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Abstract

Instruction tuning significantly enhances the
performance of large language models (LLMs)
across various tasks. However, the procedure
to optimizing the mixing of instruction datasets
for LLM fine-tuning is still poorly understood.
This study categorizes instructions into three
primary types: NLP downstream tasks, cod-
ing, and general chat. We explore the effects
of instruction tuning on different combinations
of datasets on LLM performance, and find that
certain instruction types are more advantageous
for specific applications but can negatively im-
pact other areas. This work provides insights
into instruction mixtures, laying the founda-
tions for future research.1

1 Introduction

Instruction tuning has been shown to have surpris-
ing efficacy for aligning large language models
(LLMs) with human instructions (Chung et al.,
2022; Li et al., 2023; Wu et al., 2023; Xu et al.,
2023; Touvron et al., 2023; Muennighoff et al.,
2023a; Gunasekar et al., 2023). Recent studies
highlight the diverse ways in which instructions
can enhance the different capabilities of LLMs.
For instance, using general-purpose, chat-like in-
structions can improve the performance of LLMs
as chat assistants (Chiang et al., 2023; Ouyang
et al., 2022; Taori et al., 2023; Ding et al., 2023),
while training LLMs on instructions based off NLP
tasks improves their performance on NLP bench-
marks (Sanh et al., 2022; Chung et al., 2022; Muen-
nighoff et al., 2023b), and incorporating coding
instructions enhances LLM code generation (Fu
and Khot, 2022; Gunasekar et al., 2023). However,
a key unresolved issue is determining how to com-
bine various instruction datasets to optimize overall
LLM performance.

1Code and data are available at: https://github.com/
Reason-Wang/InstructLLM.

P3 Alpaca

Figure 1: Instruction type distribution of P3 and Alpaca.
For P3, the statistics come from the original dataset,
while for Alpaca, we use a dependency parsing approach
to extract the root verb of each instruction.

In this paper, we aim to better understand the
impact of instruction mixing across three critical
areas: NLP downstream tasks, coding, and chat.
The core of our investigation revolves around un-
derstanding the influence of instruction dataset dis-
tributions on model performance in these differ-
ent areas. We first select representative instruction
datasets: P3 (Sanh et al., 2022) for NLP down-
stream tasks, CodeAlpaca (Chaudhary, 2023) for
code generation, and Alpaca (Taori et al., 2023) for
general-purpose instructions. As shown in Figure 1,
P3 is focused primarily on five tasks (including
QA and classification), whereas Alpaca contains
a vast array of instructions. Using a dependency
parser, we identify over 1K unique root verbs from
Alpaca’s instructions, with generate, create, and
describe being the most frequent. CodeAlpaca, by
contrast, is exclusively focused on coding tasks,
and exhibits less variation compared to the others
as exemplified in Table 3. We fine-tune models
across all eight potential combinations of these in-
struction datasets, and carry out detailed evaluation
of model performance in terms of NLP downstream
tasks, coding proficiency, and chat capabilities.

Our main contribution in this work is to shed
light on instruction mixing when fine-tuning LLMs
through comprehensive experimentation. Our find-
ings can be summarized as follows:
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• Specific instruction datasets enhance LLM
performance in their respective task areas.
However, combining all instruction types does
not uniformly improve performance across all
tasks.

• Instructions reformulated from NLP down-
stream tasks (such as P3) can negatively im-
pact the model’s conversational abilities. In
contrast, instructions focused on coding not
only improve coding proficiency but also en-
hance chat capabilities.

• Larger models, with their increased capacity,
are able to make more effective use of a di-
verse range of instructions.

2 Related Work

Recent work has demonstrated that vanilla LLMs
can follow general instructions if tuned with in-
structions and corresponding responses (Mishra
et al., 2022; Sanh et al., 2022; Wang et al., 2022).
For instance, Sanh et al. (2022) crafted an instruc-
tional dataset by reformulating supervised datasets
with various prompts to create P3. However, de-
spite their effectiveness in NLP tasks, these LLMs
often diverge from human-like interactions in chat-
bot applications.

