
2023. Generating images with multimodal language
models. In Advances in Neural Information Process-
ing Systems, volume 36, pages 21487–21506. Curran
Associates, Inc.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

John R. Koza and Riccardo Poli. 2005. Genetic pro-
gramming. In Edmund K. Burke and Graham
Kendall, editors, Search Methodologies: Introduc-
tory Tutorials in Optimization and Decision Support
Techniques, pages 127–164. Springer US, Boston,
MA.

436

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2305.10403
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://proceedings.mlr.press/v139/biggio21a.html
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2310.17086
https://arxiv.org/abs/2310.17086
https://arxiv.org/abs/2310.17086
accessbiomedicalscience.mhmedical.com/content.aspx?aid=1141896774
https://openreview.net/forum?id=u_ghY9PnAyZ
https://openreview.net/forum?id=u_ghY9PnAyZ
https://openreview.net/forum?id=u_ghY9PnAyZ
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/42eb37cdbefd7abae0835f4b67548c39-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/42eb37cdbefd7abae0835f4b67548c39-Paper-Conference.pdf
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1137/1.9781611970920
https://proceedings.neurips.cc/paper_files/paper/2023/file/43a69d143273bd8215578bde887bb552-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43a69d143273bd8215578bde887bb552-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1007/0-387-28356-0_5

Krzysztof Krawiec and Tomasz Pawlak. 2013. Approx-
imating geometric crossover by semantic backprop-
agation. In Proceedings of the 15th Annual Con-
ference on Genetic and Evolutionary Computation,
GECCO ’13, page 941–948, New York, NY, USA.
Association for Computing Machinery.

Guillaume Lample and François Charton. 2019. Deep
learning for symbolic mathematics. In International
Conference on Learning Representations.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang,
Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K
Petersen. 2022. A unified framework for deep sym-
bolic regression. In Advances in Neural Information
Processing Systems, volume 35, pages 33985–33998.
Curran Associates, Inc.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang,
Fanyi Pu, and Ziwei Liu. 2023a. Otterhd: A high-
resolution multi-modality model. arXiv preprint
arXiv:2311.04219.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023b. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023c. BLIP-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
19730–19742. PMLR.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. BLIP: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
12888–12900. PMLR.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina
Yu, Jingyi Liu, Yanjie Li, and Songsong Tian. 2023d.
Transformer-based model for symbolic regression via
joint supervised learning. In International Confer-
ence on Learning Representations.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024a. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 26296–26306.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuan-
han Zhang, Sheng Shen, and Yong Jae Lee. 2024b.
LLaVA-NeXT: Improved reasoning, OCR, and world
knowledge. URL: https://llava-vl.github.io/
blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In Advances in
Neural Information Processing Systems, volume 36,
pages 34892–34916. Curran Associates, Inc.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024c. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Meta. 2024. Meta Llama 3. URL: https://llama.
meta.com/llama3.

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
In 7th Annual Conference on Robot Learning.

Quang Uy Nguyen, Nguyen Hoai, Michael O’Neill,
Robert McKay, and Edgar Galván-López. 2011.
Semantically-based crossover in genetic program-
ming: Application to real-valued symbolic regres-
sion. Genetic Programming and Evolvable Machines,
12:91–119.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N.
Mundhenk, Claudio Prata Santiago, Soo Kyung Kim,
and Joanne Taery Kim. 2021. Deep symbolic regres-
sion: Recovering mathematical expressions from data
via risk-seeking policy gradients. In International
Conference on Learning Representations.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748–8763. PMLR.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with CLIP latents.
arXiv preprint arXiv:2204.06125.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gen-
eration. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8821–8831. PMLR.

Michael Schmidt and Hod Lipson. 2011. Age-fitness
pareto optimization. In Rick Riolo, Trent Mc-
Conaghy, and Ekaterina Vladislavleva, editors, Ge-
netic Programming Theory and Practice VIII, pages
129–146. Springer New York, New York, NY.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani,
and Chandan Reddy. 2023. Transformer-based plan-
ning for symbolic regression. In Advances in Neural
Information Processing Systems, volume 36, pages
45907–45919. Curran Associates, Inc.

