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Abstract

Generative Large Language Models (LLMs)
are widely utilized for their excellence in vari-
ous tasks. However, their tendency to produce
inaccurate or misleading outputs poses a po-
tential risk, particularly in high-stakes environ-
ments. Therefore, estimating the correctness
of generative LLM outputs is an important task
for enhanced reliability. Uncertainty Estima-
tion (UE) in generative LLMs is an evolving
domain, where SOTA probability-based meth-
ods commonly employ length-normalized scor-
ing. In this work, we propose Meaning-Aware
Response Scoring (MARS) as an alternative
to length-normalized scoring for UE methods.
MARS is a novel scoring function that con-
siders the semantic contribution of each to-
ken in the generated sequence in the context
of the question. We demonstrate that inte-
grating MARS into UE methods results in a
universal and significant improvement in UE
performance. We conduct experiments using
three distinct closed-book question-answering
datasets across five popular pre-trained LLMs.
Lastly, we validate the efficacy of MARS on a
Medical QA dataset. Code can be found here.

1 Introduction

Generative Large Language Models (LLMs) have
risen in popularity due to their remarkable ability
to understand, generate, and process human lan-
guage at an unprecedented scale and accuracy (Ye
et al., 2023; OpenAI, 2023; Touvron et al., 2023).
These models have become the state-of-the-art in
various fields, including machine translation, con-
tent generation, and even scientific research (Huang
et al., 2023; OpenAI, 2023) due to their capability
to handle diverse tasks such as text summarization,
sentiment analysis, and question-answering in a
few-shot or zero-shot manner.

*This work does not relate to their position at Amazon.

Despite their growing popularity and success,
generative LLMs are not infallible and can some-
times produce erroneous or misleading outputs,
especially when dealing with complex reasoning
problems or closed-book questions. This limitation
becomes particularly critical in question-answering
systems used in high-stakes environments. Quanti-
fying the uncertainty of generative LLM responses
in such scenarios is not just beneficial but essential
for ensuring trustworthy operation. For example, in
a medical advice application, accurately assessing
the uncertainty of the responses provided by LLMs
can prevent the provision of incorrect medical ad-
vice. This is crucial because erroneous advice may
lead to devastating medical missteps or misunder-
standings. Thus, understanding and quantifying
uncertainty helps in reliable risk assessment and
in maintaining the overall quality of the answers
provided, ensuring that users can assess how much
reliance they should place on LLM responses.

Uncertainty Estimation (UE) is a well-studied
problem in classification scenarios, especially in
the computer vision domain (Lakshminarayanan
et al., 2017; Gal and Ghahramani, 2016; Shen et al.,
2021). The proposed UE methods in classification
tasks, which rely on the class probabilities, are not
directly applicable to generative LLMs due to the
auto-regressive generative structure of LLMs (Ma-
linin and Gales, 2021), which implies that LLMs
generate text sequentially by predicting each sub-
sequent word based on the combined context of all
preceding words. This process differs significantly
from classification tasks, where the output is typ-
ically a single label or a set of labels assigned to
an entire input, without the sequential and context-
accumulating nature of generative LLMs.

Recent work (Malinin and Gales, 2021), formal-
izes how to adapt popular UE methods developed
for classification tasks to the context of generative
LLMs. They propose using length-normalized scor-
ing to estimate the likelihood of a sequence gener-
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Figure 1: Overview of Meaning-Aware Response Scoring (MARS). Each token in the response of a generative LLM
is assigned a weight based on its importance in the meaning. The product of the weighted probabilities of these
tokens yields the response score. MARS is then used for Uncertainty Estimation (UE) methods in generative LLMs.

ated by the model, and the subsequent works (Kuhn
et al., 2023; Lin et al., 2023; Chen and Mueller,
2023) utilize that idea of length-normalized scor-
ing.

A downside of these existing UE techniques in
the generative LLM literature is treating length-
normalized scoring like the class probabilities in
classification tasks. However, better ways may ex-
ist for estimating uncertainty than directly using the
length-normalized score of a sequence, as it treats
all tokens equally. In reality, each word’s contri-
bution to the sentence’s meaning in the question
context might vary. For example, given the ques-
tion “Which planet is known as the Red Planet?”
and with the generated response “Mars is the Red
Planet”, the tokens of “Mars” are the most critical
ones in the response because those tokens are the
ones actually answering the question. Thus, assign-
ing more weight to semantically significant tokens
in the response score calculation can improve UE
methods, resulting in more accurate predictions.

Based on this word importance intuition, we pro-
pose a novel scoring function for generative LLMs
called Meaning-Aware Response Scoring (MARS),
as outlined in Figure 1. To compute the LLM re-
sponse score as an input to UE methods, we first
assign an importance coefficient to each token in
the generation. This importance essentially reflects
the impact of masking a token in a sequence on the
meaning of the generated response, where tokens
with a greater influence on the meaning receive
higher importance. By leveraging these meaning-
aware coefficients (wi in Figure 1), MARS returns
the multiplication of the weighted probabilities of
the tokens in the generated sequence.

We list our main contributions as follows:

• We propose a novel scoring function for UE

in generative LLMs named Meaning-Aware
Response Scoring (MARS).

• We introduce a BERT-like model, efficiently
assigning meaning-aware importance weights
to the tokens in a single model pass within
MARS calculation.

• We explain previous works’ (Malinin and
Gales, 2021; Kuhn et al., 2023) design choices
from the classification perspective to create
a grounded framework for MARS and other
scoring functions.

• We evaluate probability-based UE metrics
with MARS on question-answer datasets and
show that MARS universally improves the UE
performance for an extensive list of LLMs.

2 Background

In this section, we will go over probability-based
UE methods that our work built on. For a detailed
discussion on related works, refer to Appendix A.

In the literature, UE is used as a proxy for
the correctness of the model output (Malinin and
Gales, 2021; Gal and Ghahramani, 2016; Laksh-
minarayanan et al., 2017; Band et al., 2021). For
generative LLMs in the question-answer context,
we consider the most probable sequence as the
model output and utilize UE to predict the correct-
ness of the response following Kuhn et al. (2023).
The goal of UE is to assign higher scores to incor-
rect responses, indicating greater uncertainty, and
lower scores to correct responses, signifying less
uncertainty.

