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Abstract

Soft prompt tuning is a widely studied
parameter-efficient fine-tuning method. How-
ever, it has a clear drawback: many soft to-
kens must be inserted into the input sequences
to guarantee downstream performance. As a
result, soft prompt tuning is less considered
than Low-rank adaptation (LoRA) in the large
language modeling (LLM) era. In this work,
we propose a novel prompt tuning method,
Instruction-Aware Prompt Tuning (IAPT), that
requires only four soft tokens. First, we in-
stall a parameter-efficient soft prompt gener-
ator at each Transformer layer to generate id-
iosyncratic soft prompts for each input instruc-
tion. The generated soft prompts can be seen as
a semantic summary of the input instructions
and can effectively guide the output generation.
Second, the soft prompt generators are mod-
ules with a bottleneck architecture consisting
of a self-attention pooling operation, two linear
projections, and an activation function. Pilot
experiments show that prompt generators at dif-
ferent Transformer layers require different acti-
vation functions. Thus, we propose to learn the
idiosyncratic activation functions for prompt
generators automatically with the help of ra-
tional functions. We have conducted experi-
ments on various tasks, and the experimental re-
sults demonstrate that (a) our IAPT method can
outperform the recent baselines with compara-
ble tunable parameters. (b) Our IAPT method
is more efficient than LoRA under the single-
backbone multi-tenant setting.

1 Introduction

Large language models (LLMs) have been
emerging and achieving state-of-the-art (SOTA)
results not only on a variety of natural language
processing tasks (Qin et al., 2023; Zhu et al., 2023)
but also many challenging evaluation tasks (Huang

*Equal contributions.
iCorresponding authors: xlwang@cs.ecnu.edu.cn.

et al., 2023; Li et al., 2023) like question answer-
ing, reasoning, math, safety, instruction follow-
ing. Despite LLMs becoming general task solvers,
fine-tuning still plays a vital role in efficient LLM
inference and controlling the style of the LLMs’
generated contents.! Fine-tuning such large models
by full parameters is prohibitive since it requires
a large amount of GPU memory and computa-
tions. Thus, parameter-efficient fine-tuning (PEFT)
(Zhang et al., 2023c; Zhao et al., 2023) has raised
much attention in the research field since in PEFT,
the tunable parameters are often less than 1% of
the LLMs and the computation costs will be signif-
icantly decreased.

Many PEFT methods have been validated to be
effective across various models and tasks, often
yielding comparable results with full-parameter
fine-tuning (He et al., 2021; Zhu and Tan, 2023;
Zhang et al., 2023c). Among these PEFT meth-
ods, the reparameterization-based method low-rank
adaptation (LoRA) (Hu et al., 2021) is considered
one of the most efficient and effective methods at
present (Xu et al., 2023; Ding et al., 2022; Xin
et al., 2024). Although LoRA is effective and can
bring stable performance with the original setting
in Hu et al. (2021), it still brings inconvenience
under the multi-tenant setting (Chen et al., 2023):
it has to add LoRA modules to multiple weights
of the Transformer layer and introducing signifi-
cant additional latency in every generation steps
under the multi-tenant setting. Thus, it is of cen-
tral importance to develop a novel PEFT method
that introduces minimum latency during generation
and still can perform competitively in downstream
tasks.

In this work, we propose a novel PEFT method
called Instruction-Aware Prompt Tuning (IAPT).
We fine-tune the LLMs by inserting instruction

'Recently, OpenAl also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.
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Figure 1: Schematic illustration of our IAPT method. Left: The prompt generator which consists of a down-
projection, a self-attention based pooler (SA pooler), a learnable activation whose curvature is learned in the
downstream task, and a up-projection. Right: The prompt generator uses the instructions’ hidden states as the input
tensors, and output the generated soft tokens which will be concatenated to the next layer’s hidden states.

aware soft prompts to each Transformer layer (Fig-
ure 1). To flexibly regulate the attentions of LLMs,
we install a prompt generator before each Trans-
former layer to generate the soft prompts by taking
the input instruction’s hidden states as input. The
prompt generator is a lightweight module contain-
ing a down-projection layer, a self-attention based
pooling layer, an activation function, and an up-
projection layer. To enhance the expressiveness
of prompt generators, we propose to automatically
learn the idiosyncratic activation functions for dif-
ferent prompt generators with the help of rational
functions.

We conduct extensive experiments on a wide
collection of tasks, including sentiment classifica-
tion, natural language inference, question answer-
ing, constrained sentence generation, math reason-
ing, SQL query generation, and instruction tun-
ing, to demonstrate the effectiveness of our IAPT
method. Notably, our method can consistently out-
perform strong PEFT baselines with comparable
tunable parameter budgets, especially the recent
LoRA variants (Zhang et al., 2023b; Ding et al.,
2023) and SOTA prompt tuning methods (Liu et al.,
2022c; Wu et al., 2022; Liu et al., 2022b). We also
use experiments and analysis to show that: (a) our
method has significantly lower latency under the
multi-tenant setting than the LoRA-based methods
with comparable tunable parameters. (b) We pro-
posed adding a self-attention pooling module in
the prompt generator, which can help the differ-
ent transformer layers share the projection layers,

thus improving the parameter efficiency. (c) The

activation functions are learned during fine-tuning,

which improves the downstream performance.
Our contributions are summarized as follows:

* we propose a novel PEFT method, IAPT, that
generates soft prompts conditioned on the in-
put instructions received by the LLMs.

* We propose to employ the self-attention mech-
anism to obtain high-quality information ag-
gregation of the input instructions, thus gener-
ating better soft prompts.

* We propose to learn the activation func-
tions for different prompt generators at differ-
ent Transformer layers, improving the down-
stream fine-tuning performance.

* We have conducted extensive experiments and
analysis showing that our IAPT framework is
(a) practical and outperforms the baselines
under comparable tunable parameter budgets.
(b) efficient during inference for LLMs.

2 Related works

2.1 Parameter-efficient fine-tuning (PEFT)
methods

Parameter-efficient fine-tuning (PEFT) is an ap-
proach of optimizing a small portion of parame-
ters when fine-tuning a large pretrained backbone
model and keeping the backbone model untouched
for adaptation (Ding et al., 2022; Zhang et al.,
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2023c). The addition-based methods insert addi-
tional neural modules or parameters into the back-
bone model. Representative works in this direction
are Adapter (Houlsby et al., 2019; Riicklé et al.,
2020; Zhang et al., 2023c), Prefix tuning (Li and
Liang, 2021), Prompt tuning (Lester et al., 2021),
P-tuning V2 (Liu et al., 2022¢). Another approach
is called the specification-based approach, which is
to specify the particular parameters to be tunable or
prunable (Ben-Zaken et al., 2021; Guo et al., 2021;
Zhao et al., 2020). The reparameterization-based
methods have attracted much attention (Hu et al.,
2021). This branch of approaches transforms the
adaptive parameters during optimization into low-
rank and parameter-efficient forms. This type of
PEFT method is motivated by the observation that
fine-tuning has a low intrinsic dimension (Agha-
janyan et al., 2021). LoRA (Hu et al., 2021) hy-
pothesizes that the change of weights during model
tuning has a low intrinsic rank and optimizes the
low-rank decomposition for the change of original
weight matrices. PEFT methods are widely applied,
especially with the popularization of open-sourced
large language models (Zhao et al., 2023) and in-
struction tuning with these models for different
application scenarios (Taori et al., 2023; Dettmers
et al., 2023).

