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Abstract

Hateful memes detection is a challenging mul-
timodal understanding task that requires com-
prehensive learning of vision, language, and
cross-modal interactions. Previous research has
focused on developing effective fusion strate-
gies for integrating hate information from dif-
ferent modalities. However, these methods ex-
cessively rely on cross-modal fusion features,
ignoring the modality uncertainty caused by
the contribution degree of each modality to
hate sentiment and the modality imbalance
caused by the dominant modality suppressing
the optimization of another modality. To this
end, this paper proposes an Uncertainty-guided
Modal Rebalance (UMR) framework for hate-
ful memes detection. The uncertainty of each
meme is explicitly formulated by designing
stochastic representation drawn from a Gaus-
sian distribution for aggregating cross-modal
features with unimodal features adaptively. The
modality imbalance is alleviated by improv-
ing cosine loss from the perspectives of inter-
modal feature and weight vectors constraints.
In this way, the suppressed unimodal represen-
tation ability in multimodal models would be
unleashed, while the learning of modality con-
tribution would be further promoted. Exten-
sive experimental results demonstrate that the
proposed UMR produces the state-of-the-art
performance on four widely-used datasets.

Disclaimer: This paper contains discriminatory
content that may be disturbing to some readers.

1 Introduction

Memes, a form of user-generated content on social
media platforms, have become a prevalent way for
expressing opinions. Generally, memes consist of
an image paired with a humorous caption. How-
ever, against a backdrop of current political and
socio-cultural fragmentation, a sharply increasing

* Corresponding author

Figure 1: Examples demonstrate the inherent uncer-
tainty in hateful memes, which is the degree of contri-
bution between modalities to hate sentiment. The left
example indicates that identifying hate sentiment should
focus on cross-modal features, while the right example
should focus on unimodal features.

number of individuals are exploiting this format
to propagate hate content on platforms by adeptly
combining image with text. Therefore, detecting
and curbing hateful memes is a particularly urgent
research issue.

Previous research on hateful memes detection
has employed pre-trained vision-language mod-
els for learning vision, language, and cross-modal
interactions comprehensively (Das et al., 2020;
Muennighoff, 2020; Zhou et al., 2021). Mean-
while, sophisticated fusion techniques (Kiela et al.,
2020; Lee et al., 2021; Yang et al., 2023) and exter-
nal knowledge enhancement methods (Zhu, 2020;
Yang et al., 2022; Cao et al., 2022, 2023) have been
proposed to further learn the discriminative fea-
tures of memes. Although the above studies have
produced promising progress, they excessively rely
on multimodal fusion features, where the inherent
uncertainty and imbalance between modalities have
not been explicitly considered.

The modality uncertainty is caused by the con-
tribution degree of each modality to hate sentiment.
As illustrated in Figure 1, the text in the left meme
narrates an incredible story, while the image shows
two smiling individuals. The text and image convey
completely opposite sentiments. In this case, the
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Figure 2: Examples demonstrate the modality imbal-
ance in hateful memes, where text modality suppresses
the optimization of image modality. In Figure (a), image-
only model denotes ViT, image in CLIP denotes ob-
taining image features from CLIP, image-text in CLIP
denotes obtaining cross-modal features from CLIP. In
Figure (b), text-only model denotes BERT, text in CLIP
denotes obtaining text features from CLIP.

multimodal fusion feature can provide additional
discriminative information to detect hate sentiment
against religion in the meme. Conversely, the text
and image in the right meme convey a consistent
sentiment, allowing the meme to be identified as
non-hateful. However, the learning of the cross-
modal fusion features would cause an interaction
between black in the text and woman in the im-
age, leading the model to incorrectly classify it as
sexist (Lee et al., 2021). Therefore, quantifying
the inherent uncertainty is crucial for determining
when unimodal information suffices and when the
integration of cross-modal information becomes
necessary.

The modality imbalance is caused by the domi-
nant modality suppressing the optimization of an-
other modality. Through experimental analysis,
we find that there is a modality imbalance phe-
nomenon between the unimodal features in hateful
memes. As shown in Figure 2, the performance
of text is closer to multimodal representation com-
pared to image, but the performance of text and im-
age modality in multimodal models is clearly worse
than that of the image-only and text-only models,
respectively. The above phenomenon indicates that
the dominant text modality leads to the suppression
of image modality optimization, further resulting
in the inability of multimodal models to fully un-
leash the corresponding discriminative capabilities,
thereby affecting the judgment of modality contri-
butions.