2.1 Bayesian View to Estimate Uncertainty
Bayesian UE is used in machine learning to quan-
tify uncertainty in predictions. It treats model pa-
rameters as random variables, assigning a prior
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probability distribution to them. Through Bayesian
inference, this distribution is updated with training
data, yielding a posterior distribution. Prediction
uncertainty stems from this posterior distribution.
Let {θi}Mi=1 be an ensemble of models sampled
from approximate posterior q(θ) ≈ p(θ|D) where
D is the training data.

The predictive posterior of input x ∈ X for tar-
get y ∈ Y is derived by expectation over the en-
semble:

P (y|x,D) = Eq(θ)[P (y|x, θ)]

≈ 1

M

M∑

m=1

P (y|x, θm),
(1)

where we have θm ∼ q(θ) ≈ p(θ|D). Using the
posterior probability definition, we can define the
entropy of predictive posterior as:

H(x,D) = −
∑

y∈Y
P (y|x,D) logP (y|x,D). (2)

In classification tasks, commonly used tools for
estimating uncertainty are the entropy of the predic-
tive posterior and the negative predictive posterior
probability of the most probable answer (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017;
Malinin and Gales, 2021; Xiao et al., 2022; Chen
and Mueller, 2023). However, the formulation in
(1) is not applicable to generative LLMs because
of their auto-regressive generative structure.

2.2 Uncertainty Estimation (UE) of
Auto-Regressive Generative Models

Malinin and Gales (2021) formalizes posterior
probability definition for auto-regressive genera-
tive models where the output s is not a single entity
but a sequence of tokens s = {s1, s2, ..., sL}. They
simply replace P (y|x, θ) in (1) with sequence prob-
ability P (s|x, θ). The probability of a sequence s
for a given model parametrized with θ is defined as
the multiplication of probabilities of its tokens:

P (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ) (3)

where s<l ≜ s1, s2, .., sl−1 referring to generated
tokens before the generation of sl. Kuhn et al.
(2023) simplifies the ensemble sampling in (1) by
using a single model in the ensemble due to the
large size of foundation models. We follow the

simplified version in the rest of the paper:

P (s|x, D)≈P (s|x, θ)=
L∏

l=1

P (sl|s<l,x; θ). (4)

2.3 Length-Normalized Scoring
One of the key issues with using sequence prob-
ability P (s|x, θ) as a proxy for P (y|x, θ) lies in
its tendency to decrease as the sequence length in-
creases. To overcome this issue, Malinin and Gales
(2021) uses length-normalized scoring function in-
stead of sequence probability.* Length-normalized
scoring P̃ (s|x, θ) is defined as follows:

P̃ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
1
L , (5)

which assigns equal weights to each token in the
generation where these weights are inversely pro-
portional to the sequence length L. Although
length-normalized scoring P̃ (s|x, θ) does not cor-
respond to an actual probability distribution, Ma-
linin and Gales (2021) and Kuhn et al. (2023) con-
sider P̃ (s|x, θ) as auxiliary probabilities and re-
place the sequence probability P (s|x, θ) in (4) with
the length-normalized scoring given in (5).

2.4 Entropy-Based UE for Generative LLMs
To obtain the entropy of the output for given input
x, Malinin and Gales (2021) uses Monte-Carlo
approximation over beam-sampled generations of
a single model, as going through the entire answer
set is infeasible due to its exponential computation
complexity. Approximated entropy is defined as:

H(x, θ) ≈ − 1

B

B∑

b=1

ln P̃ (sb|x, θ), (6)

where sb is an output sampled by beam-search and
B is the total number of sampled generations.

Kuhn et al. (2023) proposes an alternative en-
tropy definition, named Semantic Entropy (SE),
considering the meaning of the generations. They
use the same entropy definition in (6), but clus-
ter sampled generations based on their meaning.
For example, in response to the question “What is
the capital city of France?”, a model might output:
“Paris” with score p̃1 and “It’s Paris” with score p̃2.
While standard entropy in (6) treats these as distinct

*A scoring function K takes two inputs: the predicted
probability p of an event and its actual outcome o, and returns
a numerical score (Gneiting and Raftery, 2007).
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Figure 2: The most common probability-based UE methods for generative LLMs. The aim is to calculate the
uncertainty of the most probable answer (shown in darker green) to the given question. Length-normalized scoring
(5) is used in all these methods to obtain output scores. We propose MARS to replace it in these schemes.

outputs, SE clusters them together as they convey
the same meaning in the question context, forming
a single cluster c with summed score p̃1+ p̃2. More
formally, cluster scoring is defined as:

P̃ (c|x, θ) =
∑

s,x∈c
P̃ (s|x, θ). (7)

SE follows from this cluster scoring P̃ (c|x, θ):

SE(x, θ) = − 1

|C|

|C|∑

i=1

log P̃ (ci|x, θ), (8)

where ci refers to each semantic cluster and C is
the set of all clusters. In Section 4, we provide
an alternative explanation for Semantic Entropy
and length-normalized scoring from a classification
task perspective.

Negative length-normalized scoring of the most
probable answer, standard sequence entropy in (6)
and semantic entropy in (8) are the most com-
mon probability-based UE methods for generative
LLMs (Malinin and Gales, 2021; Kuhn et al., 2023;
Chen and Mueller, 2023; Lin et al., 2023) and are
visualized in Figure 2. These methods depend on
length-normalized scoring and recent work (Duan
et al., 2024) replaces that scoring function by con-
sidering the meaning of the generation. Similar to
Duan et al. (2024), we aim to replace that scoring
with MARS. We discussed the differences between
our work and Duan et al. (2024) in Appendix A.