Parshin Shojaee, Kazem Meidani, Shashank Gupta,
Amir Barati Farimani, and Chandan K Reddy. 2024.

437

https://doi.org/10.1145/2463372.2463483
https://doi.org/10.1145/2463372.2463483
https://doi.org/10.1145/2463372.2463483
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://arxiv.org/abs/2311.04219
https://arxiv.org/abs/2311.04219
https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2305.03726
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://openreview.net/forum?id=ULzyv9M1j5
https://openreview.net/forum?id=ULzyv9M1j5
https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.html
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://llama.meta.com/llama3
https://llama.meta.com/llama3
https://llama.meta.com/llama3
https://openreview.net/forum?id=RcZMI8MSyE
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf

LLM-SR: Scientific equation discovery via program-
ming with large language models. arXiv preprint
arXiv:2404.18400.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. FLAVA: A foun-
dational language and vision alignment model. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15638–
15650.

Guido F. Smits and Mark Kotanchek. 2005. Pareto-
front exploitation in symbolic regression. In Una-
May O’Reilly, Tina Yu, Rick Riolo, and Bill Worzel,
editors, Genetic Programming Theory and Practice
II, pages 283–299. Springer US, Boston, MA.

Trevor Stephens. 2022. gplearn: Genetic pro-
gramming in python. URL: https://gplearn.
readthedocs.io/en/stable/. https://github.
com/trevorstephens/gplearn.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Silviu-Marian Udrescu and Max Tegmark. 2020. AI
Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631.

Mojtaba Valipour, Bowen You, Maysum Panju, and
Ali Ghodsi. 2021. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint
arXiv:2106.14131.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N.
Bosman. 2021. Improving model-based genetic pro-
gramming for symbolic regression of small expres-
sions. Evolutionary Computation, 29(2):211–237.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, SciPy 1.0 Contributors,
et al. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen,
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Hao-
tian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev
Arora, and Danqi Chen. 2024. Charxiv: Charting
gaps in realistic chart understanding in multimodal
llms. arXiv preprint arXiv:2406.18521.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

M-J Willis, Hugo G Hiden, Peter Marenbach, Ben
McKay, and Gary A Montague. 1997. Genetic pro-
gramming: An introduction and survey of applica-
tions. In Second international conference on genetic
algorithms in engineering systems: innovations and
applications, pages 314–319. IET.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. In Interna-
tional Conference on Learning Representations.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
2024. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

438

https://arxiv.org/abs/2404.18400
https://arxiv.org/abs/2404.18400
https://ieeexplore.ieee.org/document/9880206
https://ieeexplore.ieee.org/document/9880206
https://doi.org/10.1007/0-387-23254-0_17
https://doi.org/10.1007/0-387-23254-0_17
https://gplearn.readthedocs.io/en/stable/
https://gplearn.readthedocs.io/en/stable/
https://github.com/trevorstephens/gplearn
https://github.com/trevorstephens/gplearn
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://www.science.org/doi/full/10.1126/sciadv.aay2631
https://www.science.org/doi/full/10.1126/sciadv.aay2631
https://www.science.org/doi/full/10.1126/sciadv.aay2631
https://arxiv.org/abs/2106.14131
https://arxiv.org/abs/2106.14131
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/2406.18521
https://arxiv.org/abs/2406.18521
https://arxiv.org/abs/2406.18521
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=Bb4VGOWELI
https://ieeexplore.ieee.org/document/10445007
https://ieeexplore.ieee.org/document/10445007

A Vision-Language Models

In this section we report our findings on extending
ICSR to Vision-Language Models (VLMs), which
we considered a promising direction, but was not
successful experimentally, at least with the VLMs
that we considered.

