
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14104–14115
August 11-16, 2024 ©2024 Association for Computational Linguistics

GPT is Not an Annotator: The Necessity of Human Annotation in Fairness
Benchmark Construction

Virginia K. Felkner
Information Sciences Institute

University of Southern California
felkner@isi.edu

Jennifer A. Thompson
Jewish Studies Program

California State University, Northridge
jennifer.a.thompson@csun.edu

Jonathan May
Information Sciences Institute

University of Southern California
jonmay@isi.edu

Abstract

Social biases in LLMs are usually measured via
bias benchmark datasets. Current benchmarks
have limitations in scope, grounding, quality,
and human effort required. Previous work
has shown success with a community-sourced,
rather than crowd-sourced, approach to bench-
mark development. However, this work still
required considerable effort from annotators
with relevant lived experience. This paper ex-
plores whether an LLM (specifically, GPT-3.5-
Turbo) can assist with the task of developing a
bias benchmark dataset from responses to an
open-ended community survey. We also ex-
tend the previous work to a new community
and set of biases: the Jewish community and
antisemitism. Our analysis shows that GPT-3.5-
Turbo has poor performance on this annotation
task and produces unacceptable quality issues
in its output. Thus, we conclude that GPT-
3.5-Turbo is not an appropriate substitute for
human annotation in sensitive tasks related to
social biases, and that its use actually negates
many of the benefits of community-sourcing
bias benchmarks.

1 Introduction

Though seemingly ubiquitous, large language mod-
els (LLMs) still treat users unequally and ex-
hibit harmful social biases (Weidinger et al., 2022;
Shelby et al., 2023).1 Quantitative LLM bias mea-
surement is a necessary first step to understanding
and mitigating bias-related harms of AI systems.
Measurement is essential because it allows model
creators to understand potential fairness issues with

1Clear and explicit definitions of the terms bias and harm
are essential for productive discussion of AI fairness (Blod-
gett et al., 2020). For purposes of this paper, we define bias
as “substantially differing treatment of a marginalized group
relative to a dominant group that replicates existing social
stereotypes about the marginalized group” and harm as “phys-
ical, psychological, financial, or professional events that affect
a person in perceived negative way.”

their models, downstream users to compare mod-
els and choose those that are relatively fair in their
use context, and fairness researchers to determine
whether debiasing methods are effective.

The current standard for bias measurement in
LLMs is paired sentence bias benchmarks, which
consist of pairs of similar sentences and generally
rely on comparing a model’s probability of pre-
dicting the stereotypical sentence to the probability
of predicting a contrasting sentence. There are
significant quality and grounding issues with most
current benchmarks, especially those developed via
crowd-sourcing. Current methods for community-
sourced benchmark development, which mitigate
some of the problems with crowd-sourcing, require
significant human effort for annotation of survey
responses. This work is time-consuming; in an un-
funded, community-led benchmark development
effort, this is either cost-prohibitive or requires ask-
ing annotators to work for free. This annotation
also places a significant psychological burden on
annotators.

In order to maintain the usefulness and partic-
ipatory nature of community-sourced bias bench-
marks while reducing the financial and psychologi-
cal costs, we tested model-assisted harm extrac-
tion. The main contributions of our work are as
follows:2

• We introduce WinoSemitism, a community-
sourced benchmark for antisemitism, general-
izing method of Felkner et al. (2023).

• We create GPT-WinoQueer and GPT-
WinoSemitism, which are versions of the WQ
and WS datasets annotated by GPT-3.5-Turbo
instead of human experts.

2Our code and data are available at https://github.
com/katyfelkner/winosemitism
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• We provide a thorough quantitative and qual-
itative comparison of human-annotated and
model-annotated datasets, finding significant
quality issues with model annotations.

2 Related Work

The current standard for bias measurement in
LLMs is paired sentence bias benchmarks, such as
StereoSet (Nadeem et al., 2021) and CrowS-Pairs
(Nangia et al., 2020). These benchmark datasets
consist of pairs of stereotypical (e.g. “Women are
bad at math.”) and counter-stereotypical (e.g. “Men
are bad at math.”) sentences. Metrics vary slightly
between benchmarks, but generally rely on compar-
ing a model’s probability of predicting the stereo-
typical sentence to its probability of predicting the
other sentence.