3 Method

3.1 Key Intuition
Existing literature utilizes length-normalized scor-
ing in UE as shown in (5), (6), and (7). Length-

normalized scoring, given in (5), assigns equal im-
portance/weight (1/L) to each token in the gener-
ated sentence. The normalization aims to compare
the probabilities of short and long sequences more
fairly (Malinin and Gales, 2021). Such a normaliza-
tion method may fall short in considering seman-
tic contribution of tokens, even though it balances
length differences across sequences.

To illustrate, consider the following example:
Question: “Which planet is known as the Red
Planet?” Generated Answer: “Mars is known as
the Red Planet". In this answer, the word “Mars”
is relatively more important as it directly addresses
the question. Other words in the sentence primarily
serve syntactic purposes or help achieve human-
like answer. Thus, while designing a scoring func-
tion, we should give more importance/weight to
the word “Mars”. With this intuition, we want
to replace length-normalized scoring and propose
an alternative scoring function that assigns impor-
tance/weight to each word in the sentence consid-
ering both its contribution to the overall meaning
in the given context and sequence length.

3.2 Meaning-Aware Response Scoring
Following our word importance intuition, we
propose to replace length-normalized scoring
P̃ (s|x, θ) in (5), (6), and (7) with Meaning-Aware
Response Scoring (MARS). MARS is defined as:

P̄ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (9)

where w(·) is the weighting function that assigns
a weight to each token regarding the generated
answer, question context, and sequence length.
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We design w(·) as a convex combination of
importance coefficient and 1/L, which enables
MARS to consider both sequence length and mean-
ing contribution of tokens. Formally, we define

w(s,x, L, l) ≜ 1

2L
+

u(s,x, l)
2

, (10)

where u(·) is importance function taking three ar-
guments: generated sequence s, contextual infor-
mation x, and the position l of a token within the
sequence. The function u(·) assigns an importance
coefficient to each token, where this coefficient
ranges between 0 and 1. Additionally, it ensures
that the total sum of the importance coefficient for
all tokens in a single generation s is 1. Next, we
explain how to design the importance function u(·).

3.3 Importance Function Design

We design the token importance function u(·) by
measuring the semantic impact of removing a spe-
cific token from the generated text. This evaluation
of meaning is context-sensitive. In question-answer
tasks, which is the focus of this work, the context
is defined as the question itself. Thus, u(·) is de-
signed to determine the importance of each token
based on its influence on the overall meaning of the
response within the context of the question.

To measure the amount of semantic change in the
given context, we employ a neural network model
originally developed as a question-answer evalu-
ator by Bulian et al. (2022). This model, called
BERT matching (BEM), takes three inputs: ques-
tion, ground truth answer, and predicted answer,
returning a probability score indicating answer cor-
rectness. For a question x and a generated an-
swer s = {s1, s2, . . . , sL}, we determine the im-
portance of each token as follows: We mask token
sl in the generated answer and feed the question
x, the original answer s, and masked response se-
quence s \ {sl} into the BEM model. The output
o, ranging from 0 to 1, indicates the impact of the
masked token on answer correctness. A token sl
with substantial impact yields an output o close to 0,
whereas a lesser impact results in an output closer
to 1. Hence, we define 1 − o as the preliminary
coefficient of sl. Once we compute preliminary co-
efficients for all tokens, we normalize them using a
softmax function with a temperature parameter τ .
In our experiments, we set τ = 0.01.

Addressing Token Dependency. Our initial
approach for assigning importance coefficients

Figure 3: Our Bert-like transformer model takes the
question and the generated answer as inputs, and out-
puts phrases in the generated answer and corresponding
importance coefficients.

to tokens assumes their semantic independence
even though tokens often exhibit semantic inter-
dependencies. For example, in the sentence
“Hamlet is written by William Shakespeare,” to-
kens “William” and “Shakespeare” are intrinsically
linked. Treating such tokens independently ignores
linguistic nuances, so we refine our methodology.
Instead of masking tokens individually, we mask
tokens at the phrase level (details in Appendix B.1).
This approach acknowledges and preserves the in-
herent semantic relationships between closely re-
lated tokens, resulting in a more accurate and con-
textually aware assessment of token importance. In
particular, a response s = {s1, s2, . . . , sL} is com-
posed of phrases {h1, h2, . . . , hK}, where each to-
ken sl belongs to a phrase hk. We mask phrases
one by one and find the importance coefficient of
each phrase with BEM model. To translate phrase-
level importance coefficients into token-level coef-
ficients, we distribute the importance score to all
tokens in the phrase equally. We summarize the
enhanced algorithm in Appendix B.2. Further, in
Section 5.3, we show that allocating importance
score only to the most uncertain token within a
phrase also yields comparable results.

Reducing Computation. The necessity of per-
forming a separate neural network pass for each
phrase to determine its importance score increases
the computational load of the proposed approach.
Additionally, detecting phrases themselves requires
another neural network pass, further increasing the
computational complexity. To address these chal-
lenges, we have developed a BERT-like neural net-
work model with 110M parameters (a significantly
smaller model compared to LLMs). This model is
capable of performing both tasks simultaneously
for a given sequence in a single neural network
pass: it identifies phrases within the generated text
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and their importance scores (see Figure 3). This
dual-functionality substantially reduces the compu-
tational cost, making the algorithm more efficient
and scalable. For detailed model architecture and
performance metrics, please refer to Appendix B.

4 Understanding Generative LLM
Probabilities from a Classification
Perspective

In classification tasks, the class probability reflects
the model’s confidence in assigning a specific class
to an input. It is inherently tied to the semantics of
the class. For instance, if a well-calibrated classi-
fier gives a 75% probability to the label “cat” for a
given image, it suggests a 75% likelihood that the
given image is indeed a cat. This output probability
is not only a numerical value; it conveys a seman-
tic understanding of the image content as a cat.
To understand previous works (Kuhn et al., 2023;
Malinin and Gales, 2021) from a classification per-
spective, we propose a new random variable that is
directly related to the semantics of the output.