2.2 Prompt tuning methods

Prompt tuning (Lester et al., 2021) and P-tuning
(Liu et al., 2022c¢) insert soft prompts to word em-
beddings only and can achieve competitive results
when applied to supersized PTMs. Prefix-tuning
(Li and Liang, 2021) and P-tuning v2 (Liu et al.,
2021) insert prompts to every hidden layer of PTMs.
IDPG (Wu et al., 2022) uses parameterized hyper-
complex multiplication (Le et al., 2021) to param-
eterize soft prompts, improving the parameter ef-
ficiency. LPT (Liu et al., 2022b) improves upon
IDPG by selecting an intermediate layer to insert
soft prompts. SPT (Zhu and Tan, 2023) designs
a mechanism to automatically decide which lay-
ers to insert new soft prompts or keep the prompts
propagated from the previous layer. Our work is
different and compliments the existing literature
in the following aspects: (a) The above works do
not work with the current SOTA large language
models and only experiment with relatively simple
classification tasks. In comparison, by generating
soft prompts conditioned on the input instructions
received by the LLMs, our IAPT method works

well with the currently best decoder-based LLMs
in a wide collection of downstream tasks. (b) Our
work can reduce the number of soft tokens from
32-128 to 4 by improving the architectural design
of the prompt generators. (c) our work improves
the parameter efficiency by sharing the parameters
of prompt generators across Transformer layers.

3 Methods

3.1 Preliminaries

Transformer model Currently, the most widely
used open-sourced (large) language models adopt
the stacked Transformer architecture (Vaswani
et al., 2017). Denote the total number of Trans-
former layers in the LLM as L. Each Transformer
block is primarily constructed using two key sub-
modules: a multi-head self-attention (MHA) layer
and a fully connected feed-forward (FFN) layer.
Task format Denote the task’s training set as
Diain = (T, Ym),m = 1,2, ..., M, where M rep-
resents the number of samples. In this work, we
only consider the case where input x,,, and target
Ym are both text sequences. Moreover, we expect
the language modeling head of LLMs to decode
Ym during inference. That is, no additional lin-
ear prediction heads are considered for predicting
categorical or numerical values.

3.2 Motivation

Soft prompt tuning is a widely studied PEFT
method, which can achieve downstream task adap-
tations through a minimal number of tunable param-
eters compared to the (L)LM backbones. However,
soft prompt tuning is less applied or studied in the
era of large language models (Xu et al., 2023; Ding
et al., 2022; Xin et al., 2024) due to the following
drawbacks:

* Soft prompt tuning needs to concat a sequence
of soft prompts to the input sequence, which
inevitably increases the model complexity sig-
nificantly. According to the experiments in
(Zhu et al., 2023), P-tuning V2 (Liu et al.,
2022c) has to set the soft prompts’ sequence
length to at least 32 to make the LLM’s down-
stream task performance to be close to LoORA
(Hu et al., 2021).

* Soft prompt tuning can not flexibly adjust the
tunable parameter numbers if the soft prompt
length is fixed, thus can not conveniently make
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a tradeoff between the PEFT parameters’ ex-
pressiveness and the parameter efficiency.

* Most existing work on soft prompt tuning
methods assumes that the soft prompt is fixed
and shared across all samples within a task
or dataset. However, a task may encompass a
diverse range of samples, some of which are
easy while others are challenging. Therefore,
prompts need to exhibit sufficient diversity
to effectively modulate the attention patterns
of LLMs across different samples, thereby
achieving better fine-tuning performance.

Thus, in this work, we propose dynamically gen-
erating prompt generators based on the given in-
structions/prompts to address the above issues.

3.3 Instruction aware prompt generators

In this work, the prompt generators generate soft
prompts based on the input instructions received
by the LLMs. As shown in Figure 1, in order to
generate responses, the input instructions have to
go through the LLLM backbone to obtain the hid-
den representations. Denote the hidden state of the
input instruction with length l;,s right before the
current Transformer layer as h.> The prompt gen-
erator first down-projects h from dimension d to
dimension m (m < d) via a linear layer MLP g5y, -
Then, it obtains the prompt p with a fixed length [,
through a pooling operation Pooler(). The pooled
prompt will go through an activation function g and
be up-projected to dimension d via another linear
layer MLP,,;,. Formally,

p = MLP,,,(g(Pooler(MLP,,,(h)))). (1)

Then, the generated soft prompt p will be concate-
nated to h and go through the calculations of the
next Transformer layer.

Note that the decoder-based causal language
models (CLM) usually employ the KV cache mech-
anism’ during generation to reduce computation
complexity. Our prompt generators work seam-
lessly with the KV cache mechanism since the soft
prompts are generated when the input instruction
(or prompt) is passed through the LLM for the

Note that the soft prompts propagated from the previ-
ous layer will be discarded. That is, each Transformer layer
uses newly generated prompts. We will use experiments to
demonstrate the validity of this setting.

3See the blog post for an in-depth explana-
tion of KV-cache: https://www.dipkumar.dev/
becoming-the-unbeatable/posts/gpt-kvcache/.

first time. In the subsequent generation steps, the
generated soft prompts will be combined into the
KV caches and will be reused without repetitively
calling the prompt generators. In comparison, the
LoRA method provides reparameterizations to the
model parameters, and it has to participate in the
calculations during each generation step.

3.4 Self-attention based pooler

Our prompt generator must pool the input in-
structions of variable lengths to a fixed length. For
the pooling operation, the previous literature of-
ten chooses average pooling or max pooling (Kim,
2014; Zhu et al., 2021; Zhu, 2021a), which are
pointed out by the literature (Zhu, 2021b) that they
are prone to weaken important words when the
input sequence is long, thus dropping useful in-
formation during pooling. Thus, in this work, we
utilize the self-attention mechanism in our pooling
module Pooler(). Self-Attention assigns each to-
ken in the input instruction a weight to indicate the
importance of the token. A few crucial tokens to
the task will be emphasized, while the less impor-
tant tokens are ignored. Formally, we initialize a
learnable weight matrix W, € R™*Lsp_then the
self-attention based pooler’s calculation processes
are:

U= thaa
A = Softmax(U),
p=ATh, 2

where Softmax is the softmax function along the
first dimension, and T denotes matrix transpose.
In the above equations, each column of W, is
a trainable query vector designated to determine
the self-attention weights via dot products between
this query and each token. Then, the weights are
normalized across the sequence dimension via the
softmax normalization function. Corresponding to
different soft tokens, different query vectors in W,
can aggregate the input instructions in different as-
pects, thus providing a high-quality summarization
of the instruction’s semantic information.