To facilitate general-purpose LLM fine-tuning,
researchers has create general-purpose instruc-
tional data by human annotation (Conover et al.,
2023) and automatic approaches (Wang et al.,
2023b; Taori et al., 2023). Recent work has fur-
ther expanded the dataset size (Wu et al., 2023),
language coverage (Li et al., 2023), and task types
(Chaudhary, 2023; Yue et al., 2023).

With increasing capabilities of LLMs and avail-
ability of instruction datasets, researchers have
aimed to imbue a single model with diverse ca-
pabilities. Sengupta et al. (2023) attempted to
blend different instruction datasets without con-
sidering the data volume and task types. Longpre
et al. (2023) suggested that increasing the num-
ber of tasks and instruction diversity can enhance
performance. In contrast, Anand et al. (2023) ex-
cluded P3 from their fine-tuning dataset, seemingly
to enhance alignment. Nevertheless, none of these
papers systematically studied the impact of the in-
struction mixture on the resulting LLM.

Concurrent to our work, Wang et al. (2023a)
fine-tuned LLaMA models on 12 instruction-tuning
datasets separately. By evaluating those model on 7

tasks, they found that different datasets can enhance
model performance on individual tasks. They fur-
ther identified the optimal dataset combination, and
trained a single model to achieve the best overall
performance. Novel to this work, we classify the
instructions and model skills into three types, and
conduct a deep analysis of the influence of data
mixture on the models.

3 Experimental Setup

Datasets We select Alpaca (Taori et al., 2023) as
the general instruction dataset to align models, in
the form of 52K instruction–response pairs. We
use P3 (Sanh et al., 2022) as our NLP task instruc-
tion dataset, which is reformatted for a wide range
of NLP downstream tasks using diverse human-
written templates. Since the number of samples in
each task varies vastly, we randomly sample 1K
instances from each subtask formatted with sev-
eral corresponding prompts for diversity, resulting
in 660K samples. For coding data, we choose
CodeAlpaca (Chaudhary, 2023), which is an in-
struction dataset focusing on code generation. It
contains 20K samples in different programming
languages. To ensure a balanced comparison, we
randomly sample a 20K subset from each dataset.
Examples are provided in Table 3 in the Appendix.

Evaluation We divide the evaluation into three
parts: NLP benchmark performance, code gen-
eration, and alignment evaluation (i.e., chat abil-
ity evaluation). For NLP benchmarks, we use
ARC (Clark et al., 2018), Winogrande (Sakaguchi
et al., 2021), PIQA (Bisk et al., 2020), MMLU
(Hendrycks et al., 2020), RACE (Lai et al., 2017),
and HellaSwag (Zellers et al., 2019). For coding,
we use HumanEval (Chen et al., 2021), which tests
the pass rate of the generate codes. For alignment
evaluation, we use the FLASK (Ye et al., 2023)
framework to score model alignment. We keep
the eight most frequent alignment skills from the
original evaluation set, resulting in 1,180 samples.
Then we employ GPT-4 to assess model responses
to each instruction sample based on human-written
principles. See Appendix B for details of these
skills.

Models We fine-tune LLaMA-2 7B and 13B
(Touvron et al., 2023) models for two epochs in
a generative way as in Radford et al. (2018), using
a linear scheduler with a 3% warmup rate and a
batch size of 64. The maximum learning rate is
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Model Data ARC Wino- PIQA MMLU Race Hella- Average HumanEval
(challenge) grande Swag @1 @10

LLaMA-2-7B

None 43.1 69.5 78.0 40.8 39.2 57.2 54.6 13.7 21.3
A 47.8 67.6 78.2 42.2 44.5 61.1 56.9 13.5 17.1
C 46.1 69.5 78.5 41.0 41.1 61.0 56.2 16.2 24.4
P 49.6 71.4 79.0 46.0 43.5 59.4 58.2 4.6 7.9
AC 47.1 66.9 78.1 40.4 44.2 59.7 56.1 17.5 25.0
AP 48.4 70.0 78.1 43.8 42.9 58.5 56.9 13.8 17.7
CP 48.0 71.3 78.4 44.9 44.4 60.7 57.9 16.8 20.1
ACP 49.7 68.0 77.9 43.5 44.6 58.7 57.1 16.0 23.8