Let Y be a random variable with arbitrary dimen-
sion corresponding to the meaning of the sequences
generated by an LLM parametrized with θ. The
values of Y can be the set of all possible meanings
of generated sequences and their contexts. For-
mally, the set is {g(s, x)}s∈S,x∈X , where g(·) is the
meaning function that takes generated sentence s
and context x as inputs and returns the meaning as
output. A well-calibrated probability distribution
of Y ensures that if a model’s generation is more
likely to be correct than another, the correspond-
ing probability should be higher. Mathematically,
P (Y = g(s1, x1)|θ) > P (Y = g(s2, x2)|θ) if the
model’s response s1 to question x1 is more likely to
be correct than response s2 to question x2. This is
indeed similar to the classification example where
well-calibrated class probabilities reflect the out-
put’s actual probability of correctness (Guo et al.,
2017). Previous works and MARS have heuristic
design choices to make Y more calibrated to get a
better uncertainty estimation.

Malinin and Gales (2021) considers g(·) as a
one-to-one function which means that each unique
sentence in the given context corresponds to differ-
ent meanings. To achieve better calibration of Y
they define its distribution using length-normalized
scoring of the generated sequences. This approach
ensures a fair comparison between long and short
sequences, thereby improving the calibration of Y .

More formally

P (Y = y|θ) = P̃ (s|x, θ)∑
s∈S,x∈X P̃ (s|x, θ)

, (11)

where y = g(s, x) and P̃ (s|x, θ) is the
length-normalized scoring defined as∏L

l=1 P (sl|s<l, x; θ)
1/L. To make the distri-

bution of Y a valid probability distribution, we
normalize each P̃ (s|x, θ) by the sum of all possible
scores, making their summation 1. By defining Y
as above, we essentially create an actual probability
distribution of length-normalized scoring.

On the other hand, Kuhn et al. (2023) claims
different sequences can have equal meaning. By
considering g(·) as a many-to-one function, we can
define the distribution of Y with their proposal as
follows:

P (Y = y|θ) =
∑

s,x∈cy P̃ (s|x, θ)
∑

s∈S,x∈X P̃ (s|x, θ)
(12)

where cy corresponds to the meaning cluster, for-
mally written as cy = {s, x|g(s, x) = y}. By em-
ploying this new probability definition within the
standard entropy calculation in (6), we obtain the
concept of semantic entropy as follows

SE(x, θ) = − 1

B

B∑

b=1

logP (Y = yb|θ) (13)

With the new random variable Y , we essentially
write the semantic entropy as the standard Monte-
Carlo approximated entropy over a total of B dis-
tinct meanings.

Notice that the normalization term∑
s∈S,x∈X P̃ (s|x, θ) featured in both (11)

and (12), acts as a constant across all P (Y = y|θ)
calculations, ensuring that Y conforms to a valid
probability distribution. Therefore, it only shifts
the proposed UE scores which does not affect
the performance of accurately predicting the
correctness of the model generation. Moreover, by
introducing the random variable Y , we not only
provide an alternative explanation of the previous
works but also create flexibility to define new
distributions for Y which may potentially have
better calibration and improve the existing UE
tools.

Using the definition of Y , we can also rational-
ize our scoring function MARS. We replace the
length-normalized scoring function with MARS

7757



as in (9). MARS considers the semantic contribu-
tion of tokens, assigning higher weights to those
critical for the correctness of the answer. This em-
phasis on key tokens potentially makes MARS a
more effective scoring function for achieving better
calibration of Y .

5 Experiments

5.1 Experimental Design
In the UE context, we expect that if the model is un-
certain about the generated answer, then the answer
should be less reliable and tend to be incorrect.

Datasets. We use three closed-book Question-
Answer (QA) datasets for evaluation: Trivi-
aQA (Joshi et al., 2017), Natural Questions
(Kwiatkowski et al., 2019), and WebQA (Chang
et al., 2022). We give further details in Appendix C.

Models. Our evaluation consists of 5 popular
open-source LLMs. First two models are Llama-
7B and Llama-7B-chat, where the latter one is fine-
tuned for dialogue use cases (Touvron et al., 2023).
We also use Mistral-7B (Jiang et al., 2023) as well
as Falcon-7B (Almazrouei et al., 2023) which is
fine-tuned on a mixture of chat/instruct datasets.
To extend our analysis to larger models, we include
Llama-13B (Touvron et al., 2023). We do not per-
form any further training on these models, rather
we use their pre-existing configurations. Following
Kuhn et al. (2023), we abstain from assuming any
ensemble of the models, considering the significant
size and time requirements associated with LLMs.

Baselines. As we focus on the probability-based
UE methods, we do not include heuristic-based and
black-box methods. We use 3 SOTA probability-
based UE methods as baselines (see Figure 2 for
visualization): 1. Negative length-normalized score
(Confidence), which provides the confidence score
of the most likely generation only by using its to-
ken probabilities as in (5). 2. Entropy as in (6),
which requires generating multiple answers to ob-
tain the score for the most likely answer. 3. Se-
mantic Entropy (SE), which considers the meaning
of the generated answer while computing entropy,
as shown in (8). All 3 baselines depend on length-
normalized scoring. We replace length-normalized
scoring with MARS and arrive at Confidence +
MARS, Entropy + MARS, SE + MARS.

Metrics. Following previous works (Malinin and
Gales, 2021; Kuhn et al., 2023), we use Area Un-

der the Receiver Operating Characteristic Curve
(AUROC) score for our UE performance metric.
AUROC quantifies a method’s ability to distinguish
between two classes by plotting the true positive
rate against the false positive rate for various thresh-
old values. AUROC score is the area under this
curve, ranging from 0 to 1. Higher AUROC score
indicates a superior performance, while a score of
0.5 implies a random chance. In our case, ground
truth is the correctness† of the model response to
the question and the prediction is the output of an
UE method.

5.2 Main Results

We present our detailed results in Table 1. Upon
closer examination of the results, it becomes appar-
ent that the application of MARS consistently im-
proves all baseline methods across various datasets
and models. Specifically, MARS yields improve-
ments of up to 5.8 points for Confidence, 6.24
points for Entropy, and 1.51 points for SE.

