
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15174–15186
August 11-16, 2024 ©2024 Association for Computational Linguistics

ChatDev: Communicative Agents for Software Development

Chen Qian⋆ Wei Liu⋆ Hongzhang Liu♠ Nuo Chen⋆ Yufan Dang⋆

Jiahao Li⋆ Cheng Yang♣ Weize Chen⋆ Yusheng Su⋆ Xin Cong⋆

Juyuan Xu⋆ Dahai Li♦ Zhiyuan Liu⋆B Maosong Sun⋆B

⋆Tsinghua University ♠The University of Sydney ♣BUPT ♦Modelbest Inc.
qianc62@gmail.com liuzy@tsinghua.edu.cn sms@tsinghua.edu.cn

Abstract

Software development is a complex task that
necessitates cooperation among multiple mem-
bers with diverse skills. Numerous studies used
deep learning to improve specific phases in a
waterfall model, such as design, coding, and
testing. However, the deep learning model
in each phase requires unique designs, lead-
ing to technical inconsistencies across various
phases, which results in a fragmented and in-
effective development process. In this paper,
we introduce ChatDev, a chat-powered soft-
ware development framework in which special-
ized agents driven by large language models
(LLMs) are guided in what to communicate
(via chat chain) and how to communicate (via
communicative dehallucination). These agents
actively contribute to the design, coding, and
testing phases through unified language-based
communication, with solutions derived from
their multi-turn dialogues. We found their uti-
lization of natural language is advantageous
for system design, and communicating in pro-
gramming language proves helpful in debug-
ging. This paradigm demonstrates how linguis-
tic communication facilitates multi-agent col-
laboration, establishing language as a unify-
ing bridge for autonomous task-solving among
LLM agents. The code and data are available
at https://github.com/OpenBMB/ChatDev.

1 Introduction

Large language models (LLMs) have led to sub-
stantial transformations due to their ability to ef-
fortlessly integrate extensive knowledge expressed
in language (Brown et al., 2020; Bubeck et al.,
2023), combined with their strong capacity for role-
playing within designated roles (Park et al., 2023;
Hua et al., 2023; Chen et al., 2023b). This ad-
vancement eliminates the need for model-specific
designs and delivers impressive performance in

B: Corresponding Author.

main()

DocsCodes

SoftwareDevelop a
Gomoku game

Figure 1: ChatDev, a
:::
chat-powered software

:::
development framework, integrates LLM agents with
various social roles, working autonomously to develop
comprehensive solutions via multi-agent collaboration.

diverse downstream applications. Furthermore,
autonomous agents (Richards, 2023; Zhou et al.,
2023a) have gained attention for enhancing the ca-
pabilities of LLMs with advanced features such as
context-aware memory (Sumers et al., 2023), multi-
step planning (Liu et al., 2023), and strategic tool
using (Schick et al., 2023).

Software development is a complex task that ne-
cessitates cooperation among multiple members
with diverse skills (e.g., architects, programmers,
and testers) (Basili, 1989; Sawyer and Guinan,
1998). This entails extensive communication
among different roles to understand and analyze
requirements through natural language, while also
encompassing development and debugging using
programming languages (Ernst, 2017; Banker et al.,
1998). Numerous studies use deep learning to im-
prove specific phases of the waterfall model in soft-
ware development, such as design, coding, and test-
ing (Pudlitz et al., 2019; Martín and Abran, 2015;

15174

mailto:qianc62@gmail.com
mailto:liuzy@tsinghua.edu.cn
mailto:sms@tsinghua.edu.cn
https://github.com/OpenBMB/ChatDev

Gao et al., 2019; Wang et al., 2016). Due to these
technical inconsistencies, methods employed in
different phases remain isolated until now. Every
phase, from data collection and labeling to model
training and inference, requires its unique designs,
leading to a fragmented and less efficient devel-
opment process in the field (Freeman et al., 2001;
Ernst, 2017; Winkler et al., 2020).

Motivated by the expert-like potential of au-
tonomous agents, we aim to establish language as a
unifying bridge—utilizing multiple LLM-powered
agents with specialized roles for cooperative soft-
ware development through language-based com-
munication across different phases; solutions in
different phases are derived from their multi-turn
dialogues, whether dealing with text or code. Nev-
ertheless, due to the tendency of LLM hallucina-
tions (Dhuliawala et al., 2023; Zhang et al., 2023b),
the strategy of generating software through com-
municative agents could lead to the non-trivial chal-
lenge of coding hallucinations, which involves the
generation of source code that is incomplete, unex-
ecutable, or inaccurate, ultimately failing to fulfill
the intended requirements (Agnihotri and Chug,
2020). The frequent occurrence of coding halluci-
nation in turn reflects the constrained autonomy of
agents in task completion, inevitably demanding
additional manual intervention and thereby hinder-
ing the immediate usability and reliability of the
generated software (Ji et al., 2023).

In this paper, we propose ChatDev (see Figure 1),
a

:::
chat-powered software-

:::
development framework

integrating multiple "software agents" for active
involvement in three core phases of the software
lifecycle: design, coding, and testing. Technically,
ChatDev uses a chat chain to divide each phase
into smaller subtasks further, enabling agents’
multi-turn communications to cooperatively pro-
pose and develop solutions (e.g., creative ideas
or source code). The chain-structured workflow
guides agents on what to communicate, foster-
ing cooperation and smoothly linking natural- and
programming-language subtasks to propel problem-
solving. Additionally, to minimize coding halluci-
nations, ChatDev includes an communicative de-
hallucination mechanism, enabling agents to ac-
tively request more specific details before giving
direct responses. The communication pattern in-
structs agents on how to communicate, enabling
precise information exchange for effective solu-
tion optimization while reducing coding hallucina-
tions. We built a comprehensive dataset containing

software requirement descriptions and conducted
comprehensive analyses. The results indicate that
ChatDev notably improves the quality of software,
leading to improved completeness, executability,
and better consistency with requirements. Further
investigations reveal that natural-language com-
munications contribute to comprehensive system
design, while programming-language communica-
tions drive software optimization. In summary, the
proposed paradigm demonstrates how linguistic
communication facilitates multi-agent collabora-
tion, establishing language as a unifying bridge for
autonomous task-solving among LLM agents.