LLaMA-2-13B

None 48.6 71.9 79.2 52.1 40.7 60.1 58.8 15.4 26.2
A 54.1 71.2 80.0 47.9 47.1 65.6 61.0 15.1 20.7
C 49.7 73.4 80.8 51.5 45.4 63.6 60.7 17.9 24.4
P 54.3 74.2 80.0 50.3 45.6 62.5 61.1 0.3 1.8
AC 51.6 68.8 80.6 48.7 44.4 63.0 59.5 17.1 27.4
AP 54.8 71.7 80.3 51.2 45.2 62.7 61.0 8.3 14.6
CP 55.4 74.6 80.5 51.4 45.6 63.9 61.9 18.2 25.0
ACP 54.4 71.5 80.0 50.0 47.1 63.1 61.0 20.2 32.9

Table 1: Results on NLP and code generation benchmarks. All experiments are done in a zero-shot setting. The best
result is in bold, and the second best result is underlined.
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Figure 2: NLP benchmark scores (avg) and Code bench-
mark (HumanEval) scores for LLaMA-2-7B tuned with
different mixing ratios and different numbers of in-
stances. We keep the number of Alpaca instances con-
stant at 20K and change the number of P3 and CodeAl-
paca instances to get different ratios.

5 × 10−5. The resources for training and evalua-
tions are detailed in Appendix C.

4 Results

For the remainder of this paper, we denote the Al-
paca, CodeAlpaca, and P3 datasets as A, C, P, re-
spectively. For each model, we compare eight dif-
ferent data mixing strategies, denoted as None, A,
C, P, AC, AP, CP, ACP, where None represents
the vanilla model without fine-tuning, and each of
the other settings represents the model fine-tuned
with the corresponding dataset. For example, AC
means the model is fine-tuned with both Alpaca
and CodeAlpaca.

4.1 NLP Tasks and Code Benchmark Results

Table 1 shows the zero-shot results on the NLP
and code generation benchmarks. Predictably each
specialized instruction dataset improves the perfor-
mance on the benchmarks they are designed for.
In the no-mixture setting (comparing A, C, and P),
models fine-tuned on P3 achieve the highest aver-
age score for NLP tasks, while models fine-tuned
on CodeAlpaca excel in code generation bench-
marks. Examining specific tasks reveals that a
model’s performance on a specific task heavily re-
lies on the similarity between the target task and
the tasks it was fine-tuned on. For instance, Alpaca
fine-tuned models excel in Race and HellaSwag,
which involve the story completion task, similar to
the Alpaca instruction format. On the other hand,
P3 fine-tuned models perform well on ARC and
Winogrande, which involve multiple-choice QA
and cloze tests, which are well represented in P3.

In the mixture setting, it’s evident that including
specialized data consistently boosts model perfor-
mance in corresponding benchmarks compared to
models without such data. For example, P, PA,
PC, and PCA perform better than None, A, C, and
CA on NLP downstream tasks. Focusing on the
code benchmarks, incorporating general instruc-
tions consistently improves coding performance.
For the 7B model, AC improves performance by
+1.28 and +0.61 compared to C, while the im-
provements are −0.80 (outlier) and +3.05 for the
13B models. Another interesting finding is that the
13B models perform best with the ACP mixture,
while the 7B models perform best with AC. This
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Model Data Corr. Fact. Comm. Compr. Compl. Insight. Read. Conc. Avg.

LLaMA-2-7B

A 47.6 55.4 58.8 54.8 48.0 50.4 88.0 81.6 60.6
C 48.8 52.0 58.4 52.0 40.2 46.2 83.8 78.4 57.4
P 47.2 40.0 48.8 38.4 29.0 30.4 64.4 68.6 45.8
AC 49.0 54.4 59.6 56.4 48.2 49.8 86.6 85.6 61.2
AP 48.4 51.4 57.6 52.6 45.0 46.0 84.2 80.8 58.2
CP 47.0 49.6 54.2 48.8 36.2 41.8 78.2 77.2 54.2
ACP 50.4 53.0 59.0 53.8 47.2 46.8 85.0 81.8 59.6