3.5 Learned activation functions

The previous PEFT literature usually set the ac-
tivation functions in a PEFT module to be ReLU
(Mahabadi et al., 2021; Pfeiffer et al., 2021; Liu
et al., 2022b) and does not discuss whether this
setting is optimal. In addition, the PEFT modules’
activation functions in different Transformer layers
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are usually set to be identical. In our initial ex-
ploratory experiments (presented in Appendix H),
we find that (a) different downstream tasks require
different activation functions for the prompt gener-
ators in Equation 1. (b) it is beneficial for prompt
generators of different depths to have different acti-
vation functions. Thus, how can we find an optimal
setting for the prompt generators’ activation func-
tions? Exhaustive hyper-parameter search is time
and GPU-consuming. Thus, we are motivated to
set the activation function to be learnable during
training.

We resort to rational activation functions to make
the activation functions learnable. Empirically in-
troduced as Padé Activation Units (Molina et al.,
2019), rational activation functions are learnable
and can approximate common activation functions
and learn new ones. The rational activation func-
tion R(x) of order m, n is defined as follows:

Z?:o ajz!
LS et

R(z) 3)

where a; and b; are learnable parameters. The ratio-
nal activation functions are integrated in image clas-
sification models (Molina et al., 2019), sequence
modeling (Delfosse et al., 2021), the policy and
critic networks in reinforcement learning (Delfosse
et al., 2023), and Generative Adversarial Networks
(Boull’e et al., 2020).

Inspired by the above literature, we propose
learning the activation functions in prompt gen-
erators via the rational activation functions when
finetuning a downstream task. Denote the set of
parameters in the learnable activations as © and
the other parameters in the prompt generators as 2.
Following DARTS (Liu et al., 2019), we consider
O as architectural parameters and optimize them
along with the prompt generators’ parameters )
via bi-level optimization. Due to limited length, we
introduced bi-level optimization to Appendix B.

3.6 Cross-layer parameter sharing

To improve our IAPT method’s parameter ef-
ficiency, we propose sharing the parameters of
prompt generators across Transformer layers. De-
note the total number of Transformer layers in the
LLM as L. We ask every L > 0 prompt generators
to (a) share the parameters in MLP,;,, MLP 5.,
and the learnable activations, (b) but not to share
the parameters in the self-attentional Pooler. We
will use experiments to show that the self-attention

Pooler is the key that parameters of prompt genera-
tors can be shared across layers.

4 Experiments

In this section, we conduct a series of experi-
ments and analysis to evaluate our IAPT method.

4.1 Baselines

We compare our IAPT framework with the cur-
rent SOTA PEFT baseline methods.
Adapter-based tuning We consider the follow-
ing adapter tuning baselines: (1) Houlsby-Adapter
(Houlsby et al., 2019); (2) Parallel-Adapter pro-
posed by He et al. (2021); (3) AdapterDrop (Riicklé
et al., 2020); (4) Learned-Adapter (Zhang et al.,
2023c).

LoRA and its variants we consider the follow-
ing LoRA variants as baselines: (a) the original
LoRA (Hu et al., 2021); (b) AdaLLoRA (Zhang
et al., 2023b), which adaptively adjust the LoRA
ranks among different Transformer modules.
Prompt-based tuning For prompt-based tuning
methods, we compare with (a) P-tuning (Liu et al.,
2021). (b) P-tuning v2 (Liu et al., 2021). (c) IDPG
(Wu et al., 2022). (d) LPT (Liu et al., 2022b). We
adjust the tunable parameters of these methods via
reparameterization so that their tunable parameters
are comparable to our IAPT methods.

Other PEFT methods We also compare: (a) Bit-
Fit (Ben-Zaken et al., 2021), which fine-tunes the
model by adding tunable bias terms to the linear
layers of LLMs. (b) (IA)? (Liu et al., 2022a), which
multiplies learnable vectors to the hidden states in
different modules of the Transformer layer. (c) SSP
(Hu et al., 2022), which is a representative work
on combining different PEFT methods, including
LoRA and BitFit.

The baselines are implemented using their
open-sourced codes. We only adjust the hyper-
parameters related to tunable parameter numbers
to compare the baseline methods and our IAPT
method fairly. The hyper-parameter settings for the
baselines are detailed in Appendix F.

4.2 Datasets and evaluation metrics

We compare our approach to the baselines on
the following benchmark tasks: (a) four benchmark
question-answering tasks: SQuAD (Rajpurkar
et al., 2016) and three tasks from the SuperGLUE
benchmark(Wang et al., 2019) (BoolQ, COPA,
and ReCoRD). (b) three sentence level tasks from
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Method Tunable | SST-2 RTE QNLI BoolQ COPA ReCoRD SQuAD
Params | (acc) (acc) (acc) (acc) (acc) (fl-em) (fl-em)
Baselines
Housbly-Adapter 9.4M 929 806 924 84.5 90.4 89.8 87.3
Parallel-Adapters 9.4M 930 805 925 85.1 90.2 90.1 87.7
AdapterDrop 9.2M 9277 80.1 923 84.5 89.8 89.8 87.4
Learned-Adapter 9.5M 936 815 924 86.2 90.4 90.1 87.6
~ LoRA | 100M | 936 826 925 8.7 907 902 = 8.7
AdaLLoRA 10.0M 93.6 829 926 86.6 90.8 90.5 87.5
~ BIitFit | 109M | 929 819 922 8.6 905 8.8 872
(IA)? 9.8M 93.0 827 925 86.4 90.7 90.1 87.6
SSP 8.6M 935 826 926 86.4 91.1 90.0 87.4
~ P-Tuning | 94M | 924 797 919 841 896 892 865
P-tuning v2 9.4M 92.8 80.6 92.1 85.2 90.1 89.4 86.9
IDPG 8.4M 926 80.8 922 85.3 90.1 89.6 87.2
LPT 8.4M 928 813 923 85.7 90.2 89.9 87.4
Our proposed methods
IAPT 8.4M \ 943 839 932 87.5 91.9 91.2 88.5

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix C.7.

GLUE benchmark (Wang et al., 2018), SST-2, RTE,
QNLL (c) a constrained natural language genera-
tion task E2E (Novikova et al., 2017). (d) a math-
ematical solving dataset GSM8K (Cobbe et al.,
2021). (e) a SQL generation task WikiSQL (Zhong
etal., 2017). (f) Alpaca dataset (Taori et al., 2023)
for general-purpose instruction tuning, and MT-
Bench (Zheng et al., 2023), to evaluate the instruc-
tion tuning quality of LLMs. The dataset introduc-
tions, statistics, and prompt-response templates for
the above tasks are detailed in Appendix C. The
above tasks’ evaluation metrics or protocols are in
Appendix C.7.

4.3 Experiment Settings

Computing infrastures We run all our experi-
ments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
use the most recent open-sourced LLM, LlaMA-
2 7B released by Meta (Touvron et al., 2023) as
the pretrained backbone model. In the ablation
studies, we will also use the GPT2-large model
(Radford et al., 2019) and Pythia-1.4B (Biderman
et al., 2023).