2 Related Work

Trained on vast datasets to comprehend and ma-
nipulate billions of parameters, LLMs have be-
come pivotal in natural language processing due
to their seamless integration of extensive knowl-
edge (Brown et al., 2020; Bubeck et al., 2023;
Vaswani et al., 2017; Radford et al.; Touvron et al.,
2023; Wei et al., 2022a; Shanahan et al., 2023;
Chen et al., 2021; Brants et al., 2007; Chen et al.,
2021; Ouyang et al., 2022; Yang et al., 2023a;
Qin et al., 2023b; Kaplan et al., 2020). Further-
more, LLMs have demonstrated strong role-playing
abilities (Li et al., 2023a; Park et al., 2023; Hua
et al., 2023; Chan et al., 2023; Zhou et al., 2023b;
Chen et al., 2023b,a; Cohen et al., 2023; Li et al.,
2023b). Recent progress, particularly in the field
of autonomous agents (Zhou et al., 2023a; Wang
et al., 2023a; Park et al., 2023; Wang et al., 2023e;
Richards, 2023; Osika, 2023; Wang et al., 2023d),
is largely attributed to the foundational advances
in LLMs. These agents utilize the robust capa-
bilities of LLMs, displaying remarkable skills in
memory (Park et al., 2023; Sumers et al., 2023),
planning (Chen et al., 2023b; Liu et al., 2023) and
tool use (Schick et al., 2023; Cai et al., 2023; Qin
et al., 2023a; Ruan et al., 2023; Yang et al., 2023b),
enabling them to reason in complex scenarios (Wei
et al., 2022b; Zhao et al., 2023; Zhou et al., 2023a;
Ma et al., 2023; Zhang et al., 2023a; Wang et al.,
2023b; Ding et al., 2023; Weng, 2023).

Software development is a multifaceted and in-
tricate process that requires the cooperation of mul-
tiple experts from various fields (Yilmaz et al.,
2012; Acuna et al., 2006; Basili, 1989; Sawyer
and Guinan, 1998; Banker et al., 1998; France
and Rumpe, 2007), encompassing the require-
ment analysis and system design in natural lan-

15175

{ideas} {code} {code} {code}{task} {code}

Instructor

Assistant

Phases

CEO

CTO

CTO

Programmer

CTO

Programmer

Reviewer

Programmer

Tester

Programmer

Subtasks

Design Coding Testing

Design

Chat Chain

Coding Code
Complete

Code
Review Testing

Figure 2: Upon receiving a preliminary task requirement (e.g., “develop a Gomoku game”), these software
agents engage in multi-turn communication and perform instruction-following along a chain-structured workflow,
collaborating to execute a series of subtasks autonomously to craft a comprehensive solution.

guages (Pudlitz et al., 2019; Martín and Abran,
2015; Nahar et al., 2022), along with system de-
velopment and debugging in programming lan-
guages (Gao et al., 2019; Wang et al., 2016; Wan
et al., 2022). Numerous studies employ the wa-
terfall model, a particular software development
life cycle, to segment the process into discrete
phases (e.g., design, coding, testing) and apply
deep learning to improve the effectiveness of cer-
tain phases (Winkler et al., 2020; Ezzini et al., 2022;
Thaller et al., 2019; Zhao et al., 2021; Nijkamp
et al., 2023; Wan et al., 2018; Wang et al., 2021).

3 ChatDev

We introduce ChatDev, a
::::
chat-powered software-

:::
development framework that integrates multiple
"software agents" with various social roles (e.g.,
requirements analysts, professional programmers
and test engineers) collaborating in the core phases
of the software life cycle, see Figure 1. Technically,
to facilitate cooperative communication, ChatDev
introduces chat chain to further break down each
phase into smaller and manageable subtasks, which
guides multi-turn communications between differ-
ent roles to propose and validate solutions for each
subtask. In addition, to alleviate unexpected hallu-
cinations, a communicative pattern named commu-
nicative dehallucination is devised, wherein agents
request more detailed information before respond-
ing directly and then continue the next round of
communication based on these details.

3.1 Chat Chain
Although LLMs show a good understanding of nat-
ural and programming languages, efficiently trans-

forming textual requirements into functional soft-
ware in a single step remains a significant challenge.
ChatDev thus adopts the core principles of the wa-
terfall model, using a chat chain (C) with sequential
phases (P), each comprising sequential subtasks
(T). Specifically, ChatDev segments the software
development process into three sequential phases:
design, coding, and testing. The coding phase is
further subdivided into subtasks of code writing
and completion, and the testing phase is segmented
into code review (static testing) and system testing
(dynamic testing), as illustrated in Figure 2. In
every subtask, two agents, each with their own spe-
cialized roles (e.g., a reviewer skilled at identifying
endless loops and a programmer adept in GUI de-
sign), perform the functions of an instructor (I)
and an assistant (A). The instructor agent initiates
instructions, instructing (→) the discourse toward
the completion of the subtask, while the assistant
agent adheres to these instructions and responds
with (;) appropriate solutions. They engage in
a multi-turn dialogue (C), working cooperatively
until they achieve consensus, extracting (τ) solu-
tions that can range from the text (e.g., defining a
software function point) to code (e.g., creating the
initial version of source code), ultimately leading
to the completion of the subtask. The entire task-
solving process along the agentic workflow can be
formulated as:

C = ⟨P1,P2, . . . ,P |C|⟩
P i = ⟨T 1, T 2, . . . , T |Pi|⟩
T j = τ

(
C(I,A)

)

C(I,A) = ⟨I → A, A ; I⟩⟲

(1)

15176

The dual-agent communication design simplifies
communications by avoiding complex multi-agent
topologies, effectively streamlining the consensus-
reaching process (Yin et al., 2023; Chen et al.,
2023b). Subsequently, the solutions from previ-
ous tasks serve as bridges to the next phase, allow-
ing a smooth transition between subtasks. This
approach continues until all subtasks are com-
pleted. It’s worth noting that the conceptually
simple but empirically powerful chain-style struc-
ture guides agents on what to communicate, foster-
ing cooperation and smoothly linking natural- and
programming-language subtasks. It also offers a
transparent view of the entire software development
process, allowing for the examination of intermedi-
ate solutions and assisting in identifying possible
problems.