While paired sentence benchmarks are impor-
tant tools for understanding and mitigating bias,
the current benchmarks have several important
weaknesses. First, most benchmarks attempt to
be general-purpose, covering a variety of bias axes
(e.g. race, gender, nationality, religion, etc.) with
the intention that downstream users need only test
their models on one benchmark. However, even the
most extensive benchmarks leave out many biases
that exist and are harmful in the real world. Even
when they cover several bias axes, benchmarks are
often oversimplified and lacking nuance along each
axis. For example, Nangia et al. (2020) include ho-
mophobia in their benchmark, but treat LGBTQ+
identity as a binary attribute rather than a complex
set of related communities. Similarly, Nadeem
et al. (2021) include religion as one of their bias
axes, but only consider Christianity, Islam, and Hin-
duism, ignoring antisemitism and other religious
biases. LLM benchmarking work on antisemitism
is limited; however, there is closely related work on
antisemitism in the context of hate speech detection
(Chandra et al., 2021; Jikeli et al., 2021).

Second, many existing benchmarks have serious
quality control issues, including ungrammatical or
nonsensical sentences, mismatching of stereotypes
to target groups, and vague or nonspecific stereo-
types (Blodgett et al., 2021). Finally, most existing
benchmarks are insufficiently grounded, i.e. the
stereotypes and biases described in the benchmark
may not be well-aligned with the affected commu-
nities’ opinions on what stereotypes are harmful
and what constitutes unacceptable or undesirable
LLM behavior (Blodgett et al., 2020).

Grounding issues often stem from the method
of collecting stereotypes to include in bias bench-
marks. Many benchmark creators use crowd-
sourced stereotypes, usually from crowdworkers
on Amazon Mechanical Turk, who have varying de-
grees of knowledge and personal experience with
social biases. In contrast, recent work (Felkner
et al., 2023) has had success with community-
sourced bias benchmarks in which stereotypes
were derived from a large-scale online survey of
members of the affected community. This yielded
a large, specific, well-grounded, and high-quality
bias benchmark dataset for harms affecting a spe-
cific community.

Community-sourcing, while a significant im-
provement over crowd-sourcing in many respects,
has its own problems. Current methods require
survey responses to be annotated by hand, ideally
by researchers who are themselves members of the
communities surveyed. This annotation relies heav-
ily on the lived experience and subjective opinions
of annotators to extract attested harm predicates
from survey responses, which are then inserted into
template sentences to create the stereotypical and
counter-stereotypical sentences in the benchmark.
Human annotation by researchers with relevant
lived experience is time-consuming, and therefore
expensive and often cost-prohibitive for grassroots,
community-based efforts.

Additionally, the annotation is psychologically
taxing on annotators. Annotators spend hours read-
ing detailed descriptions of violence and hatred
toward their own communities. This is often trig-
gering for annotators who have first-hand experi-
ences with such harm, and it is exhausting and
depressing even for those who have somewhat less
painful experience. The situation is somewhat anal-
ogous to content moderation, in which repeated
exposure to disturbing content causes secondary
traumatization (McCann and Pearlman, 1990) for
moderators, often leading to post-traumatic stress
disorder (PTSD) (Steiger et al., 2021). This annota-
tion is similar to volunteer moderation of identity-
specific online communities, such as those studied
by Dosono and Semaan (2019), who found that
moderation constitutes significant emotional labor
and often leads to burnout.
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3 Methods

3.1 Jewish Community Survey

Because one of the purposes of the WinoSemitism
dataset is to validate the generalizability of the
benchmark development approach from Felkner
et al. (2023), we closely follow their methodology
on survey design and human annotation of survey
data. The Jewish community survey was deemed
exempt by our institution’s IRB. Participants were
recruited through a variety of channels, including
researchers’ personal networks, Jewish social me-
dia channels, synagogues, and Jewish student orga-
nizations. Interested respondents were directed to a
screening questionnaire. Those who met the screen-
ing criteria (eighteen or older, English-speaking,
and identifying as Jewish) then had the opportunity
to review the informed constent document. The
consent form explained the potential benefits and
risks of the survey and informed participants that
they could skip questions or leave the survey for
any reason at any time during their participation.

Participants then answered demographic ques-
tions. They were asked to self-identify their gen-
der and ethnicity and provide their age range and
country of residence. They were also asked about
their Jewish cultural background (e.g. Ashkenazi,
Sephardic, Mizrahi) and religious identity (e.g.
Conservative, Reform). The demographic ques-
tions about Jewish identity were developed in con-
sultation with an expert in Jewish Studies. These
questions were included to ensure that Jewish peo-
ple of diverse backgrounds and experiences were
included in the WinoSemitism dataset.

Following the demographic questions, partici-
pants answered multiple choice and free-response
questions. The multiple choice questions listed a
variety of common stereotypes about Jewish peo-
ple. Participants were asked whether they thought
each stereotype was positive, neutral, or negative,
and whether they had personally experienced the
stereotype. There were also open-ended questions
for participants to write in additional stereotypes,
both about Jews in general and about specific sub-
communities with which they identified.