To address the above issues, this paper proposes
an Uncertainty-guided Modal Rebalance (UMR)
framework for hateful memes detection. Specifi-
cally, we incorporate a probability distribution to
produce a stochastic representation for individual

samples, diverging from the deterministic point
embeddings employed in current approaches. To
simplify modeling, we associate each meme with a
Gaussian distribution in a latent space defined by
mean and variance parameters. The mean repre-
sents the feature, whereas the variance measures
the uncertainty. By modeling uncertainty, we flex-
ibly combine discriminative cross-modal and uni-
modal features. Furthermore, we introduce a cross-
modal feature fusion module based exclusively
on MLP to capture semantic between images and
texts, providing complementary features for hate-
ful memes. Finally, we improve the cosine loss
to alleviate the modality imbalance by considering
both weight norm and inter-modal constraints. Re-
leasing the unimodal representation ability in mul-
timodal models through modal rebalancing further
promotes the learning of modality contributions.
The main contributions are summarized as follows:

• We formulate the modality uncertainty and
imbalance problems, two critical challenges
to hateful memes detection, and present an
uncertainty-guided modal rebalance frame-
work to quantify the uncertainty through Gaus-
sian distribution modeling.

• To alleviate the adverse effects of modality
imbalance, we improve cosine loss by con-
ducting modality-specific L2 normalization
on both features and weights, fully releasing
the representation ability of unimodal in mul-
timodal models to achieve modal rebalancing.

• Extensive experimental results demonstrate
that 1) UMR produces the state-of-the-art per-
formance on four widely-used datasets; 2)
UMR provides consistent improvement on
four vision-language backbones.

2 Related Work

2.1 Hateful Memes Detection
The hateful memes detection task aims to identify
detrimental content, including hate, harm, and of-
fense speech. Facebook first proposes the Hateful
Memes Challenge (Kiela et al., 2020) to prompt
researchers to pinpoint specific categories of hate-
ful content. Prior research has delved into clas-
sic dual-stream models that integrate visual and
textual features derived from image and text en-
coders through attention-based mechanisms and
various fusion techniques for hate speech classifi-
cation (Kiela et al., 2020; Das et al., 2020; Lippe
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et al., 2020; Yang et al., 2023). Recent research
has also endeavored to employ data augmentation
(Zhou et al., 2021; Zhu, 2020; Lee et al., 2021;
Cao et al., 2022, 2023; Yang et al., 2022) and en-
semble strategies (Velioglu and Rose, 2020; Sand-
ulescu, 2020) to improve the performance of classi-
fying hateful memes. With the development of
hateful memes detection communities, Praman-
ick et al.(Pramanick et al., 2021a) have expanded
the categories of hatefulness and introduced two
benchmarks pertaining to COVID-19 and US poli-
tics. Subsequently, Zhang et al.(Zhang et al., 2023)
propose TOT to uncover the underlying harm in
memes scenario through topology-aware optimal
transport. Suryawanshi et al.(Suryawanshi et al.,
2020) also create a dataset of offensive memes con-
taining abusive messages. Based on this dataset,
Lee et al.(Lee et al., 2021) propose the DisMulti-
Hate model to disentangle visual and textual repre-
sentations of memes for understanding. However,
the above works overly rely on cross-modal fusion
features, where modality uncertainty and imbal-
ance are ignored.

2.2 Uncertainty Learning

The present popular representation learning tech-
niques involve the extraction of features as point
representations and aim to position these points
as close as possible to the ground truth within
a high-level representation space. Nevertheless,
there typically exist multiple appropriate point rep-
resentations, indicating the uncertainty present in
representation learning. To tackle this issue, re-
searchers have proposed the use of probability dis-
tribution representations to infer diverse solutions
and enhance robustness, thereby preventing model
overfitting to a single answer. In the domain of
natural language processing, Gaussian distribution
has been employed to represent words because it ef-
fectively captures asymmetric relationships among
words (Vilnis and McCallum, 2014). Since then,
researchers have explored the use of various dis-
tribution families for word representations (Athi-
waratkun and Wilson, 2017; Li et al., 2018). In
the computer vision domain, to model visual un-
certainty, some studies have introduced Gaussian
representations into specific tasks, such as person
re-identification (Yu et al., 2019), pose estimation
(Sun et al., 2020), and face recognition (Chang
et al., 2020). More recently, the construction of
distributions has yielded progress in generating di-
verse predictions for cross-modal retrieval in the

multimodal field (Chun et al., 2021). However, the
uncertainty modeling in the hateful memes detec-
tion community remains blank. We are the first
to attempt to define the inherent uncertainty be-
tween modalities and model each meme as a Gaus-
sian distribution. Furthermore, we consider the
issue of modal imbalance and promote the uncer-
tainty learning of memes through modal rebalanc-
ing, thereby enhancing the diversity and robustness
of the hate detection process.