It is crucial to mention that the choice among the
baselines depends on the available computational
resources. Confidence score is the least resource-
intensive, requiring only a single output genera-
tion. Entropy, on the other hand, demands multi-
ple generations (set to 5 in our experiments). SE
is the most computationally demanding, needing
both multiple generations and O(n2) Natural Lan-
guage Inference (NLI) model passes for clustering,
where n represents the number of generations. We
note that the additional computational and memory
demands of MARS are relatively minor, approxi-
mately 1.5% of the 7b models and 0.8% of the 13b
models, because MARS’s importance function is
implemented with 110M Bert-like model.

5.3 Ablation Studies

Effect of Phrase Separation. In Section 3.3, we
suggest using a phrase-level separation instead of
token-level separation in designing the importance
function so that tokens having strong relations are
evaluated together on their semantic impact on the
sequence. To validate this design, we conduct an
experiment where we revert to token-level separa-
tion. The results in Table 2 demonstrate that while
token-level separation outperforms other baselines,
phrase-level separation consistently yields superior
results, reaffirming the efficacy of our approach.

†We use GPT-3.5-turbo for evaluating the correctness of
the model, as in (Lin et al., 2023; Chen and Mueller, 2023).
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Method Llama2-7b Llama2-7b-chat Mistral-7b Falcon-7b Llama2-13b

Tr
iv

ia
Q

A Confidence 70.18 70.40 72.55 68.47 68.19
Entropy 69.70 69.94 72.57 69.10 69.04
SE 81.10 76.19 82.17 76.78 79.49

O
ur

s Confidence + MARS 75.06 74.23 77.97 72.95 73.99
Entropy + MARS 75.94 73.82 78.51 72.87 74.95
SE + MARS 82.22 77.67 83.63 77.48 81.00

N
at

ur
al

Q
A Confidence 68.56 65.98 69.54 63.78 68.56

Entropy 67.08 65.23 68.05 63.28 68.34
SE 72.47 68.66 75.12 70.41 73.56

O
ur

s Confidence+ MARS 69.81 67.86 71.36 68.30 70.88
Entropy + MARS 69.32 67.41 70.71 67.51 70.63
SE + MARS 72.75 69.43 75.50 71.24 73.89

W
eb

Q
A

Confidence 64.76 64.06 65.66 66.56 62.60
Entropy 64.04 63.82 64.15 65.98 62.11
SE 69.44 67.11 69.51 73.16 67.31

O
ur

s Confidence + MARS 66.04 64.48 67.16 68.26 64.23
Entropy + MARS 65.83 64.69 65.76 68.44 64.02
SE + MARS 69.88 67.27 69.86 73.57 67.75

Table 1: AUROC performance of UE methods in various datasets with different pre-trained LLMs.

Method Llama2-7b Mistral-7b

To
ke

n Confidence + MARS 72.53 75.31
Entropy + MARS 74.46 77.58
SE + MARS 81.55 83.25

P
hr

as
e Confidence + MARS 75.06 77.97

Entropy + MARS 75.94 78.51
SE + MARS 82.22 83.63

Table 2: AUROC score of UE methods + MARS with
token/phrase-level importance functions on TriviaQA.

Method Distribution Llama2-7b Mistral-7b

Confidence
+ MARS

Min 69.92 72.20
Max 75.13 77.73
Equal 75.06 77.97

Entropy
+ MARS

Min 70.56 72.75
Max 77.11 79.22
Equal 75.94 78.51

SE +
MARS

Min 81.67 82.33
Max 82.07 83.62
Equal 82.22 83.63

Table 3: AUROC score of UE methods + MARS with
different coefficient distributions in phrases in impor-
tance function on TriviaQA.

Importance Coefficient Distribution in Phrases.
In Section 3.3, we state that we equally distribute
the importance of phrases to each token. Alterna-
tive distribution strategies might include prioriti-
zation of the least or most uncertain token. Those
strategies assign the phrase importance coefficient
to the least or most uncertain token of that phrase.
In Table 3, we provide AUROC performances when
different distribution strategies are adopted. No-
tably, we find that max-uncertain distribution is
nearly as effective as our adopted equally assigning
approach. In contrast, the min-uncertain assign-
ing strategy underperforms. This outcome can be

contextualized with a hypothetical scenario: Con-
sider the model’s response is “Shakespeare” to the
query “Who wrote Hamlet?”, which is tokenized
into “Shake” and “-speare”. Once “Shake” is pro-
duced, the subsequent arrival of “-speare” is almost
assured. The uncertainty primarily resides in the
token “Shake”, making the probability of “-speare”
relatively uninformative. Consequently, focusing
on the least uncertain (most uninformative) token
in a phrase drops the performance of MARS signif-
icantly, and focusing on the most uncertain token
only is still reasonable.

5.4 Effect of Sampling Hyperparameters

We explore the influence of key hyperparameters
on the performance of UE methods that rely on
sampling, specifically Entropy and SE. We focus on
two critical hyperparameters: Temperature, which
adjusts the diversity of the sampling process, and
the number of sampling, which dictates how many
samples are sampled in entropy calculation.

Temperature. The temperature parameter deter-
mines the smoothness of the probabilities while
sampling. A higher (lower) temperature value in-
dicates more (less) diverse sampling. Figure 4
presents the AUROC scores for Entropy, SE, and
their enhancements via MARS for the Llama2-13b
and Mistral-7b models on the TriviaQA dataset.
The improvement of MARS is consistent for all
temperature values. The choice of temperature
is application-dependent: higher temperatures are
advisable for tasks demanding creativity, whereas
lower temperatures are preferable for applications
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Figure 4: AUROC scores for various temperatures and sampling numbers.

where consistency is important.

Number of Sampling. The number of sampled
sequences is important for entropy and semantic
entropy calculation. More sampling leads to bet-
ter entropy estimation; however, the cost also in-
creases. Beyond the sampling expense, SE incurs
an additional cost from Natural Language Inference
(NLI) model passes, a point elaborated in Section
5.2. In Figure 4, we provide the AUROC perfor-
mance of Llama2-13b and Mistral-7b models on
TriviaQA with various sampling numbers. Notably,
the efficacy of MARS remains stable across diverse
sampling numbers, with its advantages becoming
more obvious under lower sampling numbers.