The survey was active for about ten weeks in
late 2023. We had a total of 203 respondents. The
overwhelming majority of respondents were white
and from the United States. Respondents were rel-
atively evenly distributed across age ranges. There
were significantly more responses from women
than men; we also saw a small number of responses

from trans and nonbinary Jews. Respondents
were mostly Ashkenazi, with very few Sephardi,
Mizrahi, and Persian Jews represented. Respon-
dents were relatively evenly distributed across re-
ligious identities, with Conservative and Reform
Jews having the highest number of respondents.

The vast majority of survey responses concerned
general antisemitism, rather than stereotypes about
specific subgroups of the Jewish community. There
are not enough predicates about identity subgroups
to report meaningful results; thus, we only re-
port quantitative results aggregated over the en-
tire dataset. This is significantly different than
the results reported on the WinoQueer dataset, for
which survey responses were much more evenly
distributed.

3.2 WinoSemitism Benchmark Construction

The WinoSemitism benchmark consists of pairs
of stereotypical (i.e. antisemitic) and counter-
stereotypical sentences. Each sentence is con-
structed from the following components:

• Sentence templates, which are the structures
into which other components are placed. Sen-
tence templates were constructed based on
findings from Cao et al. (2022).

• Identity descriptors, which are usually either
“Jewish people” or “Jews” but sometimes in-
clude specific subpopulations, such as “Jewish
women” or “Orthodox Jews.”

• Counterfactual ID descriptors, which were
Christian, secular, atheist, and nonreligious.

• Common Jewish names, which were selected
by an expert in Jewish studies (based on works
including Fermaglich (2018)) from the US So-
cial Security Administration’s list of common
names3 from 1970 to 2019.

• Attested harm predicates, which were ex-
tracted from survey responses via annotation
by expert humans. Most predicates apply to
Jewish people in general, but some were spe-
cific to subgroups of the Jewish community.
After extraction, predicates were manually
edited to ensure syntactic correctness of con-
structed sentences.

3https://www.ssa.gov/oact/babynames/decades/
names2010s.html

14106

https://www.ssa.gov/oact/babynames/decades/names2010s.html
https://www.ssa.gov/oact/babynames/decades/names2010s.html


Benchmark sentences were constructed by sam-
pling from each component list. Each sentence
template was filled in with each extracted predicate
and the predicate’s corresponding identity descrip-
tor(s). Then, the subjects of singular templates
were filled in with he/him and she/her pronouns as
well as a random sample of 5 masculine and 5 fem-
inine names. This yielded the set of stereotypical
sentences. Finally, for each stereotypical sentence,
two of the four counterfactual identity descriptors
were sampled and two sentence pairs were con-
structed. Our use of random sampling of names
and counterfactual identity descriptors is a depar-
ture from previous work, which constructed bench-
marks using a strict Cartesian product of all com-
ponent categories. However, we had a much larger
list of names than previous work, and we chose to
use random sampling to keep the overall size of
the WinoSemitism benchmark roughly compara-
ble to previous work. In total, the WinoSemitism
benchmark consists of 58,816 sentence pairs. An
example WinoSemitism sentence pair is “All Jews
are greedy.” and “All Christians are greedy.”

3.3 GPT Extraction
The vast majority of human effort in the bench-
mark construction process described above is in
the extraction of attested harm predicates from free-
response survey data. In order to alleviate the finan-
cial and psychological burden of human annotation,
we tested whether GPT-3.5-Turbo can be used to
perform this predicate extraction. In our human
annotation setup, annotators were presented with
the full text of one response to one survey question,
which could range in length from a short phrase to
several sentences. Annotators were asked to extract
any number of attested harm predicates and record
each separately. Thus, each response to each ques-
tion is paired with a list of human-extracted pred-
icates. Survey responses for which humans were
unable to extract harm predicates were removed
from the dataset.

We performed GPT-3.5-Turbo predicate extrac-
tion for both the WinoQueer and WinoSemitism
datasets, using the same prompting setup for both.
For each survey answer, we prompted the model N
times, where N is the number of human-extracted
ground truth predicates. This N would be unknown
in a realistic use case, so our experiments represent
an artificially easy annotation task. Temperature
was set to 0.3 for all experiments. Full details of
the prompts used can be found in Section A.