A.1 Vision-Language Extension

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

(a) The observations.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

Train points
Model's best guess

(b) The previous function fit.

Figure 4: Example of plots used with the VLM. (a)
Scatter plot of the observations used when generating
the seed functions. (b) Plot of the best function from a
previous iteration used in the optimization loop.

Reasoning on the observations and the previ-
ously attempted functions to come up with better
function candidates is a challenging task. Visualis-
ing the data and the functions, when possible, can
be of great help for humans and, we hypothesize,
for SR models too. We thus explore the use of
visual information in ICSR by considering VLMs
in place of LLMs and adding to the optimization
meta-prompt a scatter plot containing the observa-
tions (Figure 4a), as well as plots superimposing
the best previously generated function (Figure 4b).
We dub this variant ICSR-V and present results for
it in Section A.3. However, the use of both vision
and language as input comes with the restriction
of dimensionality, as it is impossible to visualize
inputs with more than two inputs in a single image.
A solution could be to include projections into each
dimension as the input, but this can quickly grow
out of control as the number of variables increases,
and then the additional information would probably
provide diminishing returns.

A.2 Related Work

VLMs have gained traction after Radford et al.
(2021) introduced CLIP, which aligns text and im-
age representations using a contrastive objective.
Various foundation models have been proposed,
such as FLAVA (Singh et al., 2022), LLaVa (Liu

et al., 2023, 2024a,b), Flamingo (Alayrac et al.,
2022), OTTER (Li et al., 2023b,a), Fuyu (Bavishi
et al., 2023) and more recently OpenAI’s GPT4’s
vision extension. A thorough survey of VLM tech-
niques and tasks was performed recently by Zhang
et al. (2024). Typically, a VLM can be built on
top of a pre-trained LLM, which is then paired
with an image embedding network that can trans-
fer the image into the same token space used by
the model, attempting to keep semantic similarity.
This approach is employed, for instance, by BLIP
(Li et al., 2022) and its successor BLIP2 (Li et al.,
2023c). Moreover, these models typically can only
consume images as input, but are unable to gener-
ate them as an answer, but the general framework
can be enhanced with methods for text-to-image
generation, such as DALL-E (Ramesh et al., 2021,
2022) and GILL (Koh et al., 2023).

A.3 Comparison of Text-Only and
Vision-Language Models

To evaluate the effectiveness of the additional plots,
we compare our method with a variant using the
LLaVa-NeXT (Liu et al., 2024b) VLM. To ensure a
fair comparison, we use the same backbone model
and repeat the experiments with and without the
inclusion of visual information. This consists of a
scatter plot of the observations for the seed func-
tions generation step with the overlay of the best
previous function (as the model only supports one
input image at the time of writing) during the opti-
mization loop. An example of the input plots can
be found in Figure 4. We repeat both experiments
across five different random seeds and report the
results in Table 4. Surprisingly, the performance of
the method seems to be unaffected by the presence
of the images. This might be due to several factors,
among which the fact that the vision encoder of the
VLM has not been trained on plots of functions,
but rather on natural images, thus, the visual inputs
might be out of distribution for the model. We also
experimented asking the model facts about the plots
in input (such as range of points, maximum and
minimum values of the function, shape, first and
second derivatives), with no consistent success. It
might be that future models will be more amenable
to this sort of visual mathematical reasoning, but
this is not the case for current VLMs, as was also
suggested by recent work (Wang et al., 2024).

439

Benchmark ICSR-V ICSR

R2 (↑) C (↓) R2 (↑) C (↓)

Nguyen 0.991 ± 0.003 5.1 ± 0.3 0.994 ± 0.002 5.0 ± 0.3
Constant 0.995 ± 0.001 4.3 ± 0.3 0.995 ± 0.001 3.9 ± 0.3
R 0.988 ± 0.003 5.7 ± 0.5 0.986 ± 0.003 5.7 ± 0.4
Keijzer 0.983 ± 0.006 7.6 ± 0.8 0.984 ± 0.004 7.4 ± 0.8

Overall avg. 0.989 ± 0.003 5.7 ± 0.5 0.990 ± 0.003 5.5 ± 0.5

Table 4: Comparison on the impact of additional vi-
sual input. All experiments are performed with LLaVa-
NeXT as the underlying model, either providing or
excluding a plot of the best previous function in the
prompts (respectively ICSR-V and ICSR columns). We
report the averages with their errors.