LLaMA-2-13B

A 53.6 58.8 63.8 60.0 47.6 55.2 89.2 84.0 64.0
C 57.2 58.8 61.0 57.8 43.8 52.4 85.6 82.2 62.4
P 49.4 42.4 51.8 42.0 28.2 32.0 66.8 70.4 47.8
AC 55.6 61.0 66.6 61.2 51.4 54.0 88.4 86.6 65.6
AP 53.0 55.4 60.6 56.2 47.0 48.0 85.0 83.4 61.0
CP 53.0 53.2 57.4 53.4 39.0 45.2 81.2 82.6 58.2
ACP 51.6 55.6 61.8 57.0 47.0 48.6 87.0 83.0 61.4

Table 2: GPT-4 evaluation results on alignment skill assessment. We report eight dimensions: logical correctness,
factuality, commonsense understanding, comprehension, completeness, insightfulness, readability, and conciseness,
as well as average scores. Since the vanilla model cannot follow instructions, we exclude it from this table. The best
result is in bold, and the second best result is underlined.

suggests that larger models can better learn from
varied instructions more effectively than smaller
models.

These findings highlight the importance of con-
sidering model size and target usage when design-
ing the instruction mixture.

Mixing with Different Ratios While it is clear
that mixing specialized instructions is vital for
benchmark performance, how the mixing ratio cor-
relates with the performance is also important. As
Figure 2 shows, with the number of general instruc-
tions fixed to 20K, scores in both NLP task and
code benchmarks first decrease and then increase
as the ratio of specialized instructions increases.
They both peak when the ratio is 1.5, and drop
back slightly when the ratio is increased further to
2.0. We hypothesize that this is because the model
overfits to the specialized instructions when there
are too many such instructions.

Number of instances Figure 2 also shows the
performance change with respect to the number of
fine-tuning data instances. We mix each type of
instruction with the same number. We find that the
performance over both benchmarks plateaus when
the number of instances is larger than 10K.

4.2 Alignment Skill Results
Table 2 shows the alignment skills results.
We adopt the same setup as FLASK, using
GPT-4-0613 to access the alignment skills and scal-
ing the scores to the range [0, 100].

From Table 2 we make the following observa-
tions: (1) All three types of instructions improve

model alignment compared to the vanilla LLM.
Among these instructions, Alpaca stands out as
the most effective. It contains general-purpose in-
structions and human-like responses, making it a
better fit for aligning models with humans. (2)
While CodeAlpaca alone doesn’t notably enhance
alignment abilities, combining it with general in-
structions results in a substantial improvement of
+0.6 (7B) and +1.6 (13B) points; these improve-
ments are mainly due to better compression, com-
monsense understanding, completeness, and con-
ciseness. (3) Mixing P3 data causes a drop of −2.8
(7B) and −3.6 (13B) in alignment skills, suggesting
that P3 has a negative impact on fine-tuning chatbot
LLMs.

5 Conclusion

In this paper, we investigated different data mixing
strategies in instruction fine-tuning. We measured
models against diverse benchmarks and alignment
skills. We find that general instructions provide
better alignment as well as performance on NLP
benchmarks, code instructions improve coding and
alignment skills, while NLP task instructions hin-
der alignment skills when combined with other
instruction types.

Limitations

Our work is subject to several limitations that
should be addressed in future research. (1) We
only use LLaMA-2 7B and 13B models in our ex-
periments. Other models of varying sizes should
be used to further verify our findings. We acknowl-
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edge that the model’s behavior may vary with dif-
ferent sizes, and that usually, larger models have
stronger capabilities, and hence may be able to han-
dle more instructions without performance degra-
dation. (2) In this paper, we limit our instruction
dataset to 20K and mainly compare the 1:1 ratio of
all instruction types. We leave the exploration of
the impact of more instructions and mixing ratios
to future work.

We acknowledge these limitations and propose
that future work should focus on addressing them
to help the community better understand the impact
of instruction mixture on LLMs.
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A Examples of Instruction Types

Table 3 list examples from Alpaca, CodeAlpaca,
and P3 dataset.