3.4 GPT Benchmark Construction

After attested harm predicates have been automat-
ically extracted from both LGBTQ+ and Jewish
community survey responses using GPT-3.5-Turbo,
they are then used to create model-assisted ver-
sions of the WinoQueer and WinoSemitism bench-
marks. These datasets are named GPT-WinoQueer
(GPT-WQ) and GPT-WinoSemitism (GPT-WS). To
differentiate between versions, we refer to the origi-
nal, human-created datasets as Human-WinoQueer
(H-WQ) and Human-WinoSemitism (H-WS), re-
spectively. To build the GPT-WQ and GPT-WS
benchmarks, we use exactly the same lists of tem-
plate sentences, identity descriptors, names, pro-
nouns, and counterfactuals as in the corresponding
human-extracted dataset. These component lists
are combined with GPT-extracted predicates using
exactly the same methods as for the orginal datasets
(strict Cartesian product for WQ, Cartesian product
with some random sampling for WS). This gener-
ation yielded 45,468 sentence pairs in GPT-WQ
and 68,472 sentence pairs in GPT-WS. The GPT-
extracted datasets differ slightly in size from the
corresponding human-extracted datasets due to dif-
fering numbers of unique predicates extracted.

The only difference between the H-W* and GPT-
W* datasets is thus the quality of the extracted
predicates. By comparing bias scores of the same
models on the two pairs of datasets, we can deter-
mine whether the GPT-extracted bias scores corre-
late well with the human-extracted baselines. Thus,
we can assess whether GPT performs comparably
to humans on the highly context-sensitive task of
bias benchmark construction.

3.5 Evaluation Metrics

3.5.1 WinoSemitism Baseline
All of our bias benchmark datasets (H-WS, GPT-
WQ, and GPT-WS) use the same bias score as
the original WinoQueer benchmark. Intuitively,
the bias score is the percentage of sentence pairs
for which the tested model has a higher probabil-
ity of predicting the stereotypical sentence than
the counterstereotypical sentence. An ideal bias
score is 50, meaning that a model is equally likely
to apply a stereotype to either the group targeted
by the stereotype or the corresponding majority
group. Model probabilities are calculated using
the pseudo-log-likelihood score from Nangia et al.
(2020), which was extended to autoregressive mod-
els by Felkner et al. (2023). This bias score is used
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for both human-created and model-created bench-
mark datasets. The total computation budget for
all LLM evaluations was around 500 GPU hours
across NVIDIA P100s, V100s, and A100s.

3.5.2 Auxiliary Evaluation of GPT-Extracted
Predicates

In addition to comparing WQ and WS bias scores,
we use several auxilary metrics to evaluate the qual-
ity of GPT-extracted harm predicates. We use the
following quantitative metrics:

• Exact match percentage: percentage of
GPT-extracted predicates that exactly match
a human-extracted predicate for the same sur-
vey response. We expect this number to be
very low, indicating that predicate extraction
is a nontrivial natural language understanding
task.

• Cosine similarity score: We take the co-
sine similarity of SBERT sentence embed-
dings from the all-mpnet-base-v2 model
(Reimers and Gurevych, 2019) for the human-
extracted and GPT-extracted predicates. We
consider embeddings of just the predicates
(i.e. phrases) and of simple sentences con-
taining the predicates. Higher cosine similar-
ity scores indicate more similarity between
human-extracted and GPT-extracted predi-
cates. However, this metric is prone to over-
estimating similarity in cases where the two
predicates share many words but differ signif-
icantly in meaning.

For both metrics, we compare each human-
extracted predicate to all GPT-extracted predicates
for the same sentence and take the best score.

In addition to quantitative similarity scores, we
perform a qualitative human analysis to better un-
derstand the failure types. All GPT extracted pre-
dictates were reviewed post hoc by researchers.
Each was classified into one of five outcome cate-
gories: Correct, Semantically Correct (but syn-
tactically invalid and in need of post-editing), Op-
posite (counter to the stereotype being attested),
Hallucination (not present in the survey), and
Other (incorrect but neither opposite nor hallu-
cination).

Model WinoSem. Score
BERT 69.53
RoBERTa 66.51
ALBERT 65.27
BART 63.50
GPT-2 70.11
BLOOM 70.31
OPT 75.17
Mean, all models 69.03

Table 1: WinoSemitism baseline results for 7 families,
comprising 20 off-the-shelf language models; complete
results are in Table 4. Scores over 50 indicate presence
of antisemitic stereotypes in the model. All tested mod-
els show some degree of antisemitism.

4 Results

4.1 WinoSemitism Baseline Results

First, we present baseline results on the
WinoSemitism dataset across 20 publicly available
LMs. Following Felkner et al. (2023), we evalu-
ate on BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2020), BART
(Lewis et al., 2020), GPT-2 (Radford et al., 2019),
BLOOM (Workshop, 2022), and OPT (Zhang et al.,
2022) Results are summarized in Table 1. In gen-
eral, the baseline results show that all 20 of the
tested models show significant antisemitic bias, as
defined by members of the Jewish community. On
average, models applied community-defined an-
tisemitic stereotypes to Jews in 69.03% of cases
and applied the same stereotypes in non-Jews in
30.97% of cases. This means that models are more
than twice as likely to apply antisemitic statements
to Jews as they are to non-Jews.