B Hyperparameters

We report the hyperparameters used with LLMs
(Table 5). As reported in the main text, for ICSR
we sample ns = 10 initial seed functions and re-
peat the optimization loop for 50 iterations, using
an acceptance threshold of 0.99999 and repeating
the coefficient fitting for 5 times with different ini-
tializations. For DSR and uDSR we set the compu-
tation budget for the number of expressions to eval-
uate to 200K and extend the vocabulary as {add,
sub, mul, div, sin, cos, exp, log, sqrt, n2, abs,
n3, n4} and {add, sub, mul, div, sin, cos, exp,
log, sqrt, abs, poly} correspondingly. For the
NeSymRes model we evaluate the model check-
point that has been obtained with the training set
of 100M expression skeletons. The actual number
of the equations in the training set is even larger
since the values for the coefficients are resampled
on each training batch. The beam size in NeSym-
Res is set to 10 and the number of restarts for the
external coefficient optimizer is 10, while for E2E
model the beam size is 100 but the coefficient op-
timizer is applied just once. E2E doesn’t benefit
from restarting the external coefficient optimizer as
much since E2E predicts the whole equation includ-
ing the values of the coefficients. The predicted
coefficients can be further improved by numerical
optimizer but they serve as good initial values. For
all other implementation details, we follow the de-
fault hyperparameters provided in the following
repositories: gplearn2, DSR/uDSR3, NeSymReS4

and E2E/TPSR5.
2https://github.com/trevorstephens/gplearn
3https://github.com/dso-org/

deep-symbolic-optimization
4https://github.com/SymposiumOrganization/

NeuralSymbolicRegressionThatScales
5https://github.com/deep-symbolic-mathematics/

TPSR

Parameter Value
temperature 1.0

top_p 0.9
top_k 60

num_beams 1
max_new_tokens 512

Table 5: Sampling parameters for the LLMs.

C Prompts

The prompt used to generate the seed functions is
reported in Figure 5, while the prompt used during
the optimization loop is reported in Figure 6 and
the one used for the random guessing baseline is
reported in Figure 7. For the ICSR-V extension
presented in Appendix A we add a brief description
of the provided plots as well as the image.

D Benchmark functions

The list of functions and point ranges for all the
benchmarks can be found in Table 6. The range
for training and testing points was taken from the
original source where available. Nguyen and Con-
stant do not include a range for the testing points,
so we used the same range as the training points
but with more sample points. U[min, max, num]
indicates points randomly sampled from a uniform
distribution between the min and max values, while
[min, max, num] indicates a range of equispaced
points from min to max. The training points are
sampled from U[min, max, num] once and then
kept fixed across the random seeds and all tested
methods to ensure consistency.

E Sample results

We present a sample of one solution for each func-
tion in the benchmarks found by our method, to
qualitatively investigate the generated expressions.
The observations are seen in blue, the true function
is seen in red and the model’s guess is seen in green
(Figures 8, 9, and 10 and 11). Some of the failures
of the models are apparent: in areas where there is a
low density of training points the model sometimes
makes guesses that ignore the overall trend, as seen,
for example, in the R3 equation (Figure 10). The
Keijzer benchmark is also much harder in the last
5 equations, with only 20 randomly sampled points
to cover a complex 2D space, which can lead to
some failures (e.g., in Keijzer 14).