3 Methodology

3.1 Cross-Modal Feature Encoder
The proposed UMR is illustrated in Figure 3. Tak-
ing CLIP (Radford et al., 2021) as an example, for
a given image-text pair, we use Vision Transformer
and Text Transformer to encode them respectively,
and then map them to the same dimension. The
encoded image feature is represented as I ∈ Rl×d,
and the text feature is represented as T ∈ Rk×d.

3.2 Modal Rebalance Module
As discussed in Figure 2, the inconsistency in per-
formance between modalities demonstrates the im-
balance, where the modality with worse perfor-
mance is particularly suppressed. Recently, cosine
loss (Ranjan et al., 2017) has been proven effec-
tive in reducing intra-class imbalance by L2 nor-
malization or maximizing cosine similarity scores
on features in multimodal fine-grained tasks (Liu
et al., 2017; Deng et al., 2019; Xu et al., 2023).
Inspired by this prior work, we extend it to the hate-
ful community to alleviate the modality imbalance
in hateful memes, focusing on weight norm and
inter-modal constraints.

Specifically, we first concatenate the features
from the image encoder and the text encoder and
obtain the logit score of the intermediate process
through a fully connected layer. The vanilla soft-
max loss can be represented as follows:

Lvani = − 1

N

N∑

i=1

log
eW

⊤
yi
[Ii;Ti]+byi

∑n
j=1 e

W⊤
j [Ii;Ti]+bj

, (1)

where N represents the batch size, W ∈ R2d×n

and b ∈ Rn represent fully connected layer weight
and bias, respectively. n represents the hateful class
number. We further divide W into two modality-
wise module weights W Iand W T . In this way, we
can obtain the logit output f(xi)j as follows:

f (xi)j = W I⊤
j Ii +W T⊤

j Ti, (2)
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Figure 3: The illustration of the proposed UMR for hateful memes detection. UMR consists of five main components:
a) Cross-Modal Feature Encoder; b) Modal Rebalance Module; c) Cross-Modal Fusion Module; d) Uncertainty-
Guided Module; e) Hateful Memes Detector. The cross-modal feature encoder is replaceable and parameter frozen
during training.

where f(xi)j represents the j-th class of the i-th
sample, and bias b is omitted for simplicity. Next,
we transform W I⊤

j Ii + W T⊤
j Ti in the logit out-

put to cosθIj + cosθTj , where cos θIj =
W I⊤

j Ii

∥W I
j ∥·∥Ii∥

and similar for cos θTj . θj is the angle between the
weight and the feature. Following previous cosine
loss (Wang et al., 2018; Deng et al., 2019; Xu et al.,
2023) in fine-grained learning, We fix the modality-
wise weights to 1 through L2 normalization and
re-scale the embedding features to s. Normalizing
the features and weights ensures that the prediction
only depends on the angle between the feature vec-
tor and weight vector. Finally, the loss of the modal
rebalancing module is defined as:

Lmrm = − 1

N

N∑

i=1

log
es·(cos θ

I
yi
+cos θTyi)

∑n
j=1 e

s·(cos θIj+cos θTj )
.

(3)
Through the naive trigonometric transformation,

equation 2 can be rewritten as follows:

f (xi)j = cos θIj+cos θTj = 2 cos(
θIj + θTj

2
)·cos(θ

I
j − θTj
2

).

(4)
This formula suggests that the logit score will only
reach a high value when both modalities exhibit
high confidence, meaning θIj and θTj are both small.
This acts as a cooperative constraint. Addition-
ally, θIj and θTj must be similar, with their differ-
ence remaining small, adhering to the symmetric
constraint. This necessitates a more balanced op-

timization of unimodal features. Therefore, the
modal rebalancing module can fully unleash the
unimodal representation ability in multimodal mod-
els, providing support for subsequent learning of
cross-modal features and modality contributions.