Agentization To enhance the quality and reduce
human intervention, ChatDev implements prompt
engineering that only takes place at the start of
each subtask round. As soon as the communica-
tion phase begins, the instructor and the assistant
will communicate with each other in an automated
loop, continuing this exchange until the task con-
cludes. However, simply exchanging responses
cannot achieve effective multi-round task-oriented
communication, since it inevitably faces significant
challenges including role flipping, instruction re-
peating, and fake replies. As a result, there is a
failure to advance the progression of productive
communications and hinders the achievement of
meaningful solutions. ChatDev thus employs in-
ception prompting mechanism (Li et al., 2023a)
for initiating, sustaining, and concluding agents’
communication to guarantee a robust and efficient
workflow. This mechanism is composed of the in-
structor system prompt PI and the assistant system
prompt PA. The system prompts for both roles
are mostly symmetrical, covering the overview and
objectives of the current subtask, specialized roles,
accessible external tools, communication protocols,
termination conditions, and constraints or require-
ments to avoid undesirable behaviors. Then, an
instructor I and an assistant A are instantiated by
hypnotizing LLMs via PI and PA:

I = ρ(LLM,PI), A = ρ(LLM,PA) (2)

where ρ is the role customization operation, imple-
mented via system message assignment.

Memory Note that the limited context length of
common LLMs typically restricts the ability to

maintain a complete communication history among
all agents and phases. To tackle this issue, based
on the nature of the chat chain, we accordingly seg-
ment the agents’ context memories based on their
sequential phases, resulting in two functionally dis-
tinct types of memory: short-term memory and
long-term memory. Short-term memory is utilized
to sustain the continuity of the dialogue within a
single phase, while long-term memory is leveraged
to preserve contextual awareness across different
phases.

Formally, short-term memory records an agent’s
current phase utterances, aiding context-aware
decision-making. At the time t during phase P i,
we use Ii

t to represent the instructor’s instruction
and Ai

t for the assistant’s response. The short-term
memory M collects utterances up to time t as:

Mi
t = ⟨(Ii

1,Ai
1), (Ii

2,Ai
2), . . . , (Ii

t ,Ai
t)⟩ (3)

In the next time step t+ 1, the instructor utilizes
the current memory to generate a new instruction
Ii
t+1, which is then conveyed to the assistant to pro-

duce a new response Ai
t+1. The short-term memory

iteratively updates until the number of communica-
tions reaches the upper limit |Mi|:

Ii
t+1 =I(Mi

t), Ai
t+1 = A(Mi

t, Ii
t+1)

Mi
t+1 = Mi

t ∪ (Ii
t+1,Ai

t+1)
(4)

To perceive dialogues through previous phases,
the chat chain only transmits the solutions from pre-
vious phases as long-term memories M̃, integrat-
ing them at the start of the next phase and enabling
the cross-phase transmission of long dialogues:

Ii+1
1 = M̃i ∪ Pi+1

I , M̃i =
i⋃

j=1

τ(Mj
|Mj |) (5)

where P symbolizes a predetermined prompt that
appears exclusively at the start of each phase.

By sharing only the solutions of each subtask
rather than the entire communication history, Chat-
Dev minimizes the risk of being overwhelmed by
too much information, enhancing concentration on
each task and encouraging more targeted coopera-
tion, while simultaneously facilitating cross-phase
context continuity.

3.2 Communicative Dehallucination
LLM hallucinations manifest when models gen-
erate outputs that are nonsensical, factually incor-
rect, or inaccurate (Dhuliawala et al., 2023; Zhang

15177

et al., 2023b). This issue is particularly concern-
ing in software development, where programming
languages demand precise syntax—the absence of
even a single line can lead to system failure. We
have observed that LLMs often produce coding hal-
lucinations, which encompass potential issues like
incomplete implementations, unexecutable code,
and inconsistencies that don’t meet requirements.
Coding hallucinations frequently appear when the
assistant struggles to precisely follow instructions,
often due to the vagueness and generality of cer-
tain instructions that require multiple adjustments,
making it challenging for agents to achieve full
compliance. Inspired by this, we introduce com-
municative dehallucination, which encourages the
assistant to actively seek more detailed suggestions
from the instructor before delivering a formal re-
sponse.

Specifically, a vanilla communication pattern
between the assistant and the instructor follows a
straightforward instruction-response format:

⟨I → A, A ; I⟩⟲ (6)

In contrast, our communicative dehallucination
mechanism features a deliberate "role reversal",
where the assistant takes on an instructor-like role,
proactively seeking more specific information (e.g.,
the precise name of an external dependency and
its related class) before delivering a conclusive re-
sponse. After the instructor provides a specific
modification suggestion, the assistant proceeds to
perform precise optimization:

⟨I → A, ⟨A → I, I ; A⟩⟲, A ; I⟩⟲ (7)

Since this mechanism tackles one concrete issue at
a time, it requires multiple rounds of communica-
tion to optimize various potential problems. The
communication pattern instructs agents on how to
communicate, enabling finer-grained information
exchange for effective solution optimization, which
practically aids in reducing coding hallucinations.

4 Evaluation

Baselines We chose some representative LLM-
based software development methods as our base-
lines. GPT-Engineer (Osika, 2023) is a fundamen-
tal single-agent approach in LLM-driven software
agents with a precise understanding of task require-
ments and the application of one-step reasoning,
which highlights its efficiency in generating de-
tailed software solutions at the repository level.

MetaGPT (Hong et al., 2023) is an advanced frame-
work that allocates specific roles to various LLM-
driven software agents and incorporates standard-
ized operating procedures to enable multi-agent
participation. In each step agents with specific roles
generate solutions by adhering to static instructions
predefined by human experts.

Datasets Note that, as of now, there isn’t a pub-
licly accessible dataset containing textual descrip-
tions of software requirements in the context of
agent-driven software development. To this end,
we are actively working towards developing a com-
prehensive dataset for software requirement de-
scriptions, which we refer to as SRDD (Software
Requirement Description Dataset). Drawing on
previous work (Li et al., 2023a), we utilize existing
software descriptions as initial examples, which
are then further developed through a process that
combines LLM-based automatic generation with
post-processing refinement guided by humans. As
a result, this dataset includes important software
categories from popular platforms such as Ubuntu,
Google Play, Microsoft Store, and Apple Store. It
comprises 1,200 software task prompts that have
been carefully categorized into 5 main areas: Edu-
cation, Work, Life, Game, and Creation. All these
areas are further divided into 40 subcategories, and
each subcategory contains 30 unique task prompts.