We also tested stereotypes about specific sub-
groups of the Jewish community. We received
very few survey responses about subgroup-specific
biases, so our test sets for most subgroups are
too small to report meaningful quantitative results.
Anecdotally, however, we notice a few worrying
trends. First, models stereotype Jewish women and
mothers much more frequently than Jews in gen-
eral. The average WinoSemitism score for Jewish
mothers compared to non-Jewish mothers across
all models is 76.7, and the average WinoSemitism
score for Jewish women is 84.3. This suggests that,
in addition to sexism and antisemitism measured
in isolation, models are reproducing intersectional
biases specific to Jewish women. Second, mod-
els reproduce stereotypes about Jews even more
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strongly in sentences related to Israel, Palestine,
Zionism, and anti-Zionism, with bias scores in the
mid-to-high nineties. Training data for LLMs most
likely reflect the high degree of controversy present
in global public discourse about Israel and Pales-
tine, debates about whether anti-Zionism consti-
tutes antisemitism, and conflation of the State of
Israel with all Jews everywhere.

4.2 Predicate Extraction

ID Group % Exact PCS SCS
LGBTQ 8.33 0.54 0.84
Queer 7.14 0.47 0.79
Transgender 3.23 0.44 0.75
Nonbinary 11.11 0.51 0.82
Bisexual 4.76 0.43 0.76
Pansexual 0.00 0.39 0.71
Lesbian 5.88 0.42 0.74
Asexual 0.00 0.40 0.74
Gay 5.36 0.52 0.83
WQ Overall 5.40 0.47 0.78
WS Overall 18.14 0.61 0.82

Table 2: GPT predicate extraction automated metric
scores for LGBTQ+ identity subgroups, GPT-WQ over-
all, and GPT-WS overall. % Exact is the percent-
age of cases where human- and GPT-extracted pred-
icates match exactly. PCS is phrase cosine similarity of
SBERT embeddings for just the extracted phrases. SCS
is sentence cosine similarity of SBERT embeddings for
dummy sentences containing extracted phrases. For ID
subgroups, bold represents best scores and italics repre-
sents worst scores.

Below, we present results for our experiments on
automated extraction of attested harms from survey
data. We evaluate the success of our approach on
both quantitative similarity metrics and qualitative
human analysis. Table 2 summarizes the quantitive
similarity metrics for the GPT-WQ and GPT-WS
datasets. We report GPT-WQ results by identity
group, but GPT-WS results are only reported in
aggregate due to very small test set sizes for most
identity subgroups. As expected, we have very
low rates of exact matches (disregarding capital-
ization and punctuation) between human-extracted
and GPT-extracted predicates. This shows that the
task is non-trivial and is more than simply select-
ing a span from the input text. We also see rel-
atively low cosine similarity scores between the
SBERT sentence embeddings of human-extracted
and GPT-extracted predicates. These low cosine

similarities mean that GPT is unable to adequately
identify attested harms in survey responses. While
the cosine similarities and exact match rates are
better for WinoSemitism than for WinoQueer pred-
icates, the scores still indicated significant qual-
ity issues with model-extracted predicates. As in
WQ baseline results, there is a disparate impact on
subgroups marginalized within the LGBTQ+ com-
munity. Model-extracted predicates are especially
bad for lesbian, bisexual, pansexual, and asexual
individuals. These results suggest that using LLMs
in the construction of bias benchmarks is likely to
produce benchmarks that are generally low-quality
and fail to accurately measure biases against mul-
tiply marginalized populations. This runs the risk
of exacerbating existing inequalities if too much
trust is placed in benchmarks that underestimate
bias effects on certain subgroups of marginalized
communities.

ID Group %C %S %O %H
LGBTQ 52.78 2.78 8.33 30.56
Queer 35.71 25.00 7.14 32.14
Transgender 35.48 22.58 6.45 32.36
Nonbinary 33.33 14.81 3.70 48.15
Bisexual 31.00 21.43 2.38 42.86
Pansexual 17.65 35.29 0.00 41.18
Lesbian 35.29 17.65 29.41 11.76
Asexual 12.50 50.00 8.33 25.00
Gay 57.15 19.64 19.64 1.79
WQ Overall 38.13 21.58 6.12 31.30

Table 3: Human evaluation results for subgroups of GPT-
WinoQueer dataset. %C is the percentage of correct
extractions. %S is the percentage of semantically correct
model responses requiring only grammatical corrections.
%O is the percentage of model responses expressing the
opposite of the input text. %H is the percentage of cases
where the model hallucinates a response that is not in
the input. Respones categorized as “other” are omitted
for brevity; < 6% in all cases.