Prediction heads When fine-tuning LlaMA-2
7B, we only consider the supervised fine-tuning
(SFT) setting (Ouyang et al., 2022). After receiv-
ing a prompt or instruction, all the predictions are
generated using the language modeling head (LM

head). No additional prediction heads are installed
for making categorical or numerical predictions.
For decoding during inference, we use beam search
with beam size 3.
Hyper-parameters for the IAPT framework
In our experiments, unless otherwise specified, we
set: (a) the length of soft prompts is I, = 4, (b)
the bottleneck dimension m of the IAPT prompt
generator is 256, (c) every L; = 4 layers share
the prompt generators’ parameters except for the
self-attention poolers, and (d) the hyper-parameters
of the rational activation are m = 6, n = 5, and
the learnable parameters a; and b; are initialized
by approximating the GeLU activation function.
Under the above settings, our IAPT method will
introduce 8.4M tunable parameters to the LIaMA-2
7B backbone. The hyper-parameters for training
are specified in Appendix F.
Reproducibility = We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

Due to limited length, other experimental set-
tings for the baseline methods and the training pro-
cedure are in Appendix F.

4.4 Main results

Results on the GLUE and SuperGLUE tasks
The experimental results on the three classification
tasks and 4 question answering tasks are presented
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Figure 2: Performances under different tunable parameter budgets. The z-axis represents the number of tunable
parameters, and the y-axis represents the performance score.

Method E2E GSMS8K WikiSQL
(rouge-1) (acc) (acc)
LPT 70.4 34.2 84.3
LoRA 70.7 35.1 85.4
AdaLLoRA 70.8 35.2 85.2
~IAPT | 713 364 859

Table 2: Results for different PEFT methods on the E2E,
GSMSK, and WikiSQL benchmark. The backbone LM
is LlaMA-2 7B.

Method | Avg GPT-4 score () ROUGE-L (1)
_AdaLoRA | 695 _______ 511
IAPT 7.19 52.8

Table 3: The performance of instruction tuning using
the AdaLoRA and IAPT methods. The backbone model
is LlaMA-2 7B. 1 means the metric is higher the better.

in Table 1. We present the number of tunable pa-
rameters in the second column of Table 1. Table
1 reveals that our IAPT method outperforms the
baseline methods across all seven tasks, with com-
parable or fewer tunable parameters. In particu-
lar, IAPT outperforms the previous SOTA prompt
tuning methods like P-tuning V2 and LPT and
the strong LoRA style baselines like LoRA and
AdalLoRA with comparable parameters. These re-
sults demonstrate that our method is good at down-
stream task adaptation of large language models.
Results on the three specialized generation task
For the E2E, GSM8K, and WikiSQL benchmarks,
the results are reported in Table 2. The results
show that our IAPT method outperforms LoRA,
AdalLoRA, and LPT on the three tasks.

Results for general-purpose instruction tuning

After the LlaMA-2 7B is fine-tuned on the Alpaca
dataset with our IAPT and AdaLLoRA methods, we
utilize the 80 instructions in the MT-Bench as the
test set. We follow the current standard practice
of utilizing GPT-4 as an unbiased reviewer (Zheng
et al., 2023). The protocol of utilizing GPT-4 as the
reviewer and scorer is specified in Appendix C.7.
The average score provided by GPT-4 is presented
in Table 3, along with the ROUGE-L scores calcu-
lated by considering the GPT-4’s answers as ground
truth. Consistent with the previous experiments
(Table 1 and 2), our IAPT method outperforms
the AdalLoRA method in terms of the GPT-4 eval-
uation scores and ROUGE-L, demonstrating that
IAPT can enhance the instruction tuning quality of
large language models. A case study of answers
generated by different methods is presented in Ta-
ble 9 of Appendix K, showcasing that IAPT leads
to better instruction-tuned LLMs.

4.5 Ablation studies and analysis

Analysis of the inference efficiency To demon-
strate the inference efficiency of our IAPT method,
we now compare the GPU memory and gener-
ation speed of IAPT and LoRA. In this experi-
ment, LORA parameters are not merged to the back-
bone to mimic the single-LLM multi-tenant setting
(Chen et al., 2023). The detailed settings for effi-
ciency analysis are presented in Appendix G. We
present two metrics for measuring efficiency: (a)
peak memory cost during generation. (b) tokens
generated per second (tps). The results are pre-
sented in Table 4.

From Table 4, one can see that under beam sizes
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Method | Beam size Speed (tps) Memory cost (MiB)
1 25.1 14616
il SO S 29 16104
1 344 14490
IAPT 3 27.9 15946

Table 4: The memory and speed of LlaMA-2 7B for
generating responses given the input instruction (Ap-
pendix G), with different PEFT methods.

1 and 3, the IAPT method has a comparable mem-
ory cost with LoRA, but the generation speed is
significantly higher. The speed advantages of IAPT
come from the following factors: (a) our method
only adds four soft tokens, which is relatively short
compared to the instructions received by the mod-
ern LLMs (Ouyang et al., 2022). (b) our prompt
generators are lightweight and efficient during in-
ference. (c) The soft prompts are only generated
once when an input instruction is passed to the
LLM and right before generating the first new to-
ken. The soft prompts are integrated into the KV
cache in the following generation steps. In contrast,
the LoRA method requires the model to call the
LoRA modules at each generation step, resulting
in higher latency.

Ablation study of IAPT framework We now
consider the following variants of IAPT: (a) IAPT-1
substitutes the self-attention pooler to average pool-
ing. (b) IAPT-2 sets Ly = 16 and m = 1024. (c)
IAPT-3 sets Ly = 1 and m = 64. (d) IAPT-4 uses
the GeLU activation function for every prompt gen-
erator. (e) IAPT-5 uses the ReLLU activation func-
tion for every prompt generator. (f) [APT-6 uses
ReLU for the first 16 layers’ prompt generators,
and GeLU for the deeper 16 layers’. (h) IAPT-7
uses GeLU for the first 16 layers’ prompt genera-
tors, and ReL.U for the deeper 16 layers’. The ex-
perimental results on the BoolQ, E2E, and SQuAD
tasks are reported in Table 5. The results show
that IAPT under the default settings (as in Table 1)
outperforms the four variants. In addition, (a) com-
paring IAPT-1 to IAPT shows that the self-attention
poolers provide more practical information aggre-
gation. In addition, self-attention poolers provide
adaptive feature extraction for cross-layer param-
eter sharing. (b) Comparing IAPT to IAPT-2 and
IAPT-3 demonstrates that under the comparable
tunable parameters, cross-layer parameter sharing
of prompt generators allows for higher values of m,
thus improving the capacity of IAPT. However, ag-
gressively sharing prompt generators across layers
could hurt downstream performance. (c) Compar-

BoolQ E2E SQuAD

Method (acc) (rouge-l) (fl-em)
IAPT 87.5 71.3 88.5

"IAPT-1 | 89 707 880

IAPT-2 86.2 70.2 87.3
IAPT-3 87.2 71.0 88.1
IAPT-4 86.7 70.6 87.8
IAPT-5 86.4 70.7 87.7
IAPT-6 86.8 70.7 88.0
IAPT-7 86.6 70.5 87.9

Table 5: The comparison of TAPT’s variants on the
BoolQ, E2E, and SQuAD tasks. The backbone model
is LlaMA-2 7B.

ing IAPT to IAPT-4, IAPT-5, IAPT-6 and IAPT-7
demonstrates the necessity of learning activation
functions for the prompt generators.