5.5 UE in Medical QA Dataset

Next, we evaluate the UE methods using a med-
ical QA dataset. Publicly available medical QA
datasets typically fall into two categories: those
with multiple-choice questions (Pal et al., 2022;
Kotonya and Toni, 2020; Jin et al., 2021) and those
without clear ground truths (Zhu et al., 2019, 2020).
To tackle this, we create a subset from the MedM-
CQA multiple-choice dataset (Pal et al., 2022), se-
lecting questions that can be answered objectively
without multiple choices. For this, we collaborate
with medical professionals to ensure the accuracy
and relevance of the selected questions, yielding
a dataset of 415 samples. We use AdaptLLM’s
Medicine-Chat (Cheng et al., 2023), a medical-
domain adapted LLaMA-2-Chat-7B model‡. To
evaluate the correctness of model-generated re-
sponses, we leverage GPT-4 (OpenAI, 2023) and
assess response validity in the medical domain.

In Table 4, we provide the AUROC performance
of the UE methods. Although MARS still con-
sistently improves the performance of probability-
based UE methods, AUROC scores are still low
compared to Table 1. This might be because of
the nature of medical questions. General knowl-
edge questions mostly require a straight, single-

‡https://huggingface.co/AdaptLLM/medicine-chat

sentence answer. On the other hand, although
we curated closed-ended questions, medical ques-
tions still require a more complex explanation span-
ning multiple sentences. This difference between
domains can affect the prediction performance
of the probability-based methods. This observa-
tion emphasizes the necessity for further investi-
gation across various specialized fields, including
medicine and law. Customized explorations are
essential to address domain-specific challenges and
optimize UE methods accordingly.

Method Medicine-Chat-7b
Confidence 62.41
Entropy 59.58
SE 62.89

O
ur

s Confidence + MARS 62.89
Entropy + MARS 60.33
SE + MARS 64.48

Table 4: AUROC score of UE methods on medical QA.

6 Conclusion

We introduce Meaning-Aware Response Scoring
(MARS), a novel scoring function designed to
replace length-normalized scoring in probability-
based UE methods when evaluating generative
LLMs. MARS consistently and significantly boosts
the performance of current probability-based UE
methods with minimal additional computational
overhead. The efficacy of MARS is shown in three
closed-book and closed-ended question-answer
datasets and a medical question-answer dataset.

7 Limitations

The importance function model within MARS uti-
lizes an unsupervised methodology, leveraging pre-
existing models for its formulation. Nonetheless,
the performance of MARS can potentially be fur-
ther enhanced by using human labelers to assign
importance coefficients for training the importance
function model. Besides, our analysis is limited
to the closed-ended question-answering domain in
English, where a question has an objective ground-
truth answer(s). Extensive analysis of MARS and
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other probability-based UE methods on open-ended
question-answering tasks and other languages are
beyond the scope of the current study and are left
as future work.

8 Ethics Statement

Although probability-based UE methods combined
with MARS have a remarkable prediction perfor-
mance on the correctness of generative LLM out-
puts, it is crucial to acknowledge that these methods
do not achieve 100% accuracy. Besides, as LLMs
may have biases against gender, ethnicity, age, etc.,
probability-based methods can carry those biases
to UE outputs. Thus, one should be aware of these
potential risk factors before employing such prob-
abilistic UE methods in real-world systems. En-
suring fairness, transparency, and accountability
in the deployment of these technologies is impor-
tant in mitigating risks and fostering trust in their
application.
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A Related Works

Uncertainty Estimation (UE) has emerged as a vi-
tal concept in various machine learning domains,
particularly in Natural Language Processing (NLP).
The study of Xiao et al. (2022) concentrates on the
UE for tasks like common-sense reasoning and sen-
timent analysis; Jiang et al. (2021) explores model
calibration for UE in the context of multiple-choice
question answering; Desai and Durrett (2020) tack-
les the challenge of UE in specific NLP tasks such
as paraphrase detection and natural language in-
ference. These studies represent just a fraction of
the UE works in the field of NLP and there is an
expanding corpus of research focusing on the in-
vestigation of UE in NLP (Hu et al., 2023; Xiao
and Wang, 2019; Vazhentsev et al., 2022). The vast
majority of these studies only focus on classifica-
tion and regression tasks, unlike our work where
the goal is to study UE for generative LLMs.

Few recent works deal with UE of generative
LLMs. Xiao et al. (2020) and Fomicheva et al.
(2020) propose heuristic-based uncertainty metrics
for generative LLMs considering machine transla-
tion. Chen and Mueller (2023), Lin et al. (2023),

Cohen et al. (2023), and Kadavath et al. (2022) pro-
pose black-box UE methods for generative LLMs
under the assumption that the token probabilities
are not accessible. Although these works have
experimental validation, they lack a mathemati-
cal foundation. Malinin and Gales (2021) is the
first study adapting popular uncertainty tools in
Bayesian UE literature to the generative LLMs.
The main idea of Malinin and Gales (2021) is to
utilize length-normalized scoring in computing the
entropy of the LLM answers. A more recent ap-
proach by Kuhn et al. (2023) further improves this
result by introducing the concept of semantic en-
tropy, which considers the meaning of the gener-
ated sentences in entropy calculation in uncertainty
prediction. Our work is distinct from these works
as we no longer utilize length-normalized scoring.
Instead, we utilize the proposed MARS in entropy
computations, by also taking into consideration to-
ken importance to the answer correctness , thereby
achieving an improved UE performance.