Metrics Evaluating software is also a challenging
task, especially when trying to assess it on a holistic
level. Under the current limitation of scarce bench-
mark resources, traditional function-oriented code
generation metrics (e.g., pass@k), cannot seam-
lessly transfer to a comprehensive evaluation of
entire software systems. The main reason for this
is that it is often impractical to develop manual or
automated test cases for various types of software,
especially those involving complex interfaces, fre-
quent user interactions, or non-deterministic feed-
back. As an initial strategy, we apply three funda-
mental and objective dimensions that reflect differ-
ent aspects of coding hallucinations to evaluate the
agent-generated software, and then integrate them
to facilitate a more holistic evaluation:

• Completeness measures the software’s ability to
fulfill code completion in software development,
quantified as the percentage of software with-
out any "placeholder" code snippets. A higher
score indicates a higher probability of automated
completion.

15178

Method Paradigm Completeness Executability Consistency Quality

GPT-Engineer 0.5022† 0.3583† 0.7887† 0.1419†

MetaGPT 0.4834† 0.4145† 0.7601† 0.1523†

ChatDev 0.5600 0.8800 0.8021 0.3953

Table 1: Overall performance of the LLM-powered software development methods, encompassing both single-agent
() and multi-agent () paradigms. Performance metrics are averaged for all tasks. The top scores are in bold,
with second-highest underlined. † indicates significant statistical differences (p≤0.05) between a baseline and ours.

Method Evaluator Baseline Wins ChatDev Wins Draw

GPT-Engineer
GPT-4 22.50% 77.08% 00.42%
Human 09.18% 90.16% 00.66%

MetaGPT
GPT-4 37.50% 57.08% 05.42%
Human 07.92% 88.00% 04.08%

Table 2: Pairwise evaluation results.

• Executability assesses the software’s ability to
run correctly within a compilation environment,
quantified as the percentage of software that com-
piles successfully and can run directly. A higher
score indicates a higher probability of successful
execution.

• Consistency measures how closely the generated
software code aligns with the original require-
ment description, quantified as the cosine dis-
tance between the semantic embeddings of the
textual requirements and the generated software
code1. A higher score indicates a greater degree
of consistency with the requirements.

• Quality is a comprehensive metric that integrates
various factors to assess the overall quality of
software, quantified by multiplying2 complete-
ness, executability, and consistency. A higher
quality score suggests a higher overall satisfac-
tion with the software generated, implying a
lower need for further manual intervention.

Implementation Details We divided software
development into 5 subtasks within 3 phases, as-
signing specific roles like CEO, CTO, programmer,
reviewer, and tester. A subtask would terminate
and get a conclusion either after two unchanged
code modifications or after 10 rounds of commu-
nication. During the code completion, review, and
testing, a communicative dehallucination is acti-
vated. For ease of identifying solutions, the assis-
tant begins responses with "<SOLUTION>" when

1Comments should be excluded from the code to avoid
potential information leakage during evaluations.

2One can also choose to average the sub-metrics, which
yields similar trends.

Method Duration (s) #Tokens #Files #Lines

GPT-Engineer 15.6000 7,182.5333 3.9475 70.2041
MetaGPT 154.0000 29,278.6510 4.4233 153.3000
ChatDev 148.2148 22,949.4450 4.3900 144.3450

Table 3: Software statistics include Duration (time con-
sumed), #Tokens (number of tokens used), #Files (num-
ber of code files generated), and #Lines (total lines of
code across all files) in the software generation process.

a consensus is reached. We used ChatGPT-3.5 with
a temperature of 0.2 and integrated Python-3.11.4
for feedback. All baselines in the evaluation share
the same hyperparameters and settings for fairness.

4.1 Overall Performance

As illustrated in Table 1, ChatDev outperforms
all baseline methods across all metrics, showing
a considerable margin of improvement. Firstly,
the improvement of ChatDev and MetaGPT over
GPT-Engineer demonstrates that complex tasks are
difficult to solve in a single-step solution. There-
fore, explicitly decomposing the difficult problem
into several smaller, more manageable subtasks en-
hances the effectiveness of task completion. Addi-
tionally, in comparison to MetaGPT, ChatDev sig-
nificantly raises the Quality from 0.1523 to 0.3953.
This advancement is largely attributed to the agents
employing a cooperative communication method,
which involves autonomously proposing and con-
tinuously refining source code through a blend of
natural and programming languages, as opposed
to merely delivering responses based on human-
predefined instructions. The communicative agents
guide each subtask towards integrated and auto-
mated solutions, efficiently overcoming the restric-
tions typically linked to manually established op-
timization rules, and offering a more versatile and
adaptable framework for problem-solving.

To further understand user preferences in practi-
cal settings, we use the setting adopted by Li et al.
(2023a), where agent-generated solutions are com-

15179

Variant Completeness Executability Consistency Quality

ChatDev 0.5600 0.8800 0.8021 0.3953

≤Coding 0.4100 0.7700 0.7958 0.2512
≤Complete 0.6250 0.7400 0.7978 0.3690
≤Review 0.5750 0.8100 0.7980 0.3717
≤Testing 0.5600 0.8800 0.8021 0.3953

⧹CDH 0.4700 0.8400 0.7983 0.3094
⧹Roles 0.5400 0.5800 0.7385 0.2212

Table 4: Ablation study on main components or mech-
anisms. ≤ x denotes halting the chat chain after the
completion of the x phrase, and ⧹ denotes the removing
operation. CDH denotes the communicative dehalluci-
nation mechanism.

pared in pairs by both human participants and the
prevalent GPT-4 model to identify the preferred
one.3 Table 2 shows ChatDev consistently outper-
forming other baselines, with higher average win
rates in both GPT-4 and human evaluations.

Furthermore, the software statistics presented
in Table 3 indicates that the multi-agent paradigm,
despite being slower and consuming more tokens
than the single-agent method, yields a greater num-
ber of code files and a larger codebase, which may
enhance the software’s functionality and integrity.
Analyzing the dialogues of agents suggests that
the multi-agent communication method often leads
agents to autonomously offer functional enhance-
ments (e.g., GUI creation or increasing game diffi-
culty), thereby potentially resulting in the incorpo-
ration of beneficial features that were not explicitly
specified in requirements. Taking all these factors
together, we posit that the fundamental character-
istics of multi-agent software development take
on greater significance, surpassing short-term con-
cerns like time and economic costs in the current
landscape.