We also perform a post hoc human analysis of
GPT-extracted predicates. These results are sum-
marized in Fig. 1. We observe that, for both GPT-
WQ and GPT-WS, less than half of GPT-extracted
predicates are classified correct, i.e. immediately
usable for benchmark construction. Around one
fifth of model-extracted predicates require only syn-
tactic changes. While some of this editing could be
possibly be automated, it is likely that much of it
would require human correction or supervision to
create a high-quality benchmark.
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Figure 1: Comparison of human post-evaluation
results for GPT-WinoQueer (blue, left) and GPT-
WinoSemitism (orange, right) datasets. GPT-WQ eval-
uation results are generally worse, with a lower pro-
portion of correct responses and higher proportions of
grammatically incorrect, opposite, and hallucinated re-
sponses.

The first issue with model-extracted predicates
is incomplete extractions. These are included in
the other category of Fig. 1. While a few such
outputs are to be expected from both human and
model annotation, the prevalence of incomplete
extractions in the GPT-WinoSemitism dataset is
concerning. In particular, many extractions consist
of single verbs and are missing the nouns that are
an important component of the attested stereotype.
For example, the stereotypes “Jews control the US
government” and “Jews consider themselves supe-
rior to others” are collapsed to “Jews control” and
“Jews believe,” respectively. These predicates are
unspecific and do not adequately reflect the harms
attested by survey respondents.

Another significant issue with model-extracted
predicates is significant number of cases where
the model extracts the opposite of the stereotype
expressed in the survey response. This occurs in
6.12% of GPT-WQ extractions and 3.43% of GPT-
WS extractions. While these are relatively small
percentages, the downstream impact is that a sig-
nificant portion of sentence pairs in the GPT-W*
datasets are not only ignorning but directly con-
tradicting the experiences of affected community
members. Additionally, because of their surface-
level similarity to correct extractions, these nega-
tion errors are not easily flagged by automated
metrics like cosine similarity. On the WinoQueer

survey response, we observe that many cases of
negation concern instances of violence and harass-
ment experienced by community members. Instead
of correctly identifying the survey respondent as a
victim, model-extracted predicates conflate the sur-
vey respondent with the perpetrator. This impact is
most severe for lesbian respondents (nearly 30% of
all model outputs), many of whom reported being
catcalled and sexually objectified. GPT extraction
incorrectly yielded benchmark sentences like “Les-
bians catcall others” and “All lesbians objectify
others.” While both of these are expressions of
the harmful stereotype that lesbians are predatory
towards straight women, neither of them was actu-
ally present in the survey data, so they do not meet
the criteria for inclusion in a community-sourced
fairness benchmark. Benchmarks that spuriously
accuse marginalized people of perpetrating the vio-
lence of which they report being victims is a serious
risk of automated extraction of attested harms for
benchmark construction.

Most concerning, however, is the extremely high
rate of model hallucinations in extracted predicates.
Over thirty percent of GPT-WQ predicates, and
nearly twenty percent of GPT-WS predicates, ex-
press a stereotype or bias that is not present in the
survey response from which they were “extracted.”
Most of these hallucinations are highly repetitive,
suggesting that the model defaults to a very small
set of priors when unable to extract a predicate from
the input data. Repetitive hallucinations include
“are confused,” “struggle with mental health,” and
“are promiscuous” for LGBTQ+ survey responses.
For Jewish survey responses, repeated hallucina-
tions include “are greedy” and “are manipulative.”
In both cases, even non-repeated hallucinations are
still similar in meaning to repetitive hallucinations.
These repetitive phrases are also in some model
outputs that are classified as correct. First, this im-
plies that in some of these cases, the model is not
correctly performing the task on the input, instead
relying on a limited set of priors; this indicates
that the “correct” percentages might overestimate
model capability. Second, this has the effect of
collapsing many attested harms into very few predi-
cates. For example, in the GPT-WQ data, the model
extracted either “are promiscuous” or “engage in
promiscuous behavior” for the majority of survey
responses mentioning any stereotypes about queer
sexuality. This conflation of survey responses over-
simplifies and ignores valuable community input.

These repetitive hallucinations do express real

14110



and offensive stereotypes, which undoubtedly
should be included in bias benchmarks. However,
the main advantage of community-sourced bias
benchmarks is the fact that they are grounded in
the lived experience of affected community mem-
bers. Using models to “extract” attested harms that
are not actually present in survey responses negates
the purpose of community-engaged bias definitions,
effectively undoing the work of both researchers
and community members in eliciting and sharing
experienced harms.