Comparisons under different budgets of tun-
able parameters We vary the budget of tunable
parameters for IAPT by modifying the values of
m = 256 to {64, 128, 512, 1024, 2048, 4096}.
We also vary the LPT and LoRA methods’ tunable
parameter numbers. The experimental results on
the BoolQ and E2E tasks are presented in Figure
2(a) and 2(b). The results show that under differ-
ent tunable parameter budgets, our IAPT method
can consistently outperform the LoRA and LPT
methods.

Effects of different lengths of soft prompts We
vary the length [, from 4 to {1, 2, 8, 16, 32} for
IAPT and LPT. The experimental results on the
BoolQ task are presented in Figure 3 of Appendix
I. The results show that our IAPT method is less
sensitive to the prompt length in terms of down-
stream performance and performs better than the
LPT baseline under different prompt lengths. IAPT
effectively aggregates the semantic features of the
input instructions with the help of the self-attention
pooler and learnable activations, thus obtaining bet-
ter downstream performances.

Ablation on the pretrained backbones Our
main experiments are conducted on the LlaMA-2
7B model. To demonstrate the broad applicabil-
ity of our method, we now conduct experiments
on GPT2-large and Pythia-1.4b. The results are
reported in Table 8. We can see that on these two
backbones, our method can also outperform the
baseline methods.
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5 Conclusion

This work presents the instruction aware prompt
tuning (IAPT) method, an innovative method for
the parameter-efficient fine-tuning of large lan-
guage models. Upon the hypothesis that different
input instructions require different soft prompts, we
propose to generate soft prompts from the input in-
structions. We propose three recipes for improving
our framework’s downstream performance: (a) self-
attention pooling; (b) learning different activation
functions during fine-tuning for different prompt
generators of different depth; (c) cross-layer param-
eter sharing of prompt generators. Our method is
convenient to implement and off-the-shelf. Experi-
ments on various tasks demonstrate that our IAPT
method outperforms the baseline methods, while
being efficient for inference.

Limitations

We showed that our proposed method can greatly
improve the performance of parameter-efficient tun-
ing on diverse tasks and different pretrained mod-
els (i.e., LlaMA-2 7B, RoBERTa-large and GPT2-
large). However, we acknowledge the following
limitations: (a) the more super-sized open-sourced
LLMs, such as LlaMA-2 13B and 70B, are not ex-
perimented due to limited computation resources.
(b) Other tasks in natural language processing, like
information extraction, were also not considered.
But our framework can be easily transferred to
other backbone architectures and different types of
tasks. It would be of interest to investigate if the su-
periority of our method holds for other large-scaled
backbone models and other types of tasks. And we
will explore it in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the soft prompt based tuning in terms of
better downstream performances whiling pursu-
ing efficiency. The used datasets are widely used
in previous work and, to our knowledge, do not
have any attached privacy or ethical issues. In this
work, we have experimented with LIaMA-2 7B, a
modern large language model. As with all LLMs,
LIaMA-2’s potential outputs cannot be predicted
in advance, and the model may in some instances
produce inaccurate, biased or other objectionable
responses to user prompts. However, this work’s in-
tent is to conduct research on different fine-tuning

methods for LLMs, not building applications to
general users. In the future, we would like to con-
duct further tests to see how our method affects the
safety aspects of LLMs.
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A Additional related works
A.1 Adapter-based tuning.

One of the most important research lines of
PEFT is adapter-based tuning. Adapter (Houlsby
et al., 2019) inserts adapter modules with bottle-
neck architecture between every consecutive Trans-
former (Vaswani et al., 2017) sublayers. Adapter-
Fusion (Pfeiffer et al., 2021) only inserts sequential
adapters after the feed-forward module. Adapter-
based tuning methods have comparable results with
model tuning when only tuning a fraction of the
backbone model’s parameter number. Due to their
strong performance, a branch of literature has in-
vestigated the architecture of adapters in search
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of further improvements. He et al. (2021) ana-
lyze a wide range of PETuning methods and show
that they are essentially equivalent. They also pro-
pose the general architecture of PEFT, and derive
the Parallel Adapter which connects the adapter
modules in parallel to the self-attention and MLP
modules in the Transformer block. AdapterDrop
(Riicklé et al., 2020) investigates the efficiency of
removing adapters from lower layers. Adaptive
adapters (Moosavi et al., 2022) investigate the acti-
vation functions of adapters and propose to learn
the activation functions of adapters via optimiz-
ing the parameters of rational functions as a part
of the model parameters. Compacter (Mahabadi
et al., 2021) uses low-rank parameterized hyper-
complex multiplication (Le et al., 2021) to com-
press adapters’ tunable parameters. LST (Sung
et al., 2022) improves the memory efficiency by
forming the adapters as a ladder along stacked
Transformer blocks, and it enhances the adapter
module by adding a self-attention module to its
bottleneck architecture. (Sung et al., 2022; Jie and
Deng, 2022) try to add different encoding opera-
tions, like self-attention operations and convolu-
tions between the bottleneck structure of adapters,
and achieve better performances. Learned-Adapter
(Zhang et al., 2023c¢) builds upon the above adapter-
based methods and enhance the performance of
adapter tuning by automatically learning better ar-
chitectures for adapters.

A.2 Literature on the LoORA methods

Since LoRA is the most popular PEFT method
in the era of large language models, there are many
works that are orthogonal to AdalLoRA, SoRA and
our work that are devoted to improve LoRA on
many different aspects. QLoRA (Dettmers et al.,
2023) proposes a novel quantization method that
can significantly reduce the memory consumptions
of LLMs during LoRA fine-tuning. LoRA-FA
(Zhang et al., 2023a) freezes parts of the randomly
initialized LoRA matrices. (d) VERA (Kopiczko
et al., 2023) investigate whether one could froze
the randomly initialized LoRA matrices and only
learns a set of scaling vectors. Tying LoRA matri-
ces across layers are also investigated by VERA.