440

https://github.com/trevorstephens/gplearn
https://github.com/dso-org/deep-symbolic-optimization
https://github.com/dso-org/deep-symbolic-optimization
https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
https://github.com/deep-symbolic-mathematics/TPSR
https://github.com/deep-symbolic-mathematics/TPSR

I want you to act as a mathematical function generator. Given a set of points below, you are to come up with 5 potential
functions that would fit the points. Don’t worry too much about accuracy: your task is to generate a set of functions that
are as diverse as possible, so that they can serve as starting points for further optimization.
To generate the functions, you will start from a set of basic operators and expressions, and combine them into something
more complex.
Your options are:
- An independent variable symbol: x.
- A coefficient symbol: c (there is no need to write a number - write this generic coefficient instead).
- Basic operators: +, -, *, /, ,̂ sqrt, exp, log, abs
- Trigonometric expressions: sin, cos, tan, sinh, cosh, tanh
Make sure there are no numbers in the functions, use the coefficient token ’c’ instead. Analyze the points carefully: if
there are any negative points in the input, sqrt and log can not be used unless the input is combined with abs.
The functions should all begin with the indicators "f1(x) = ", "f2(x) = "... Your task is to combine an arbitrary number of
these basic blocks to create a complex expression. Don’t be afraid to be creative and experiment! The functions should
be as complex as possible, combining many different operations. Variety is key!
Points: {points}
Functions:

Figure 5: Prompt used to generate the seed functions.

I want you to act as a mathematical function generator. You are given a set of points with (x, y) coordinates below:
{points}
Below are some previous functions and the error they make on the points above. The errors are arranged in order of their
fit values, with the highest values coming first, and lower is better.
Your task is to give me a list of five new potential functions that are different from all the ones reported below, and have a
lower error value than all of the functions below. Only output the new functions and nothing else.
Remember that the functions you generate should always have at most {num_variables} variables {variables_list}.
The functions should have parametric form, using ’c’ in place of any constant or coefficient. The coefficients will be
optimized to fit the data. Make absolutely sure that the functions you generate are completely different from the ones
already given to you.
The functions should all begin with the indicators "f1(x) = ", "f2(x) = "...
Remember that you can combine the simple building blocks (operations, constants, variables) in any way you want to
generate more complex functions. Don’t be afraid to experiment!
{previous_trajectory}

Figure 6: Prompt used during the optimization loop.

Generate five random functions of the form Function: f(x). The functions you generate should always have at most
{num_variables} variables {variables_list}. Only output the functions and nothing else.

Figure 7: Prompt used for the random guessing baseline.

441

Experiment Function Train Points Test Points

nguyen1 x3 + x2 + x U [−1, 1, 20] [−1, 1, 200]
nguyen2 x4 + x3 + x2 + x U [−1, 1, 20] [−1, 1, 200]
nguyen3 x5 + x4 + x3 + x2 + x U [−1, 1, 20] [−1, 1, 200]
nguyen4 x6 + x5 + x4 + x3 + x2 + x U [−1, 1, 20] [−1, 1, 200]
nguyen5 sin(x2) · cos(x)− 1 U [−1, 1, 20] [−1, 1, 200]
nguyen6 sin(x) + sin(x+ x2) U [−1, 1, 20] [−1, 1, 200]
nguyen7 log(x+ 1) + log(x2 + 1) U [0, 2, 20] [0, 2, 200]
nguyen8

√
x U [0, 4, 20] [0, 4, 200]

nguyen9 sin(x1) + sin(x22) U [[−1,−1], [1, 1], 100] [[−1,−1], [1, 1], 500]
nguyen10 2 · sin(x1) · cos(x2) U [[−1,−1], [1, 1], 100] [[−1,−1], [1, 1], 500]
nguyen11 xx2

1 U [[0, 0], [1, 1], 100] [[0, 0], [1, 1], 500]
nguyen12 x41 − x31 +

1
2 · x22 − x2 U [[−1,−1], [1, 1], 100] [[−1,−1], [1, 1], 500]

constant1 3.39x3 + 2.12x2 + 1.78x U [−1, 1, 20] [−1, 1, 200]
constant2 sin(x2) · cos(x)− 0.75 U [−1, 1, 20] [−1, 1, 200]
constant3 sin(1.5x1) · cos(0.5x2) U [[−1,−1], [1, 1], 100] [[−1,−1], [1, 1], 500]
constant4 2.7xx2