4.3 Comparing Human- and GPT-Extracted
Benchmarks

Figure 2: GPT-W* vs H-W* bias scores and best fit lines.
These bias scores should be strongly linearly correlated.
However, we observe extremely weak correlation for
WQ and only moderate correlation for WS. In both
cases, the GPT-created dataset is a very poor proxy for
the human-created dataset.

Ideally, human-created and model-created
benchmarks should be measuring the same un-
derlying model behaviors and should both score
a given model similarly. Equivalently, there should
be a strong, positive linear correlation between per-
model H-W* and GPT-W* scores. Fig. 2 shows the
poor correlation between scores on the two bench-
marks. For H-WinoQueer and GPT-WinoQueer,
the R2 value is only 0.14, indicating a very weak
correlation. The WinoSemitism datasets have a
moderate correlation (R2 = 0.73), but we would
still expect a stronger correlation if the two bench-
marks were well-calibrated with respect to each
other.

Just as the quality of model extractions is
inequitably distributed across subgroups of the
LGBTQ+ community, poor calibration of GPT-
created bias benchmarks also has disparate im-

pacts on marginalized subcommunities. Of the nine
LGBTQ+ identity subgroups considered, six had
R2 < 0.5, including R2 = 0 for lesbians. Model-
created bias benchmarks perform even more poorly
for marginalized subcommunities, falsely underes-
timating the likelihood of intersectional stereotypes
in model outputs.

We believe there are two major reasons for
the stark difference in correlations. First, mod-
els generally show less bias on the human-created
WinoSemitism dataset than on the human-created
WinoQueer dataset, so artificially low bias scores
for GPT-WS had less effect on the correlation than
similarly low bias scores on GPT-WQ. Second,
WinoSemitism scores (both H-WS and GPT-WS,
across tested models) show substantially less brit-
tleness and variability across identity subgroups
within each tested model than WQ scores, which
showed considerable variability across subgroups.
Thus we attribute WS’s stronger correlation to bet-
ter overall bias scores and less intra-model variabil-
ity than we observed on WQ. Overall, this analysis
shows that GPT-created bias benchmarks are a very
poor approximation for the corresponding human-
created benchmarks.

5 Conclusions

This paper introduced the WinoSemitism dataset,
a community-sourced benchmark dataset for mea-
suring bias against Jewish people in large language
models (LLMs). We also investigated the feasibil-
ity of using a large language model to assist humans
with the difficult, emotionally taxing work of devel-
oping LLM fairness benchmarks. In particular, we
used GPT-3.5-Turbo to extract attested harm pred-
icates from responses to surveys of communities
affected by specific biases. Even on this extremely
limited subtask with additional information that
would be unavailable to a model in a realistic sce-
nario, we find that GPT-3.5-Turbo has unaccept-
ably poor performance on attested harm extraction.
We present quantitative and qualitative evidence of
serious quality issues with model-extracted pred-
icates, including high rates of both misrepresent-
ing survey responses and hallucinating harms not
present in input text. These quality issues repli-
cate many of the problems of crowd-sourced (i.e.
not community-sourced) fairness benchmarks, in-
cluding lack of specificity, nonsensical stereotypes,
and ungrammatical sentences, all of which would
require considerable human effort to correct.
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We also show that model-created benchmarks
are poorly correlated with human-created bench-
marks from the same underlying community sur-
veys, indicating that GPT-created benchmarks are
not measuring the same model behavior as human-
created benchmarks and are poorly grounded in the
actual experiences of marginalized communities.
Finally, the impacts of poor extraction quality dis-
parately affect already-marginalized subgroups of
affected communities, meaning that model-created
benchmarks are likely to replicate and exacerbate
existing intracommunity inequality. Thus, we con-
clude that using LLMs to process human survey
responses into fairness benchmark datasets yields
unnacceptably low-quality benchmarks and largely
negates the positive impacts of conducting a com-
munity survey in the first place. Annotations from
expert humans with lived experience as members
of the relevant community are absolutely essential
to the construction of high-quality LLM fairness
benchmarks. Given these findings, we strongly
caution against the use of LLMs in the creation of
fairness benchmarks intended to evaluate LLMs
and stress the important of human annotators, es-
pecially in sensitive and highly context-dependent
tasks.

6 Limitations

6.1 Jewish Community Survey and
WinoSemitism Dataset

Our survey of Jewish community members, and
by extension the WinoSemitism dataset, have sev-
eral important limitations. First, our sample is rela-
tively small, and is not likely to be representative of
the global Jewish community. The WinoSemitism
dataset is also not representative of all forms of
antisemitism or all stereotypes about Jewish peo-
ple. There are undoubtedly antisemitic stereotypes
we did not include in the study because they were
not reported by our small sample of participants.
For practical reasons, sample participants were lim-
ited to English-speaking adults 18 and older, so the
views of Jewish youth and Jews who do not speak
English are not represented in this sample.