B Appendix: introduction to bi-level
optimization

The bi-level optimization (Liu et al., 2019) opti-
mize © conditioned on the optimized parameters

of 2*. Denote the training set as Dyyqin, and the
validation set as D,,,;. The inner and outer levels
of optimization are conducted on these two sepa-
rate splits of the task dataset, which is analogous
to validating architectures trained on Dy, 4y, Using
a different split D,,; to avoid over-fitting. Thus the
optimization objective is:

Hl@in ['(Dvala Q*, @)a
s.t. QF = arg mén L(Dirain, 2, 0), 4)

where £() is the objective function on a given
downstream task, such as cross entropy loss. The
above bi-level optimization problem is approxi-
mated with an alternating optimization strategy.
The gradients of (2 are calculated with batches of
samples from Dy,4n, and the gradients of © are
calculated on D,,;.

C Appendix for the datsets and
evaluation metrics

C.1 Datasets from GLUE and SuperGLUE

We experiment on three tasks from the GLUE
(Wang et al., 2018) benchmark: (a) (a) a senti-
ment classification task, SST-2. (b) two benchmark
natural language inference tasks, RTE and QNLIL.
We also experiment with three question-answering
tasks: (a) two question answering tasks in the for-
mat of binary choices, COPA and BoolQ. (b) A
SQuAD (Rajpurkar et al., 2016) style question an-
swering task, ReCoRD.

Since the original test sets are not publicly
available for these tasks, we follow Zhang et al.
(2020); Mahabadi et al. (2021) to construct the
train/dev/test splits as follows to ensure a fiar com-
parison: (a) for datasets with fewer than 10k sam-
ples (RTE, COPA, BoolQ), we divide the original
validation set in half, using one half for validation
and the other for testing. (b) for larger datasets, we
split 1k samples from the training set as the devel-
opment set, and use the original development set
as the test set. The detailed statistics of the GLUE
and SuperGLUE benchmark tasks is presented in
Table 6.

C.2 The SQuAD task

Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) is a reading comprehension
dataset, consisting of questions posed by crowd-
workers on a set of Wikipedia articles, where the
answer to every question is a segment of text, or
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Datasets  #train #dev  #test |)| Type Labels Metrics
SuperGLUE tasks
BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choicel, choice2 acc
ReCoRD 101k 1k 7.4k - Question Answering - fl-em
GLUE tasks
SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc
QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks
SQuAD 87k 1k 5.9k - Question Answering - fl-em
E2E 42k 4.6k 4.6k - NLG - rouge-1
GSMSK 7K 0.5K 1K - Math reasoning - acc
WikiSQL 61k 9K 17K - SQL generation - acc
Alpaca 50k 1k - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 6: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. || is the

number of classes for a classification task.

span, from the corresponding reading passage, or
the question might be unanswerable. This task is
one of the most widely studied question answering
task in the field.

In this work, we use the v1.1 version of SQuAD.
Since the original test sets are not publicly avail-
able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021) and split 1k samples from
the training set as the development set, and use
the original development set as the test set. The
detailed statistics of this task is presented in Table
6.

C.3 E2E benchmark

The E2E benchmark dataset for training end-to-
end, data-driven natural language generation sys-
tems in the restaurant domain. It asks a model to
generate natural utterances based on a set of given
key contents. This dataset has a 42061/4672/4693
train/dev/test split.

C.4 GSMSK benchmark

GSMBSK is a dataset of 8.5K high quality linguis-
tically diverse grade school math word problems
created by human problem writers. The dataset
is segmented into 7.5K training problems and 1K
test problems. These problems take between 2 and
8 steps to solve, and solutions primarily involve
performing a sequence of elementary calculations
using basic arithmetic operations (+— X +) to reach
the final answer. A bright middle school student
should be able to solve every problem. It can be
used for multi-step mathematical reasoning. We

randomly select 0.5k samples from the training set
to be the dev set.

C.5 WikiSQL dataset

WikiSQL consists of a corpus of 87,726 hand-
annotated SQL query and natural language ques-
tion pairs. These SQL queries are further split into
training (61,297 examples), development (9,145
examples) and test sets (17,284 examples). It can
be used for natural language inference tasks related
to relational databases. In this work, we will ask
the LLMs to generate SQL queries based on the
given natural language questions.

C.6 Instruction tuning

Instruction tuning is an important method to im-
prove the general capabilities of large language
models (Ouyang et al., 2022). With the rise of
large language models in the scale of 10B param-
eters or more, like GPT-3, TS5, PalLM, researchers
have actively explored the few-shot or zero-shot
capabilities of these models. (Mishra et al., 2021)
find that fine-tuning these LLMs on a large scale
datasets containing hundreds of NLP tasks signif-
icantly improves the zero-shot performances on
unseen tasks, establishing the scaling law of task
numbers. The previous works like (Wei et al., 2021)
and TO (Sanh et al., 2021) establishes the instruc-
tion tuning datasets by transforming the traditional
NLP tasks into a unified prompt format. Instruct-
GPT (Ouyang et al., 2022) conducts instruction
tuning using the dataset constructed based the user
queries from the OpenAl API users. Note that this
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work is also a seminal work for human feedback
learning with reinforcement learning. However, the
complete instruction tuning dataset from (Ouyang
et al., 2022) remains closed. With the launch of
ChatGPT, (Taori et al., 2023) (Alpaca) constructs
an instruction tuning dataset with diverse topics
using the self-instruct techniques.

For our experiment, we employ the Alpaca
dataset (Taori et al., 2023) for instruction tuning.
Specifically, we employs its cleaned version®. This
dataset comprises 51K instructions and demonstra-
tions, and is suitable for instruction tuning. The
cleaned version corrects multiple issues such as
hallucinations, merged instructions, and empty out-
puts. We set aside 1000 samples in the Alpaca
dataset as the validation set.

C.7 Evaluation metrics/protocols

For the three GLUE tasks we experiment on, we
report accuracy (denoted as acc). For ReCoRD, we
report the average of the F1 score and the exact
match score (denoted as f1-em). For the BoolQ
and COPA tasks, we report accuracy. The above
choices of evaluation metrics strictly follow (Wang
et al., 2018) and (Wang et al., 2019).

For the SQuAD dataset, we also report the av-
erage of the F1 score and the exact match score
(denoted as fl1-em).

For the E2E benchmark, following (Novikova
et al., 2017), we report the ROUGE-L metric (de-
noted as rouge-1). We rely on the HuggingFace
Evaluate package’ for computing this metric.

For the GSMB8K task, we will directly consider
the correctness of the final answers. Thus, we re-
port accuracy (denoted as acc).

For the WikiSQL, we will consider the correct-
ness of the generated SQL queries. A predicted
SQL query is correct if and only if it can be exe-
cuted and obtains the same results with the ground
truth.

For evaluating the quality of instruction tuned
LlaMA-2 7B, we follow the current common prac-
tice of utilizing GPT-4 as a unbiased reviewer
(Zheng et al., 2023). 80 instructions from the MT-
Bench is set as a test set. We generate model re-
sponses from a fine-tuned model with beam size 5
with the generation function in Huggingface Trans-
formers (Wolf et al., 2020a). Then we compare
AdalLoRA and IAPT’s answers with GPT-4. For

4https://hugging1°ace.co/datase’cs/yahma/

alpaca-cleaned.
5https ://huggingface.co/docs/evaluate/index

each instruction in MT-Bench, GPT-4 (OpenAl,
2023) is asked to write a review for both answers
from the two methods, and assigns a quantitative
score on a scale of 10 to each response. The
prompts of instructing GPT-4 for evaluation is pre-
sented in Appendix E. ROUGE-L scores computed
by considering the answers generated by GPT-4 as
the ground truth are also reported.