4.2 Ablation Study

This section examines key components or mech-
anisms within our multi-agent cooperation frame-
work by removing particular phases in the chat
chain, communicative dehallucination, or the roles
assigned to all agents in their system prompts. Fig-
ure 4 shows that the code complete phase enhances
Completeness, with testing critical for Executabil-
ity. Quality steadily rises with each step, suggesting
that software development optimization is progres-
sively attained through multi-phase communica-

3For fairness, GPT-4’s evaluation mitigated possible po-
sitional bias (Wang et al., 2023c), and human experts inde-
pendently assessed the task solutions, randomized to prevent
order bias.

Natural-Language
Programming-Language

Target User

UI & UX
Data Management

Customization
Performance
Integration
Real-Time Update
Recommendation
Platform
Collaboration
Security & Privacy
Scalability & Maintenance

Coding
Code Complete
Code Review
System Testing

57.20%

42.80%

10.19%

61.09%

10.19%

18.53%

21.44%

20.55%

19.23%
7.78%

6.93%

5.92%

5.41%

3.46%
3.15%

2.51%
2.24%

1.39%

Figure 3: The utterance distribution of agent communi-
cations throughout the entire development process.

tions among intelligent agents. Meanwhile, elim-
inating communicative dehallucination results in
a decrease across all metrics, indicating its effec-
tiveness in addressing coding hallucinations. Most
interestingly, the most substantial impact on per-
formance occurs when the roles of all agents are
removed from their system prompts. Detailed dia-
logue analysis shows that assigning a "prefer GUI
design" role to a programmer results in generated
source code with relevant GUI implementations; in
the absence of such role indications, it defaults to
implement unfriend command-line-only programs
only. Likewise, assigning roles such as a "careful
reviewer for bug detection" enhances the chances
of discovering code vulnerabilities; without such
roles, feedback tends to be high-level, leading to
limited adjustments by the programmer. This find-
ing underscores the importance of assigning roles
in eliciting responses from LLMs, underscoring the
significant influence of multi-agent cooperation on
software quality.

4.3 Communication Analysis

Our agent-driven software development paradigm
promotes cooperative agents through effective com-
munication for automated solution optimization.
Phases in the chat chain have varying levels of en-
gagement in natural and programming languages.

15180

Input Output

Method Not Implemented

Modules Not Imported

Missing Code Segments

Not Configure Layout

Missing Comments

Class Defined Twice

Methods Not Called

Missing Exception Handling

Missing Initialization

Missing Files

Not Correctly Processing Data

Class Not Used

Calling without Correct Arguments

Not Handle Cases
Missing Imports

No Further Suggestions

Method Not Implemented

Modules Not Imported

Missing Code Segments

Not Configure Layout
Not Correctly Processing Data
Missing Comments
Missing Exception Handling
Missing Files
Missing Initialization
Missing Imports

Methods Not Called

No Further Suggestions

Calling without Correct Arguments

Class Not Used
Class Defined Twice
Not Handle Cases

Method Not Implemented

Modules Not Imported

Missing Code Segments

Missing Comments
Not Configure Layout

No Further Suggestions

Missing Files
Methods Not Called
Not Correctly Processing Data

Missing Exception Handling

Missing Initialization

Class Not Used
Missing Imports
Calling without Correct Arguments

Not Handle Cases
Class Defined Twice

Figure 4: The chart demonstrates the distribution of suggestions made by a reviewer agent during a multi-round
reviewing process, where each sector in the chart represents a different category of suggestion.

We now analyze the content of their communica-
tions to understand linguistic effects.

Figure 3 depicts a communication breakdown,
with natural language at 57.20%. In the natural-
language phase (i.e., design), natural language com-
munication plays a crucial role in the thorough
design of the system, with agents autonomously
discussing and designing aspects like target user,
data management, and user interface. Post-design
phases show a balanced mix of coding, code com-
pletion, and testing activities, with most communi-
cation occurring during code reviews. This trend is
due to agents’ self-reviews and code fixes consis-
tently propelling software development; otherwise,
progress halts when successive updates don’t show
significant changes, leading to a natural decrease
in code review communications.

We explore the properties of static debugging
dynamics in code reviews resulting from commu-
nication between reviewers and programmers, as
depicted in Figure 4. The data uncovers that dur-
ing the review phase, reviewers may spot different
issues through language interactions. The program-
mer’s intervention can transform certain issues into
different ones or a state where no further sugges-
tions are needed; the increasing proportion of the
latter indicates successful software optimization.
Particularly, the "Method Not Implemented" is-
sue is most common in communication between
reviewers and programmers during code reviews,
accounting for 34.85% of discussions. This prob-
lem usually arises from unclear text requirements

and the use of "placeholder" tags in Python code,
necessitating additional manual adjustments. Fur-
thermore, the "Module Not Imported" issue often
arises due to code generation omitting crucial de-
tails. Apart from common problems, reviewers
often focus on enhancing code robustness by iden-
tifying rare exceptions, unused classes, or potential
infinite loops.

Likewise, we analyze the tester-programmer
communication during the testing phase, illus-
trating the dynamic debugging dynamics in their
multi-turn interactions with compiler feedback,
as depicted in Figure 5. The likelihood of
successful compilation at each step is generally
higher than encountering errors, with most er-
rors persisting and a lower probability of trans-
forming into different errors. The most fre-
quent error is "ModuleNotFound" (45.76%), fol-
lowed by "NameError" and "ImportError" (each
at 15.25%). The observation highlights the model’s
tendency to overlook basic elements like an "im-
port" statement, underscoring its difficulty in man-
aging intricate details during code generation. Be-
sides, the tester also detects rarer errors like im-
properly initialized GUIs, incorrect method calls,
missing file dependencies, and unused modules.
The communicative dehallucination mechanism ef-
fectively resolves certain errors, frequently result-
ing in "compilation success" after code changes.
There’s a significantly low chance of returning to
an error state from a successful compilation. Over
time, the multi-turn communication process statisti-