3.3 Cross-Modal Fusion Module

Cross-modal fusion has the capability to capture
semantic interactions between different modalities,
providing complementary features for hate memes
detection. This is particularly valuable when im-
age and text feature representations within memes
convey conflicting sentiments. Recently, Multi-
layer Perceptron (MLP)-based models are proposed
for vision tasks. By substituting MLP (e.g., MLP-
mixer (Tolstikhin et al., 2021) and ResMLP (Tou-
vron et al., 2022)) for the self-attention mechanism,
significantly reducing computational costs while
maintaining high performance. However, the above
models only contain two independent MLPs, one
processing the sequential length and another pro-
cessing the dimension size. CubeMLP (Sun et al.,
2022) is the first to transfer it to multimodal feature
processing. It adds an additional MLP module to
handle modality features.

Inspired by the above MLP-based models, we
naturally extend it to feature fusion of hateful
memes. Specifically, we first concatenate the uni-
modal features to comprise a multimodal tensor
C ∈ RS×M×D, where S represents the sequential
length, M denotes the number of modalities, and
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D indicates the size of the feature dimension. Then,
the multimodal features are passed to the stacked
three MLP units for mixing. Each MLP unit com-
prises two fully-connected layers followed by a
GELU (Hendrycks and Gimpel, 2016) nonlinear
activation to mix the multimodal features along the
respective axes. A residual connection is employed
in the unit according to (Touvron et al., 2022). Tak-
ing the first sequential-mixing MLP as an exam-
ple, tensor C ∈ RS×M×D can be viewed as a set
of vectors of C∗,m,d ∈ RS×1×1, where (m, d) ∈
{(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (M,D)}. Here,
C∗,m,d represents the vector of m-th modality and
d-th dimension. Each fully-connected layer in the
sequential-mixing MLP unit can be represented as:

FCS(C∗,m,d) = WSC∗,m,d + bS , (5)

where S′ is the reduced dimension along the S-axis,
which is set as a hyperparameter. All C∗,m,d share
the parameters WS and bS . Therefore, the complete
sequential-mixing MLP can be represented as:

U∗,m,d = LayerNorm(FCS(GELU(FCS(C∗,m,d)))

+ C∗,m,d),
(6)

where the output tensor U ∈ RS′×M×D can be
considered as a set of vectors of U∗,m,d ∈ RS′×1×1.

Similar to the first MLP unit along the S-axis,
the output V ∈ RS′×M ′×D from the second
MLP unit along the M -axis can be regarded
as a set of vectors Vs,∗,d ∈ R1×M ′×1. The
output G ∈ RS′×M ′×D′

from the third MLP
unit on the D-axis can be regarded as a set of
vectors Gs,m,∗ ∈ R1×1×D′

. Here, M ′ and D′ are
the reduced dimensions along the M -axis and
D-axis, respectively. The indices (s, d) range
over {(1, 1), (1, 2), ..., (2, 1), (2, 2), ..., (S′, D)}
and (s,m) range over {(1, 1), (1, 2), ..., (2, 1),
(2, 2), ..., (S′,M ′)}. Finally, the modality-mixing
MLP and the dimension-mixing MLP can be
represented as:

Vs,∗,d = LayerNorm(FCM (GELU(FCM (U∗,m,d)))

+ U∗,m,d),
(7)

Gs,m,∗ = LayerNorm(FCD(GELU(FCD(Vs,∗,d)))

+ Vs,∗,d),
(8)

where G ∈ RS′×M ′×D′
is the mixed cross-modal

feature representation.

3.4 Uncertainty-Guided Module

As shown in Figure 1, hateful memes detection
should be aware of the uncertainty between modal-
ities. However, for each given input sample, the
unimodal features is deterministic. Therefore, we
use the probability distribution Pz|x to capture the
uncertainty of input embeddings, using the embed-
dings z (representing image I or text T ) as esti-
mates for the mean of the desired distribution Pz|x.
The distribution Pz|x can be represented as a para-
metric distribution Pz|x(z|ẑ, θ̂) where the param-
eters can be estimated (Lakshminarayanan et al.,
2017; Upadhyay et al., 2023). Therefore, we in-
troduce two modality-specific components to es-
timate parameters ẑ, θ̂. To ensure that the mean
of the distribution estimated by modality-specific
components aligns the point estimates generated
by the frozen encoders, we establish a probabilis-
tic reconstruction task for the embeddings within
each modality. Specifically, for a given sample
x, we extract the embedding z using the frozen
encoder. Subsequently, the modality-specific com-
ponent learns to reconstruct the z, producing a re-
construction denoted as ẑ). The modality-specific
component is trained by maximizing the likelihood.