A.1 Discussion of the Differences with
TokenSAR

There is a recent work that also considers the mean-
ing of the words in the generation to estimate
uncertainty (Duan et al., 2024). The fundamen-
tal difference with our work is that (Duan et al.,
2024)’s method is designed as an alternative to
the existing probability-based uncertainty methods,
whereas, in our work, we propose a scoring func-
tion, i.e., MARS, which is compatible with all exist-
ing probability-based uncertainty estimation meth-
ods. This implies that one can in fact utilize MARS
within the framework of (Duan et al., 2024). In
particular, in (Duan et al., 2024), authors propose
three schemes: TokenSAR (token-level weight as-
signment), SentSAR (sentence-level weight assign-
ment), and SAR (both token and sentence-level
weight assignment). SentSAR and SAR are orthog-
onal to MARS. SAR is the version of SentSAR
where the scoring function in SentSAR is replaced
with TokenSAR. In a similar fashion, MARS can
be incorporated into the SentSAR approach instead
of the TokenSAR.

Thus, we need to discuss our distinction from
TokenSAR, which can also be considered as a scor-
ing function. To avoid confusion and clarify our
unique approach, below we discuss our distinction
from TokenSAR.

• MARS uses BERT-Matching instead of sen-
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tence similarity: In our algorithm, we uti-
lize the BERT-Matching (BEM) model which
takes the question, ground truth answer, and
the generated answer as inputs and returns
the probability of the generated answer being
correct. To assign importance weights, we re-
move a set of tokens (a phrase) from the gener-
ated sentence and pass the question, generated
answer (as ground truth) and token-removed
generated answer to the BEM model. We set
(1 - output) as the importance weight and nor-
malize weights at the end. We further improve
this process by fine-tuning a BERT-like model
and increase efficiency (explained in the third
bullet). TokenSAR uses sentence similarity
model (cross-encoder Roberta-Large) unlike
our approach. Sentence similarity model takes
two input sentences to measure similarity and
they concatenate the question for both inputs.
However, we argue that using the BEM model
achieves better performance since the goal is
to find a token’s importance based on its con-
tribution to the correctness of the generated
answer. This difference becomes more visible
when the answer is longer and more complex
as we demonstrate in the below example. In
particular, TokenSAR fails to detect words
that actually answer the question so that it (al-
most) returns uniform importance values. On
the other hand, MARS successfully finds the
important words and assigns higher weights to
them. Let’s consider the following example:

Question: What is the tallest building in the
world?

Generated Answer: The Burj Khalifa in
Dubai, soaring into the sky, holds the distinc-
tion of being the tallest building in the world,
a marvel of modern engineering and architec-
ture.

To this question-answer pair, MARS returns
the following importance weight assignment:

The Burj Khalifa (0.8428) in (0.0082)
Dubai (0.0083) , (0.0082) soaring
(0.0084) into (0.0082) the sky
(0.0082) , (0.0082) holds (0.0083)
the distinction (0.0083) of (0.0082)
being (0.0082) the tallest building
(0.0082) in (0.0082) the world
(0.0082) , (0.0082) a marvel (0.0083)
of (0.0083) modern engineering and

architecture (0.0088) . (0.0083)

On the other hand, to the same pair, Token-
SAR returns the following importance weight
assignment:

The (0.0225) Bur (0.0228) j (0.0318)
K (0.0228) hal (0.0228) ifa (0.0319)
in (0.0227) Dub (0.0253) ai (0.0232)
, (0.0228) so (0.0237) aring (0.0294)
into (0.0228) the (0.0228) sky
(0.0235) , (0.0229) holds (0.0228)
the (0.0227) distinction (0.0234) of
(0.0228) being (0.0228) the (0.0229)
tall (0.0235) est (0.0227) building
(0.0228) in (0.0228) the (0.0228)
world (0.0230) , (0.0229) a (0.0228)
mar (0.0232) vel (0.0232) of (0.0230)
modern (0.0540) engineering (0.0725)
and (0.0336) architecture (0.0328) .
(0.0232)

In this example, although the phrase “The
Burj Khalifa” is the key word answering the
question, TokenSAR assigns low weights to
its tokens. In fact, according to TokenSAR,
tokens of the phrase “The Burj Khalifa” are as
important as some of the words/phrases that
appear in the question itself such as “the tallest
building”. This is not ideal as TokenSAR can-
not distinguish between the actual answer and
filler words. However, our proposed MARS
is able to actually find the important words
in the answer thanks to the BEM model we
employ during weight assignment.

• MARS addresses token dependencies and
process phrases instead of tokens: As we ex-
plain in Section 3, we first divide a generated
answer into phrases and then assign scores
to each of those phrases by using the proce-
dure described in the first bullet point. On
the other hand, (Duan et al., 2024) assumes
that each generated token is meaningly inde-
pendent so that they remove tokens from the
generation one-by-one and assign importance
scores accordingly. However, as we show in
Table 2, ignoring token dependencies nega-
tively affects the performance of uncertainty
methods. In this sense, our MARS provides a
more careful importance score assignment (as
we demonstrate in the above example).

• MARS is computationally efficient at infer-
ence: As we mention in Section 3, we improve
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the computational performance of MARS by
fine-tuning a BERT-like model that gives im-
portance scores with phrases in a single for-
ward pass (this is an improvement over the
algorithm described in the first bullet). That
is, our importance assignment does not de-
pend on the number of tokens in the generated
sentence. In stark contrast, (Duan et al., 2024)
uses cross-encoder Roberta-Large and their
algorithm requires a number of tokens times
forward pass for a single generated sentence.
Moreover, cross-encoder Roberta-Large has
approximately 355M parameters. However,
we run our 110M BERT-like model only one
time for the generated sentence no matter its
length. That is why for a generation com-
prised of 10 tokens, MARS is 30x compu-
tationally more efficient than (Duan et al.,
2024).

B Training of BERT-like Model for
Importance Function

As described in Section 3.3, we optimize the com-
putational efficiency of MARS by training a single
Bert-like model with 110M parameters to execute
the importance function. This model is an adapta-
tion of the pre-trained Bert-base-uncased§, modi-
fied by removing its last layer and incorporating
two independent fully-connected (FC) layers. The
first FC layer focuses on phrase detection with two
output logits: “Begin Phrase” (BP) and “Inside
Phrase” (IP), and classifies each token as BP if it
marks the start of a phrase or as IP otherwise. This
setup enables sentence segmentation into phrases.
The second FC layer, tasked with assigning impor-
tance coefficients, produces a single output logit
for each token’s importance coefficient.