15181

Success

AttributeError

DatabaseError

EOFError

FileNotFoundError

ImportError

IndentationError

JSONDecodeError

KeyError

ModuleNotFoundError

NameError

OperationalError
RuntimeError

SSLError

SyntaxError

TclError

TypeError

ValueError

Others

Success Success

Input Output

Success

AttributeError

DatabaseError

EOFError

FileNotFoundError

ImportError

IndentationError

JSONDecodeError

KeyError

ModuleNotFoundError

NameError

OperationalError
RuntimeError

SSLError

SyntaxError

TclError

TypeError

ValueError

Others

AttributeError

DatabaseError

EOFError

FileNotFoundError

ImportError

IndentationError

JSONDecodeError

KeyError

ModuleNotFoundError

NameError

OperationalError
RuntimeError

SSLError

SyntaxError

TclError

TypeError

ValueError

Others

AttributeError

DatabaseError

FileNotFoundError

ImportError

IndentationError

JSONDecodeError

ModuleNotFoundError
NameError

OperationalError
RuntimeError

SyntaxError

TclError

TypeError

ValueError

Others

Figure 5: The diagram illustrates the progression of iterations in a multi-round testing process, where each colored
column represents a dialogue round, showcasing the evolution of the solution through successive stages of testing.

cally shows a consistent decrease in errors, steadily
moving towards successful software execution.

5 Conclusion

We have introduced ChatDev, an innovative multi-
agent collaboration framework for software devel-
opment that utilizes multiple LLM-powered agents
to integrate fragmented phases of the waterfall
model into a cohesive communication system. It
features chat chain organizing communication tar-
gets and dehallucination for resolving coding hal-
lucinations. The results demonstrate its superiority
and highlight the benefits of multi-turn communi-
cations in software optimization. We aim for the
insights to advance LLM agents towards increased
autonomy and illuminate the profound effects of
"language" and its empowering role across an even
broader spectrum of applications.

6 Limitations

Our study explores the potential of cooperative
autonomous agents in software development, but
certain limitations and risks must be considered by
researchers and practitioners. Firstly, the capabili-
ties of autonomous agents in software production
might be overestimated. While they enhance de-
velopment quality, agents often implement simple
logic, resulting in low information density. With-
out clear, detailed requirements, agents struggle to
grasp task ideas. For instance, vague guidelines in
developing a Snake game lead to basic representa-

tions; in information management systems, agents
might retrieve static key-value placeholders instead
of external databases. Therefore, it is crucial to
clearly define detailed software requirements. Cur-
rently, these technologies are more suitable for pro-
totype systems rather than complex real-world ap-
plications. Secondly, unlike traditional function-
level code generation, automating the evaluation of
general-purpose software is highly complex. While
some efforts have focused on Human Revision
Cost (Hong et al., 2023), manual verification for
large datasets is impractical. Our paper emphasizes
completeness, executability, consistency, and over-
all quality, but future research should consider ad-
ditional factors such as functionalities, robustness,
safety, and user-friendliness. Thirdly, compared to
single-agent approaches, multiple agents require
more tokens and time, increasing computational de-
mands and environmental impact. Future research
should aim to enhance agent capabilities with fewer
interactions. Despite these limitations, we believe
that engaging a broader, technically proficient au-
dience can unlock additional potential directions in
LLM-powered multi-agent collaboration.

Acknowledgments

The work was supported by the National Key R&D
Program of China (No.2022ZD0116312), the Post-
doctoral Fellowship Program of CPSF under Grant
Number GZB20230348, and Tencent Rhino-Bird
Focused Research Program.

15182

References
Silvia T Acuna, Natalia Juristo, and Ana M Moreno.

2006. Emphasizing Human Capabilities in Software
Development. In IEEE Software, volume 23, pages
94–101.

Mansi Agnihotri and Anuradha Chug. 2020. A Sys-
tematic Literature Survey of Software Metrics, Code
Smells and Refactoring Techniques. In booktitle of
Information Processing Systems, volume 16, pages
915–934.

Rajiv D Banker, Gordon B Davis, and Sandra A Slaugh-
ter. 1998. Software Development Practices, Software
Complexity, and Software Maintenance Performance:
A Field Study. In Management science, volume 44,
pages 433–450.

Victor R Basili. 1989. Software Development: A
Paradigm for The Future. In Proceedings of the An-
nual International Computer Software and Applica-
tions Conference, pages 471–485. IEEE.

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och,
and Jeffrey Dean. 2007. Large Language Models in
Machine Translation. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 858–
867.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4. In arXiv
preprint arXiv:2303.12712.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large Language Models as
Tool Makers. In arXiv preprint arXiv:2305.17126.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2023. ChatEval: Towards Better LLM-based
Evaluators through Multi-Agent Debate. In arXiv
preprint arXiv:2308.07201.

Dake Chen, Hanbin Wang, Yunhao Huo, Yuzhao Li,
and Haoyang Zhang. 2023a. GameGPT: Multi-agent

Collaborative Framework for Game Development. In
arXiv preprint arXiv:2310.08067.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. In arXiv preprint
arXiv:2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. 2023b. AgentVerse:
Facilitating Multi-agent Collaboration and Explor-
ing Emergent Behaviors in Agents. In International
Conference on Learning Representations (ICLR).

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. LM vs LM: Detecting Factual Er-
rors via Cross Examination. In ArXiv, volume
abs/2305.13281.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2023. Chain-of-Verification Reduces
Hallucination in Large Language Models. In arXiv
preprint arXiv:2309.11495.

Shiying Ding, Xinyi Chen, Yan Fang, Wenrui Liu, Yiwu
Qiu, and Chunlei Chai. 2023. DesignGPT: Multi-
Agent Collaboration in Design. In arXiv preprint
arXiv:2311.11591.

Michael D. Ernst. 2017. Natural Language is a Pro-
gramming Language: Applying Natural Language
Processing to Software Development. In Advances
in Programming Languages (SNAPL), volume 71,
pages 4:1–4:14.

Saad Ezzini, Sallam Abualhaija, Chetan Arora, and
Mehrdad Sabetzadeh. 2022. Automated Handling
of Anaphoric Ambiguity in Requirements: A Multi-
solution Study. In International Conference on Soft-
ware Engineering (ICSE), pages 187–199.

Robert France and Bernhard Rumpe. 2007. Model-
driven Development of Complex Software: A Re-
search Roadmap. In Future of Software Engineering
(FOSE), pages 37–54.

Peter Freeman, Donald J. Bagert, Hossein Saiedian,
Mary Shaw, Robert Dupuis, and J. Barrie Thompson.
2001. Software Engineering Body of Knowledge
(SWEBOK). In Proceedings of the International
Conference on Software Engineering (ICSE), pages
693–696.