D Prompt templates for fine-tuning
LlaMA-2 7B

Since we fine-tune LlaMA-2 7B without intro-
ducing task-specific prediction heads, we need to
transform all the tasks into a prompt-response for-
mat. First, following LIaMA-2 (Touvron et al.,
2023), we use a system prompting template, in
which <query> denotes the user input, <response>
denotes the assistants’ targeted responses. All the
samples will be input into this template before be-
ing fed to the LLMs.

<s>[INST] <<SYS>>

You are a helpful, respectful and honest
assistant.

<</SYS>>

<query>[/INST]<response></s>

Now we present the prompt-response template
for each task.
Templates for RTE and QNLI Since these two
tasks are NLI tasks, the samples in them consists
of two input text, [sentencel] and [sentencel], and
a label [label_name] (entailment or not entailment).
Thus, we use the following templates:

Template for prompt:

sentence 1: [sentencel]

sentence 2: [sentencel]

Are sentence 1 and sentence 2 have
entailment relation or not?

Template for response:
[label_name]

Templates for SST-2 The samples in this task con-
sists of one input text, [sentence], and a label [la-
bel_name] (positive or negative).

Template for prompt:

[sentence]
The sentiment of the given sentence is:

Template for response:

[label_name]
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Templates for BoolQ The samples in this task

consists of a reference document, [doc], a query,

[query], and a label [label_name] (yes or no).
Template for prompt:

Reference document:
[doc]

Question:

[query]

Template for response:
[label_name]

Templates for COPA The samples in this task con-
sists of a premise, [premise], two choices, [choicel]
and [choice2], a query, [query], and a label [la-
bel_name] (1 or 2, indicating which choice is con-
sistent with the premise).

Template for prompt:

Premise:
[premise]
Choice 1:
Choice 2:
Question:
[query]

[choicel]
[choice2]

Template for response:
[label_name]

Templates for ReCoRD and SQuAD The sam-
ples in these two tasks consist of a context docu-
ment, [context], a question, [query], and a answer-
ing span, [answer].

Template for prompt:

Context:
[context]
Question:
[query]

Template for response:
Lanswer]

Templates for E2E The samples in this task con-
sists of a reference [ref], consisting required infor-
mation, and a targeted response, [target], which is
a customer review written according to the refer-
ence’s contents.

Template for prompt:

Reference:

[ref]

Generate a customer review following the
given reference.

Template for response:

[target]

Templates for GSM8K The samples in this task
consists of a math question [question], and a tar-
geted response, [target] which is the reasoning or
calculation steps for the math question.

Template for prompt:

Answer the following math quesition:
[ref]
Instruction: please think step by step.

Template for response:
[target]

Templates for WikiSQL The samples in this task
consists of a natural language query [query], and
information for the SQL table [table_info], and a
targeted response containing the SQL query, [tar-
get] which is the reasoning or calculation steps for
the math question.

Template for prompt:

Answer the following query by writing a
SQL query on the given table:

[query]

Table information:

[table\_info].

Template for response:

[target]

E Prompt templates for GPT-4
evaluations

In this work, we utilize the powerful LLM GPT-4
(OpenAl, 2023) as the evaluator for comparing the
instruction tuning quality. As a reviewer, GPT-4
will receive a query [query], two responses, [re-
sponsel] and [response2], from two assistants. We
will ask GPT-4 to write a review for each response,
assessing the quality of the response, and then ask
GPT-4 to assign a score on a scale of 10 to each
response.

Template for prompt:

Task Introduction

you will be given a query, and two responses
from two assistants,

could you compare the two responses,

and do the following:

(1) write a concise review for each
assistant's response, on how well the
response answers the query, and whether
it will be helpful to humans users, and any
issues in the response;

(2) assigns a quantitative score on a scale
of 10 to each response, reflecting
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your assessment of the two responses
Query:

[query]

Response 1 from assistant 1:
[responsel]

Response 2 from assistant 2:
[response?2]

F Appendix for Experimental settings

Here, we provide more details for experimental

settings.
Hyper-parameters for the baseline PEFT meth-
ods For the P-tuning method, the soft prompts’
length is 64, and the soft prompts is first initialized
with dimension 36, and then a learnable projection
layer projects it to the same dimension with the
LlaMA-2 backbone. For P-tuning V2, the number
of prompt tokens at each layer is set to 64. For LPT
and IDPG, the bottleneck dimension is set to 1024,
and the number of soft tokens is set to 4.

For the adapter-based methods, Houlsby-
Adapter and AdapterDrop, the bottleneck dimen-
sion is set to 18, and the adapter modules are added
on the self-attention and feed-forward module. For
the Parallel-Adapter and Learned-Adapter, the bot-
tleneck dimension is set to 36, and the adapter
modules are connected to the whole block.

For LoRA, the initial rank at each module is set
to 4. For AdalLoRA, the initial rank at each module
is set to 8, and half of the rank budget is pruned
during fine-tuning.

We adjust the sparsity for SSP so that the number
of tunable parameters is comparable with IAPT and
the other baselines. For BitFit, the bias vectors are
initialized with dimension 8, and then a learnable
projection layer projects it to the same dimension
with the LIaMA-2 backbone. For (IA)3, the acti-
vation adjusting vectors are added the Query, Key,
and Up activations. The adjusting vectors are ini-
tialized with dimension 16, and then a learnable
projection layer projects it to the same dimension
with the LlaMA-2 backbone.

Training settings for PEFT methods We use
the HugginFace Transformers (Wolf et al., 2020b),
PEFT (Mangrulkar et al., 2022), or the original
code repositories for implementing all the methods,
and for training and making predictions. For fine-
tuning LIaMA-2 7B model, the maximum sequence
length is set to 2048. The maximum training epoch
is set to 10. The batch size is set between 16 for
task with less than 10k training set, and 128 oth-

erwise. We use AdamW as the optimizer with a
linear learning rate decay schedule and 6% of the
training steps for warm-up. The learning rate is
set to le-4. For the bi-level optimizaiton of IAPT,
the validation set is the same with the dev set. The
hyper-parameters for calculating the gradients of
the architectural parameters are the same with the
normal training procedure, except that the learn-
ing rate is le-6. The other hyper-parameters are
kept the same with (Wolf et al., 2020b). In ev-
ery 200 steps, the model is evaluated on the dev
set. Patience is set to 10, that is, if the model does
not achieve a lower development set loss for 10
evaluation runs, the training stops early. The best
checkpoint on the dev set is used to run predictions
on the test set.

G Appendix: settings for efficiency
analysis

In the Table 4 of the main contents, we conduct
analysis on the IAPT and other PEFT methods’
memory and speed during inference.