6.2 GPT-WQ and GPT-WS Dataset
Construction

Our construction of the GPT-WQ and GPT-WS
datasets also has important limitations. For pred-
icate extraction, our prompts were developed em-
pirically, and we have not rigorously tested all pos-

sible prompts. Therefore, it is possible that a dif-
ferent prompt, or even the same prompt given to
a different release of GPT-3.5-Turbo, would pro-
duce different results than those reported in this
paper. We also did not test all current LLMs, so
it is possible that other models will perform better
than GPT-3.5-Turbo on this annotation tasks. How-
ever, we believe our conclusions about the serious
quality issues caused by LLM use in benchmark
construction are not solely limited to a specific
prompt and model release.

In constructing the GPT-WQ and GPT-WS
benchmark sets, we closely follow the methodol-
ogy of Felkner et al. (2023). Their methodology
has several limitations, which are discussed in de-
tail in their work. Important limitations affecting
this work include low syntactic diversity of bench-
mark sentences and inability to rigorously exam-
ine intersectional biases. While the H-WQ and
GPT-WQ datasets do not adhere to a strict under-
standing of gender as binary, current versions of
the H-WS and GPT-WS do treat gender as binary.
They use only she/her and he/him pronouns, which
are mapped to traditionally feminine and tradition-
ally masculine names, respectively. This is an area
for improvement in future versions of the dataset.

Additionally, WS scores may be affected by the
fact that the bigram “Jewish people” is much more
common in model training data than corresponding
counterfactual bigrams like “Christian people” and
“atheist people.” We minimize this impact by using
both noun and adjective identity descriptors (i.e.
“Jewish people” and “Jews”, “Christian people” and
“Christians”, etc.) in the WS benchmark datasets,
so that the relative frequency of bigram pairs affects
only a small subset of the WS datasets.

6.3 Evaluation
The first important limitation of our evaluation
methods is our choice of models on which to eval-
uate. Because our survey was conducted only in
English, we evaluate the resulting datasets on En-
glish language models. The 20 models on which we
evaluated are a small fraction of the language mod-
els available today. They are also small in number
of parameters. We evaluate on models up to seven
billion parameters, but many state-of-the-art mod-
els have hundreds of billions of parameters. Our
evaluation metric is limited to open-source models
for which we can directly access token probabili-
ties. It has not yet been expanded to closed-source
models that are accessible only via prompting.
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A Prompt Details

For all experiments, the basic template prompt was:

Listing 1: Prompt for GPT Predicate Extraction

From the following sentence, extract a
statement of one discrete stereotype
about <IDENTITY NOUN>.

Stereotypes should be in the form of a
predicate that would fit in the
sentence ’All <IDENTITY NOUN>
<predicate>.’

The predicate should start with a verb
and SHOULD NOT inlcude individual
characters separated by commas.

Do not respond with a full sentence.
There may be multiple stereotypes in the

sentence, so extract one that is
not already in the list.

Sentence: <SENTENCE>

Previously Extracted: <PREV>

Predicate:

<SENTENCE> was replaced with a single survey
response. <IDENTITY NOUN> was replaced with
an identity descriptor matching the survey respon-
dent. <PREV> was replaced with an empty string at
first, and then each model was prompted iteratively
N times, where N is the number of ground truth
predicates extracted by human annotators. Each
iteration with the same input sentence, the model’s
previous response was added to the list of previ-
ously extracted responses.

B Complete WinoSemitism Baseline
Results

Complete results for all 20 tested models on the
human-annotated WinoSemitism dataset are listed
in Table 4.
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Model WinoSem. Score
BERT-base-unc 70.20
BERT-base-cased 72.44
BERT-lg-unc 64.74
BERT-lg-cased 70.74
RoBERTa-base 64.65
RoBERTa-large 68.37
ALBERT-base-v2 58.66
ALBERT-large-v2 63.47
ALBERT-xxl-v2 73.67
BART-base 66.4
BART-large 60.59
gpt2 67.94
gpt2-medium 70.99
gpt2-xl 71.4
BLOOM-560m 66.67
BLOOM-3b 76.21
BLOOM-7.1b 68.04
OPT-350m 72.49
OPT-2.7b 76.26
OPT-6.7b 76.75
Mean, all models 69.03

Table 4: WinoSemitism baseline results for 20 off-the-
shelf language models. Scores over 50 indicate presence
of antisemitic stereotypes in the model. All tested mod-
els show some degree of antisemitism.
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