Sa Gao, Chunyang Chen, Zhenchang Xing, Yukun Ma,
Wen Song, and Shang-Wei Lin. 2019. A Neural
Model for Method Name Generation from Functional
Description. In 26th IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 411–421.

15183

https://ieeexplore.ieee.org/document/1605185
https://ieeexplore.ieee.org/document/1605185
http://jips-k.org/digital-library/2020/16/4/915
http://jips-k.org/digital-library/2020/16/4/915
http://jips-k.org/digital-library/2020/16/4/915
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.44.4.433
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.44.4.433
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.44.4.433
https://ieeexplore.ieee.org/document/65127
https://ieeexplore.ieee.org/document/65127
https://aclanthology.org/D07-1090/
https://aclanthology.org/D07-1090/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2308.07201
http://arxiv.org/abs/2308.07201
http://arxiv.org/abs/2310.08067
http://arxiv.org/abs/2310.08067
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2308.10848
https://api.semanticscholar.org/CorpusID:258833288
https://api.semanticscholar.org/CorpusID:258833288
http://arxiv.org/abs/2309.11495
http://arxiv.org/abs/2309.11495
http://arxiv.org/abs/2311.11591
http://arxiv.org/abs/2311.11591
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.1145/3510003.3510157
https://doi.org/10.1145/3510003.3510157
https://doi.org/10.1145/3510003.3510157
https://ieeexplore.ieee.org/document/4221611
https://ieeexplore.ieee.org/document/4221611
https://ieeexplore.ieee.org/document/4221611
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://doi.org/10.1109/SANER.2019.8667994
https://doi.org/10.1109/SANER.2019.8667994
https://doi.org/10.1109/SANER.2019.8667994

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2023. MetaGPT: Meta Pro-
gramming for A Multi-Agent Collaborative Frame-
work. In International Conference on Learning Rep-
resentations (ICLR).

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei,
Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. 2023. War and Peace (WarA-
gent): Large Language Model-based Multi-Agent
Simulation of World Wars. In arXiv preprint
arXiv:2311.17227.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of Hal-
lucination in Natural Language Generation. In ACM
Computing Surveys, volume 55, pages 1–38.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. In arXiv
preprint arXiv:2001.08361.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. CAMEL: Communicative Agents for "Mind"
Exploration of Large Scale Language Model Society.
In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS).

Yuan Li, Yixuan Zhang, and Lichao Sun. 2023b.
MetaAgents: Simulating Interactions of Human
Behaviors for LLM-based Task-oriented Coordina-
tion via Collaborative Generative Agents. In arXiv
preprint arXiv:2310.06500.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, and
Silvio Savarese. 2023. BOLAA: Benchmarking and
Orchestrating LLM-augmented Autonomous Agents.
In arXiv preprint arXiv:2308.05960.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiao-
man Pan, and Dong Yu. 2023. LASER: LLM Agent
with State-Space Exploration for Web Navigation. In
arXiv preprint arXiv:2309.08172.

Cuauhtémoc López Martín and Alain Abran. 2015. Neu-
ral networks for predicting the duration of new soft-
ware projects. In J. Syst. Softw., volume 101, pages
127–135.

Nadia Nahar, Shurui Zhou, Grace A. Lewis, and
Christian Kästner. 2022. Collaboration Challenges
in Building ML-Enabled Systems: Communica-
tion, Documentation, Engineering, and Process. In
IEEE/ACM International Conference on Software
Engineering (ICSE), pages 413–425.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthe-
sis. In The International Conference on Learning
Representations (ICLR).

Anton Osika. 2023. GPT-Engineer. In
https://github.com/AntonOsika/gpt-engineer.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Christiano, Jan Leike, and Ryan
Lowe. 2022. Training Language Models to Follow
Instructions with Human Feedback. In arXiv preprint
arXiv:2203.02155.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative Agents: Interactive Simu-
lacra of Human Behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology (UIST).

Florian Pudlitz, Florian Brokhausen, and Andreas Vo-
gelsang. 2019. Extraction of System States from
Natural Language Requirements. In IEEE Interna-
tional Requirements Engineering Conference (RE),
pages 211–222.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023a. ToolLLM: Facilitating Large
Language Models to Master 16000+ Real-World
APIs. In arXiv preprint arXiv:2307.16789.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bendersky.
2023b. Large Language Models are Effective Text
Rankers with Pairwise Ranking Prompting. In arXiv
preprint arXiv:2306.17563.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language Mod-
els are Unsupervised Multitask Learners. In OpenAI
Blog, volume 1, page 9.

Toran Bruce Richards. 2023. AutoGPT. In
https://github.com/Significant-Gravitas/AutoGPT.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Ziyue Li, Xingyu Zeng, and Rui Zhao. 2023.
TPTU: Large Language Model-based AI Agents for
Task Planning and Tool Usage. In arXiv preprint
arXiv:2308.03427.

Steve Sawyer and Patricia J. Guinan. 1998. Software
development: Processes and Performance. In IBM
Systems Journal, volume 37, pages 552–569.

15184

http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2311.17227
https://dl.acm.org/doi/10.1145/3571730
https://dl.acm.org/doi/10.1145/3571730
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2310.06500
http://arxiv.org/abs/2310.06500
http://arxiv.org/abs/2310.06500
http://arxiv.org/abs/2308.05960
http://arxiv.org/abs/2308.05960
http://arxiv.org/abs/2309.08172
http://arxiv.org/abs/2309.08172
https://doi.org/10.1016/j.jss.2014.12.002
https://doi.org/10.1016/j.jss.2014.12.002
https://doi.org/10.1016/j.jss.2014.12.002
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1145/3510003.3510209
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://github.com/AntonOsika/gpt-engineer
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1109/RE.2019.00031
https://doi.org/10.1109/RE.2019.00031
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2306.17563
http://arxiv.org/abs/2306.17563
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://github.com/Significant-Gravitas/AutoGPT
http://arxiv.org/abs/2308.03427
http://arxiv.org/abs/2308.03427
https://ieeexplore.ieee.org/document/5387128
https://ieeexplore.ieee.org/document/5387128

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. ToolFormer:
Language Models Can Teach Themselves to Use
Tools. In arXiv preprint arXiv:2302.04761.