The example instruction we used in this analysis
is presented below.

Generate a blog post of 500 words or less
that discusses the following news article:

The Department of Child Protection (DCP)
must pay compensation and medical expenses
to a youth worker who developed pericarditis
after getting a Covid booster under a
workplace vaccination directive, the South
Australian Employment Tribunal has ruled.

In a decision handed down on 15 January
2024, the Tribunal determined that Daniel
Shepherd’s employment was “a significant
contributing cause” to his injury, which
has since rendered him incapable of
performing his role at work.

Shepherd got a Covid booster in February
2022 as a requirement for his ongoing
employment with the DCP. The DCP admitted
that Shepherd’s pericarditis had been
caused by the booster, but denied
responsibility for the injury, arguing that
it did not arise from Shepherd’s employment,
but from a lawful State Government Public
Health Order (PHO), issued under the
Emergency Management Act 2004 (EMA).
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BoolQ E2E SQuAD

Method (acc) (rouge-l) (fl-em)
IAPT 87.5 71.3 88.5
IAPT-gelu 86.7 70.6 87.8
[APT-relu 86.4 70.7 87.7
[APT-relu-gelu | 86.8 70.7 88.0
IAPT-gelu-relu | 86.6 70.5 87.9

Table 7: The experimental results for the pilot experi-
ments. The backbone model is LIaMA-2 7B.

We restrict the number of newly generated to-
kens to be 32 under the method of beam search with
beam size equal to 1 or 3. The length of the initial
instruction is 278 after adding the soft prompts and
special tokens under the IAPT method, and 274
under the LoORA method. The LLM backbone is
LlaMA-2 7B model. We run the generation process
for 100 times to calculate the average metric values,
reducing the randomness.

H Appendix: pilot experiments

We now conduct pilot experiments on the BoolQ
and E2E tasks to demonstrate the necessity of learn-
ing activation functions for the prompt generators.
The other hyper-parameters or experimental set-
tings are kept the same with Section 4.3 and F.

We now compare three variants of IAPT: (a)
TAPT-relu, which is to set the activation function
of the prompt generators to ReLLU. (b) IAPT-relu,
which is to set the activation function of the prompt
generators to GeLU. (c) IAPT-relu-gelu, which is
to set the activation functions of the prompt gener-
ators on the lower 16 Transformer layers to ReLU,
and set those on the 16 higher Transformer lay-
ers to GeLU. (d) IAPT-gelu-relu, which is to set
the activation functions of the prompt generators
on the lower 16 Transformer layers to GeLU, and
set those on the 16 higher Transformer layers to
ReLU. The results on the BoolQ and E2E tasks are
presented in Table 7.

The results demonstrate that: (a) different down-
stream tasks may favor different activation func-
tions for the prompt generators. (b) applying differ-
ent activation functions for different Transformer
layers may result in performance gains. The results
demonstrate that there is room for improvements if
we set the prompt generators’ activation functions
properly. However, such a setting is intractable to
be set manually.

BoolQ
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Figure 3: Performances under different soft prompt
lengths.

BoolQ E2E SQuAD
Method (acc) (rouge-l) (fl-em)
Results for GPT-2 large
LPT 67.2 66.1 43.2
LoRA 67.5 66.6 43.8
AdalLoRA | 67.6 66.5 43.7
- IAPT | 683 672 446
Results for Pythia-1.4b large
LPT 71.3 68.2 50.1
LoRA 71.6 68.4 50.4
AdalLoRA | 71.5 68.5 50.4
~ IAPT | 723 691 = 513

Table 8: Results for different PEFT methods on the
BoolQ, E2E and SQuAD benchmarks. The backbone
LMs are GPT2-large and Pythia-1.4b.

I Ablation on the soft prompt length

We vary the prompt length [, from 4 to {1, 2, 8,
16, 32} for IAPT and LPT, and present the results
on the BoolQ task in Figure 3.

J Ablation on the pretrained backbones

Our main experiments are conducted on the
LlaMA-2 7B model. To demonstrate that our
method works well regardless of the backbone mod-
els, we now conduct experiments on the GPT-2
large (774M parameters) and Pythia-1.4b models.
The other experimental settings are kept the same
with the main experiments (Table 1). We conduct
experiments on the BoolQ, E2E and SQuAD tasks.
The results are reported in Table 8.

K Case studies of Instruction tuning

In the Section 4.4 of the main content, we present
the overall performance of IAPT and AdaLoRA
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on the MT-Bench, after fine-tuning LIaMA-2 7B
on the Alpaca dataset. Now we present concrete
examples in Table 9 to showcase the Superiority of
IAPT.
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Query

One morning after sunrise, Suresh was standing facing a pole. The shadow of
the pole fell exactly to his right. Can you tell me the direction towards which
the shadow was pointing - east, south, west, or north? Explain your reasoning
steps.

IAPT’s response

Responses

GPT-4’s
comments

GPT-4 score

The shadow of the pole fell exactly to Suresh’s right, which means that the
shadow was pointing towards his left. Since the sun rises in the east and sets in
the west, the shadow of the pole was pointing towards the west. Therefore, the
direction towards which the shadow was pointing was west.

Assistant 1 provides a clear and logical explanation. They correctly identify
that since the shadow falls to the right of Suresh, it means that he is facing
north, because the sun rises in the east and its light comes from that direction,
casting shadows towards the west. The assistant’s reasoning is accurate
considering that sunrise has been mentioned, thus we can deduce that Suresh
must be facing north for the shadow to fall on his right side (west). The
explanation is easy to understand and would be helpful to human users looking
for a clear answer with justification. However, there is an internal contradiction
in Assistant 1’s response; initially they state "the shadow was pointing towards
his left" which does not align with their correct conclusion or premise.

Score: 7/10 - While Assistant 1 reaches the correct conclusion (that the shadow
points west), they mistakenly describe how shadows fall relative to Suresh’s
position first (claiming it falls towards his left), which could confuse users.

AdaloRA’s response

Responses

GPT-4’s
comments

GPT-4 score

The shadow of the pole fell exactly to Suresh’s right, indicating that the sun was
rising in the east.

Assistant 2 starts well by indicating where Suresh must be looking based on
where his shadow falls but fails to complete their reasoning. They point out
correctly that if a pole’s shadow falls exactly to someone’s right after sunrise,
it indicates that person must be facing north with sunlight coming from their
left (east), casting a shadow toward their right (west). However, Assistant 2
does not provide this final step of information—identifying explicitly what
direction this would make the shadow point—which makes their response
incomplete when answering directly what was asked in terms of cardinal
directions.

Score: 5/10 - Assistant 2 identifies an important piece of information regarding
how shadows are cast at sunrise but doesn’t fully answer what direction toward
which the shadow points nor do they offer any steps of reasoning beyond noting
sun placement at sunrise. This may leave human users somewhat unclear about
how they’ve reached any implicit conclusions or if additional reasoning should
follow.

Table 9: An example showcasing that the fine-tuning quality of IAPT is higher than AdaL.oRA.
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