1 U [[0, 0], [1, 1], 100] [[0, 0], [1, 1], 500]

constant5
√
1.23x U [0, 4, 20] [0, 4, 200]

constant6 x0.426 U [0, 4, 20] [0, 4, 200]
constant7 2 sin(1.3x1) + cos(x2) U [[−1,−1], [1, 1], 100] [[−1,−1], [1, 1], 500]
constant8 ln(x+ 1.4) + ln(x2 + 1.3) U [0, 2, 20] [0, 2, 200]

keijzer3 0.3x · sin(2πx) U [−1, 1, 100] [−1, 1, 10000]
keijzer4 x3 · exp(−x) · cos(x) sin(x) ·

(sin(x)2 · cos(x)− 1)
[0, 10, 200] [0.05, 10.05, 200]

keijzer6 (x · (x+ 1))/2 U [−1, 1, 50] [−1, 1, 100]
keijzer7 ln(x) U [1, 100, 100] [1, 100, 1000]
keijzer8

√
x U [0, 100, 100] [0, 100, 1000]

keijzer9 ln(x+
√
x2 + 1) U [0, 100, 100] [0, 100, 1000]

keijzer10 xx2
1 U [0, 1, 100] [0, 1, 1000]

keijzer11 x1 · x2 + sin((x1 − 1) · (x2 − 1)) U [−3, 3, 20] [−3, 3, 1000]

keijzer12 x41 − x31 +
(x2

2)
2 − x2 U [−3, 3, 20] [−3, 3, 1000]

keijzer13 6 · sin(x1) · cos(x2) U [−3, 3, 20] [−3, 3, 1000]
keijzer14 8/(2 + x21 + x22) U [−3, 3, 20] [−3, 3, 1000]

keijzer15 x3
1
5 +

x3
2
2 − x2 − x1 U [−3, 3, 20] [−3, 3, 1000]

R1 (x+ 1)3/(x2 − x+ 1) U [−1, 1, 20] [−1, 1, 20]
R2 (x5 − 3 · x3 + 1)/(x2 + 1) U [−1, 1, 20] [−1, 1, 20]
R3 (x6 + x5)/(x4 + x3 + x2 + x+ 1) U [−1, 1, 20] [−1, 1, 20]

Table 6: Functions and point ranges for all benchmarks.

442

nguyen1 - 0.9998 nguyen2 - 0.9992 nguyen3 - 0.9999 nguyen4 - 0.9990

nguyen5 - 0.9829 nguyen6 - 0.9991 nguyen7 - 0.9991 nguyen8 - 1.0000

nguyen9 - 0.9991 nguyen10 - 0.9999 nguyen11 - 0.9999 nguyen12 - 0.9984

Figure 8: ICSR Results for the Nguyen benchmark for the random seed 1.

constant1 - 0.9994 constant2 - 0.9994 constant3 - 0.9987 constant4 - 0.9999

constant5 - 1.0000 constant6 - 0.9999 constant7 - 1.0000 constant8 - 0.9991

Figure 9: ICSR Results for the Constant benchmark for the random seed 1.

443

R1 - 0.9987 R2 - 0.9992 R3 - 0.9905

Figure 10: ICSR Results for the R benchmark for the random seed 1.

keijzer3 - 0.9990 keijzer4 - 0.8528 keijzer6 - 0.9999 keijzer7 - 1.0000

keijzer8 - 1.0000 keijzer9 - 0.9999 keijzer10 - 0.9802 keijzer11 - 0.9542

keijzer12 - 0.9840 keijzer13 - 1.0000 keijzer14 - 0.9895 keijzer15 - 0.9848

Figure 11: ICSR Results for the Keijzer benchmark for the random seed 1.

444