ζ∗ = argmax
ζ

N∏

i=1

β̂ie
−(|ẑi−zi|/α̂i)

β̂i

2α̂iΓ
(
1/β̂i

) , (9)

where ζ represents the parameters of the com-
ponent. Γ represents the Gamma function.
β̂ie

−(|ẑi−zi|/α̂i)
β̂i

2α̂iΓ(1/β̂i)
represents the Generalized Gaus-

sian Distribution (GCD), denoted as G, which is
capable of modeling heavy-tailed distributions. It’s
worth noting that the Gaussian and Laplace dis-
tributions are special cases of G with parameters
α = 1, β = 2 and α = 1, β = 1, respectively.
The variables ẑ, α̂, β̂ denote the predicted mean,
scale, and shape parameters of G obtained from
modality-specific components for the given input
zi. We determine modality-specific optimal param-
eters by minimizing negative log-likelihood, equiv-
alent to Equation 9. Given z and the predicted
values ẑ, α̂, β̂, the loss can be expressed as:

Lugm(ζ) =

( |ẑ− z|
α̂

)β̂

− log
β̂

α̂
+ log Γ

(
1

β̂

)
, (10)

where image-specific component loss is repre-
sented as LI

ugm(ζI), and text-specific component
loss is represented as LT

ugm(ζT ).
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Moreover, there is a phenomenon in hateful
memes where the same image corresponds to differ-
ent texts and the same text corresponds to different
images. To this end, we ensure that the output dis-
tributions of image and text embeddings related to
similar concepts remain close to each other.

LI→T
ugm (ζI , ζT ) =

( |ẑI − zT |
α̂I

)β̂I

− log
β̂I

α̂I
+ log Γ

(
1

β̂I

)
,

(11)

LT→I
ugm (ζI , ζT ) =

( |ẑT − zI |
α̂T

)β̂T

− log
β̂T

α̂T
+ log Γ

(
1

β̂T

)
.

(12)

The overall objective of the uncertainty-guided
module is designed as:

Lugm (ζI , ζT ) = LI
ugm(ζI) + LT

ugm(ζT ) + LI→T
ugm + LT→I

ugm .

(13)
Finally, the uncertainty of different modalities in

the sample xi can be quantified by estimating the
unimodal distribution as follows:

σ̂2
I =

α̂2
IΓ(3/β̂I)

Γ(1/β̂I)
, (14)

σ̂2
T =

α̂2
TΓ(3/β̂T )

Γ(1/β̂T )
, (15)

λi = Sigmoid

(
σ̂2
I + σ̂2

T

2

)
, (16)

where λi represents the uncertainty score. The sig-
moid function is employed to map these scores to
the range [0, 1]. The uncertainty score λi serves as
a weight that governs the fusion of unimodal and
cross-modal features. Specifically, the uncertainty-
guided module adaptively emphasizes cross-modal
features and reduces the influence of unimodal fea-
tures when uncertainty is high, and does the oppo-
site when uncertainty is low.

3.5 Hateful Memes Detector
We flatten the mixed multimodal features and uti-
lize the uncertainty score λi to guide the feature
fusion process. Specifically, the cross-modal fea-
ture is multiplied by λi and each unimodal feature
is multiplied by 1 − λi. The resulting fused fea-
ture Fi is then fed into the hateful memes classifier.
Cross-entropy loss Ltask is employed for hateful
memes detection.

Fi = λiGi ⊕ (1− λi)Ii ⊕ (1− λi)Ti, (17)
ŷi = Softmax(FC(Fi)), (18)

Ltask = − 1

N

N∑

i=1

yi log(ŷi). (19)

Table 1: Statistics of Hateful, Harmful-C, Harmful-P
and Offensive memes datasets.