B Alignment Skills Demonstration

The FLASK framework annotates each instruction
with three skills that is needed to respond to the
instruction. We select 8 most frequent skills and
filter out instructions annotated with other skills, re-
sulting 1,180 instructions in the evaluation set. The
following are demonstrations of each alignment
skill from the annotation prompt.

Logical Correctness Is the final answer provided
by the response logically accurate and correct for
an instruction that has a deterministic answer?

Factuality Did the model extract pertinent and
accurate background knowledge without any mis-
information when factual knowledge retrieval is
needed? Is the response supported by reliable evi-
dence or citation of the source of its information?

Commonse Understanding Is the model accu-
rately interpreting world concepts for instructions
that require a simulation of the expected result or
necessitate commonsense or spatial reasoning?

Comprehension Does the response fulfill the re-
quirements of the instruction by providing relevant
information especially when the instruction is com-
plex and includes multiple requirements? This in-
cludes responding in accordance with the explicit
and implicit purpose of given instruction.

Completeness Does the response provide a suf-
ficient explanation? Comprehensiveness and thor-
oughness of the response should be considered,
which depends on the breadth of topics covered
and the level of detail provided within each topic.

Insightfulness Is the response creative, original
or novel, including new perspectives or interpreta-
tions of existing information?

Readability Is the response structured to pro-
mote readability and coherence? Does the response
exhibit excellent organization?

Conciseness Is the response presented in a con-
cise manner for the reader without any unnecessary
information?

The prompt for alignment skill assessment are
provided in Figure 3. For how a response corre-
sponds to a specific level of an alignment skill and
other details, please refer to their repository.2

C Resources

We use 4×A100 to train LLaMA-2-7B and
8×A100 to train LLaMA-2-13B. Each 20k data
takes about 2 hours. For all experiments, training
takes about 288 A100 GPU hours.

For evaluation, we use GPT-4, where each input
has an average of 950 tokens and each output has an
average of 293 tokens. All evaluations cost about
$760.

2https://github.com/kaistAI/FLASK
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Source Example

Alpaca Instruction: List 5 reasons why someone should learn to code.
Response: 1. High demand for coding skills in the job market \n2. Increased problem-
solving and analytical skills \n3. Ability to develop new products and technologiesn \n4.
Potentially higher earning potential \n5. Opportunity to work remotely and/or freelance

CodeAlpaca Instruction: Write a function to find the number of distinct states in a given matrix.
Input: matrix = [[1, 0, 0],\n [1, 0, 1],\n [1, 1, 1]]
Response: def find_num_distinct_states(matrix):\n states = set()\n for row in matrix:\n
state = "".join([str(x) for x in row])\n states.add(state)\n return len(states)

P3 Instruction: Answer the following question.\nAnna Kournikova, Michelangelo,
ILOVEYOU, Melissa, and Stuxnet are all examples of what?
Response: Computer virus/worm

Table 3: Examples from Alpaca, CodeAlpaca, and P3.

[System]

We would like to request your feedback on the performance of the response of the assistant to the user instruction
displayed below. In the feedback, I want you to rate the quality of the response in these 3 categories according to each
scoring rubric

Skill 1 definition
Skill 1 scoring principles

Skill 2 definition
Skill 2 scoring principles

Skill 3 definition
Skill 3 scoring principles

[Instruction]
instruction

[Ground Truth Answer]
ground truth answer

[Assistant’s Response]
response for evaluation

[The End of Assistant’s Response]

Please give feedback on the assistant’s responses. Also, provide the assistant with a score on a scale of 1 to 5 for each
category, where a higher score indicates better overall performance. Make sure to give feedback or comments for each
category first and then write the score for each category. Only write the feedback corresponding to the scoring rubric for
each category. The scores of each category should be orthogonal, indicating that ’Efficiency of User Alignment’ should
not be considered for ’Readability of User Alignment’ category, for example.

Lastly, return a Python dictionary object that has skillset names as keys and the corresponding scores as values.

[System]

Figure 3: Alignment skill assessment prompt (from FLASK (Ye et al., 2023)). The blue parts are filled by
corresponding content.
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