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role Play with Large Language Models. In
Nature, volume 623, pages 493–498.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L. Griffiths. 2023. Cognitive Archi-
tectures for Language Agents. In arXiv preprint
arXiv:2309.02427.

Hannes Thaller, Lukas Linsbauer, and Alexander Egyed.
2019. Feature Maps: A Comprehensible Software
Representation for Design Pattern Detection. In
IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages
207–217.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and Efficient
Foundation Language Models. In arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30.

Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan
Liu, Henry Hoffmann, Michael Maire, and Shan Lu.
2022. Automated Testing of Software that Uses Ma-
chine Learning APIs. In IEEE/ACM International
Conference on Software Engineering (ICSE), pages
212–224.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving Automatic Source Code Summarization via
Deep Reinforcement Learning. In Proceedings of the
ACM/IEEE International Conference on Automated
Software Engineering (ASE), pages 397–407.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An Open-ended
Embodied Agent with Large Language Models. In
arXiv preprint arXiv:2305.16291.

Lei Wang, Jingsen Zhang, Hao Yang, Zhiyuan Chen,
Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai Lin, Rui-
hua Song, Wayne Xin Zhao, Jun Xu, Zhicheng Dou,
Jun Wang, and Ji-Rong Wen. 2023b. When Large
Language Model based Agent Meets User Behavior
Analysis: A Novel User Simulation Paradigm. In
arXiv preprint arXiv:2306.02552.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023c. Large Language Models are not
Fair Evaluators. In arXiv preprint arXiv:2305.17926.

Song Wang, Taiyue Liu, and Lin Tan. 2016. Automati-
cally Learning Semantic Features for Defect Predic-
tion. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 297–308.

Song Wang, Nishtha Shrestha, Abarna Kucheri Subbu-
raman, Junjie Wang, Moshi Wei, and Nachiappan
Nagappan. 2021. Automatic Unit Test Generation
for Machine Learning Libraries: How Far Are We?
In IEEE/ACM International Conference on Software
Engineering (ICSE), pages 1548–1560.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. Xing,
and Zhiting Hu. 2023d. PromptAgent: Strategic
Planning with Language Models Enables Expert-
level Prompt Optimization. In arXiv preprint
arXiv:2310.16427.

Zhilin Wang, Yu Ying Chiu, and Yu Cheung Chiu.
2023e. Humanoid Agents: Platform for Simulating
Human-like Generative Agents. In arXiv preprint
arXiv:2310.05418.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent Abilities of Large Language Mod-
els. In arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 35, pages 24824–24837.

Lilian Weng. 2023. LLM-powered Autonomous Agents.
In lilianweng.github.io.

Jonas Winkler, Jannis Grönberg, and Andreas Vogel-
sang. 2020. Predicting How to Test Requirements:
An Automated Approach. In Software Engineering,
volume P-300 of LNI, pages 141–142.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023a.
Large Language Models as Optimizers. In arXiv
preprint arXiv:2309.03409.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao
Ge, Xiu Li, and Ying Shan. 2023b. GPT4Tools:
Teaching Large Language Model to Use Tools via
Self-instruction. In Advances in Neural Information
Processing Systems (NeurIPS).

Murat Yilmaz, Rory V O’Connor, and Paul Clarke. 2012.
A Systematic Approach to the Comparison of Roles
in the Software Development Processes. In Inter-
national Conference on Software Process Improve-
ment and Capability Determination, pages 198–209.
Springer.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo,
Junqi Dai, Xuanjing Huang, and Xipeng Qiu. 2023.
Exchange-of-Thought: Enhancing Large Language

15185

http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.1038/s41586-023-06647-8
http://arxiv.org/abs/2309.02427
http://arxiv.org/abs/2309.02427
https://doi.org/10.1109/SANER.2019.8667978
https://doi.org/10.1109/SANER.2019.8667978
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3510003.3510068
https://doi.org/10.1145/3510003.3510068
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2305.17926
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/ICSE43902.2021.00138
https://doi.org/10.1109/ICSE43902.2021.00138
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.05418
http://arxiv.org/abs/2310.05418
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://lilianweng.github.io/posts/2023-06-23-agent/
https://doi.org/10.18420/SE2020_43
https://doi.org/10.18420/SE2020_43
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://doras.dcu.ie/17072/1/10.1007%3A978-3-642-30439-2_18.pdf
http://doras.dcu.ie/17072/1/10.1007%3A978-3-642-30439-2_18.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.936

Model Capabilities through Cross-Model Communi-
cation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 15135–15153.

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang
Deng, Xiang Wang, and Tat-Seng Chua. 2023a. On
Generative Agents in Recommendation. In arXiv
preprint arXiv:2310.10108.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023b. Siren’s Song in the AI
Ocean: A Survey on Hallucination in Large Lan-
guage Models. In arXiv preprint arXiv:2309.01219.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2023. ExpeL:
LLM Agents Are Experiential Learners. In AAAI
Conference on Artificial Intelligence (AAAI).

Tianming Zhao, Chunyang Chen, Yuanning Liu, and
Xiaodong Zhu. 2021. GUIGAN: Learning to Gener-
ate GUI Designs Using Generative Adversarial Net-
works. In IEEE/ACM International Conference on
Software Engineering (ICSE), pages 748–760.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023a. We-
bArena: A Realistic Web Environment for Build-
ing Autonomous Agents. In arXiv preprint
arXiv:2307.13854.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu
Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen,
Peng Cui, and Mrinmaya Sachan. 2023b. Agents: An
Open-source Framework for Autonomous Language
Agents. In arXiv preprint arXiv:2309.07870.

15186

https://doi.org/10.18653/v1/2023.emnlp-main.936
https://doi.org/10.18653/v1/2023.emnlp-main.936
http://arxiv.org/abs/2310.10108
http://arxiv.org/abs/2310.10108
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144
https://doi.org/10.1109/ICSE43902.2021.00074
https://doi.org/10.1109/ICSE43902.2021.00074
https://doi.org/10.1109/ICSE43902.2021.00074
http://arxiv.org/abs/2307.13854
http://arxiv.org/abs/2307.13854
http://arxiv.org/abs/2307.13854
http://arxiv.org/abs/2309.07870
http://arxiv.org/abs/2309.07870
http://arxiv.org/abs/2309.07870