Datasets #Training #Validation #Test

Hateful Hateful(3,050)
Non-Hateful(5,450)

Hateful(250)
Non-Hateful(250)

Hateful(500)
Non-Hateful(500)

Harmful-C Harmful(1064)
Non-Harmful(1949)

Harmful(61)
Non-Harmful(116)

Harmful(124)
Non-Harmful(230)

Harmful-P Harmful(1486)
Non-Harmful(1534)

Harmful(86)
Non-Harmful(91)

Harmful(173)
Non-Harmful(182)

Offensive Offensive(187)
Non-Offensive(258)

Offensive(58)
Non-Offensive(91)

Offensive(58)
Non-Offensive(91)

Finally, we combine the aforementioned mod-
ules to optimize the overall objective function of
UMR framework:

LLoss = Ltask + Lmrm + Lugm. (20)

4 Experiments

4.1 Datasets

The experiment is conducted on four publicly avail-
able datasets as follow: Hateful memes which
was created as part of the Hateful Memes Chal-
lenge 2020 for multimodal hateful detection and
published in (Kiela et al., 2020), containing 10K
memes with binary labels. Harmful-C memes
and Harmful-P memes are respectively related to
COVID-19 and United States politics, and pub-
lished in (Pramanick et al., 2021a) and (Pramanick
et al., 2021b) for multimodal harmful detection,
each containing nearly 3.5K memes with binary
labels. Offensive memes is related to the 2016
United States presidential election and published
in (Suryawanshi et al., 2020) for multimodal offen-
sive detection, containing nearly 1K memes with
binary labels. The statistics are shown in Table 1.

4.2 Implementation Details

In the cross-modal feature encoder, we use four
multimodal backbone models to initialize the im-
age and text encoders, including CLIP ViT-L/14
(Radford et al., 2021), ALBEF ViT-B/16 (Li et al.,
2021), BLIP ViT-B/16 (Li et al., 2022) and BLIP-2
ViT-L FlanT5XL (Li et al., 2023). In the cross-
modal fusion module, we set S to 100, which in-
volves zero padding shorter sequences and truncat-
ing longer sequences for sequence size matching.
The value of M is fixed at 2, as we only have two
involved modalities. The dimension D is set to 256,
consistent with the output dimension of the projec-
tion layer. Additionally, The S′, M ′ and D′ are set
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Table 2: The performance comparison on Hateful
memes. Red represents the best performance, and blue
represents the suboptimal performance.

Models Acc. ↑ AUROC ↑
ViT (Dosovitskiy et al., 2020) 54.30 60.74
BERT (Devlin et al., 2019) 58.30 65.20

MMBT-Region (Kiela et al., 2019) 67.66 73.82
ViLBERT (Lu et al., 2019) 65.27 73.32
Visual BERT (Li et al., 2019) 66.67 74.42
DisMultiHate (Lee et al., 2021) 71.26 79.89
PromptHate (Cao et al., 2022) 72.98 81.45
CDKT (Yang et al., 2022) 76.50 83.74

CLIP (Radford et al., 2021) 59.00 68.30
ALBEF (Li et al., 2021) 68.30 80.79
BLIP (Li et al., 2022) 68.80 74.93
BLIP-2 (Li et al., 2023) 59.70 64.72

UMRCLIP 66.60 78.98
UMRALBEF 77.20 85.64
UMRBLIP 74.30 82.37
UMRBLIP-2 67.40 76.94

to 10, 2 and 32, respectively. In the uncertainty-
guided module, both the image and text compo-
nents consist of Multi-Layer Perceptrons. Each
MLP comprises an input layer, transforming the
embedding dimension to 256, a hidden layer of
size 256, and an output layer, converting from 256
back to the embedding dimensions. For the hateful
memes detector, the intermediate feature dimen-
sion of the detector is 64 and the dropout rate is set
to 0.4. For the above backbone models, the initial
learning rate is set to 1e-5, 3e-5, 2e-5 and 1e-4,
respectively. The size of the minibatch is set to 16.
Each dataset is trained for 10 epochs. The UMR
framework is trained on a single A800 GPU.

4.3 Evaluation Metrics

For the evaluation of Hateful memes, we adopt
the methodology outlined in (Kiela et al., 2020),
employing the Area Under the Receiver Operating
Characteristic curve (AUROC) and accuracy (Acc.)
as evaluation metrics. The AUROC serves as the
primary metric. For Harmful-C and Harmful-P
memes, we adhere to the evaluation protocol estab-
lished by (Pramanick et al., 2021b). Here, we uti-
lize (Acc.), Macro-F1 (F1), and Macro-Averaged
Mean Absolute Error (MMAE) as evaluation met-
rics. In the case of Offensive memes, we follow the
evaluation procedure described in (Suryawanshi
et al., 2020), employing F1 score, precision (Pre.),
and recall (Rec.) as evaluation metrics.