For training data, we take a subset of 69192 ques-
tion samples from the TriviaQA training set and
questions of the whole training set of NaturalQA
consisting of 87925. Then, we use these questions
as input and feed them to all 7B-sized baseline
models (Llama2-7b, Llama2-7b-chat, Mistral-7b,
Falcon-7b) to yield the responses. This provides us
with question-answer pairs. We use the Flair phrase
chunking model to determine phrase labels in the
answers, as described in Appendix B.1. For impor-
tance coefficient labels per token in the responses,
we follow Algorithm 1.

§https://huggingface.co/bert-base-uncased

Sample outputs of our model are provided in
Table 5. Here, question and answer are inputs to
the model, and the model divides the answer into
phrases while assigning importance score to them.

We train the model only for 1 epoch with 5e-
5 learning rate and 32 batch size. The training
process involves a convex combination of two loss
functions: cross-entropy for phrase chunking and
negative log-likelihood for importance coefficient
assignment, with equal weight assigned to both
losses. Table 6 displays the training and validation
losses at the end of the training, indicating that our
training objectives are effectively generalizable to
test sets.

B.1 Dividing a Sentence to Phrases
To divide a sentence into phrases, we use the Flair
phrase chunking model¶ (Akbik et al., 2018), that
uses 10 tags which are adjectival, adverbial, con-
junction, interjection, list marker, noun phrase,
prepositional, particle, subordinate clause and verb
phrase. For example, the Flair model divides the
sentence “The happy man has been eating at the
dinner” as “The happy man”, “has been eating”,
“at”, “the diner”.

B.2 Pseudocode of the Importance Function
Algorithm

The pseudocode of the importance function algo-
rithm is given in Algorithm 1.

Algorithm 1 Phrase-Level Importance Function

Input: Question x, generated answer s =
{s1, s2, . . . , sL}, phrases {h1, h2, . . . , hK},
token probabilities {pi = P (si|s<i,x; θ)}si∈s,
temperature τ
Output: Importance scores I
I ← []

1: for k = 1 to K do
2: smasked ← s \ {sl}sl∈hk

3: ok ← BEM(x, s, smasked)
4: for each token sl in phrase hk do
5: I[l]← (1− ok)/|hk|
6: I ← softmax(I, τ)
7: return I

C Experimental Details

Datasets. We employ the validation split of the
Natural Questions dataset, comprising 3610 sam-

¶https://huggingface.co/flair/chunk-english
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Question Answer Output

Which planet is known as
Red Planet?

It is Mars
It is Mars

0.017 0.017 0.956

What is the capital city of
Japan?

Tokyo is the capital city of
Japan

Tokyo is the capital city of Japan
0.994 0.001 0.003 0.001 0.001

Which element has the
chemical symbol "O"?

The chemical symbol "O"
represents Oxygen

The chemical symbol "O" represents Oxygen
0.01 0.01 0.003 0.976

Table 5: Sample outputs of our BERT-like model used for importance function. Question and answer are given to
the model as input, and the model divides the answer into phrases while assigning importance score.

Classification Scoring
Loss Loss

Train 0.0275 0.1957
Validation 0.0205 0.1901

Table 6: Train and validation loss values calculated at
the end of training of BERT-like importance model.
Classification loss stands for cross-entropy loss for
phrase chunking, and Scoring loss indicated negative
log-likelihood loss for importance coefficient.

ples. Following Kuhn et al. (2023), a subset of
8000 QA pairs is selected from the validation split
of the TriviaQA dataset. For WebQA, we com-
bine its training and test splits to form a combined
dataset of 6642 samples.

Example Samples from Datasets. We provide
data samples from the datasets we used in the eval-
uation of UE methods in Table 7.

Number of Sampling and Temperature. Follow-
ing previous work (Kuhn et al., 2023), we sampled
5 samples and used 0.5 as the temperature value
for the results presented in Table 1.

Generation Configurations. We use the Hugging-
face library’s generate function for model genera-
tions. We set token “.” as eos_token_id which pre-
vents model to generate long paragraphs to closed-
book questions. We set num_beams = 1 which
corresponds to greedy decoding.

Computational Cost. We use 40 GB Nvidia A-
100 GPUs for all the experiments. The total GPU-
hours for Table 1 is approximately 400. Labeling
of the data used for training of BERT-like impor-
tance model takes approximately 200 GPU-hours.
Fine-tuning of BERT-like model on the importance

dataset takes 7 GPU-hours. Due to expensive com-
putational demands, all presented results are the
output of a single run.

Prompts. We use the same 2-shot prompt for all of
the models and the datasets for answer generation:

Answer these questions:
Question: What is the capital city of
Australia?
Answer: The capital city of Australia is
Canberra.
Question: Who painted the famous
artwork "Starry Night"?
Answer: "Starry Night" was painted by
Vincent van Gogh.
Question: {sample['question']}?
Answer:

To evaluate the correctness of the generated an-
swer, we use gpt-3.5-turbo as the evaluator. The
prompt for gpt-3.5-turbo is the following:

You will behave as a question-answer
evaluator. I will give you a question,
the ground truth of the question
and a generated answer by a language
model. You will output "correct"
if the generated answer is correct
regarding question and ground truth.
Otherwise, output "false".
Question: {question}?,
Ground Truth: {answer},
Generated Answer: {generation}
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Question Answer

Tr
iv

ia
Q

A

Which American-born Sinclair won the Nobel Prize
for Literature in 1930? Sinclair Lewis

Which musical featured the song Thank Heaven for
Little Girls? Gigi

What was the first movie western called? Kit Carson

N
at

ur
al

Q
A When did the eagles win last super bowl? 2017

Who was the ruler of england in 1616? James I

What is the hot coffee mod in san andreas? a normally inaccessible mini-game

W
eb

Q
A

what character did natalie portman play in star wars? Padmé Amidala

what country is the grand bahama island in? Bahamas

where did saki live? United Kingdom

Table 7: Data samples from the datasets we use to evaluate UE methods: TriviaQA, NaturalQA, and WebQA.
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