4.4 Experimental Results

Comparison with the baselines. To assess the
efficacy of the proposed UMR framework, we uti-

Table 3: The performance comparison on Harmful-C
and Harmful-P memes.

Models Harmful-C Harmful-P
Acc. ↑ F1 ↑ MMAE ↓ Acc. ↑ F1 ↑ MMAE ↓

ViT (Dosovitskiy et al., 2020) 68.73 67.81 0.2648 71.19 70.73 0.2481
BERT (Devlin et al., 2019) 70.06 69.92 0.2573 77.97 77.92 0.2090

ViLBERT (Lu et al., 2019) 78.53 78.06 0.1881 87.25 86.03 0.1276
Visual BERT (Li et al., 2019) 81.36 80.13 0.1857 86.80 86.07 0.1318
MOMENTA (Pramanick et al., 2021b) 83.82 82.80 0.1743 89.84 88.26 0.1314
TOT (Zhang et al., 2023) 87.01 85.93 0.1634 91.55 91.29 0.1245

CLIP (Radford et al., 2021) 73.45 72.61 0.2508 83.02 82.83 0.1604
ALBEF (Li et al., 2021) 78.75 77.67 0.1944 87.86 87.04 0.1330
BLIP (Li et al., 2022) 82.77 80.93 0.1774 89.45 88.19 0.1297
BLIP-2 (Li et al., 2023) 84.75 84.01 0.1397 87.04 87.04 0.1292

UMRCLIP 79.10 77.91 0.1943 88.73 88.72 0.1113
UMRALBEF 83.62 82.59 0.1614 90.99 90.98 0.0898
UMRBLIP 87.85 86.99 0.1195 92.11 92.11 0.0786
UMRBLIP-2 86.76 86.66 0.1339 90.42 90.40 0.0963

Table 4: The performance comparison on Offensive
memes.

Models F1 ↑ Pre. ↑ Rec. ↑
ViT (Dosovitskiy et al., 2020) 46.87 45.45 48.39
BERT (Devlin et al., 2019) 52.17 47.37 58.06

StackedLSTM+VGG16 (Suryawanshi et al., 2020) 46.30 37.30 61.10
BiLSTM+VGG16 (Suryawanshi et al., 2020) 48.00 48.60 58.40
CNNText+VGG16 (Suryawanshi et al., 2020) 46.30 37.30 61.10
ERNIE-VIL (Yu et al., 2021) 53.10 54.30 63.70
DisMultiHate (Lee et al., 2021) 64.60 64.50 65.10

CLIP (Radford et al., 2021) 58.94 60.98 59.07
ALBEF (Li et al., 2021) 59.00 59.71 58.91
BLIP (Li et al., 2022) 60.46 62.69 60.49
BLIP-2 (Li et al., 2023) 65.09 68.32 68.13

UMRCLIP 63.28 63.68 64.38
UMRALBEF 66.50 66.70 66.36
UMRBLIP 67.12 67.00 67.29
UMRBLIP-2 69.96 70.30 69.73

lize four vision-language models (CLIP, ALBEF,
BLIP, and BLIP-2) as the backbone of UMR, which
also serve as the baselines in this study. As de-
picted in Table 2 to Table 4, it is evident that UMR
demonstrates a notable improvement over the re-
spective baselines. All parameters of the baselines
are fine-tuned except for BLIP-2, so the trainable
parameters of UMR are fewer compared to the
corresponding baseline due to the encoder being
frozen. Specifically, for hateful memes, AUROC
shows an increase of +10.68%, +4.85%, +7.44%
and +12.22% on each backbone. For harmful-C
memes, MMAE is improved by 0.0565, 0.0330,
0.0579 and 0.0058, respectively. For harmful-P
memes, MMAE is improved by 0.0491, 0.0432,
0.0511 and 0.0329, respectively. For offensive
memes, F1 is increased by +5.73%, +7.50%,
+6.66% and +4.87%, respectively. The stable im-
provement demonstrates the effectiveness of model-
ing modality uncertainty and imbalance. Moreover,
the experimental outcomes across multiple back-
bones highlight the flexible scalability of UMR.
Comparison with the state-of-the-art meth-
ods. As this paper simultaneously evaluates four
datasets for hateful memes detection, the compar-
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Table 5: Ablation study evaluated on the Hateful,
Harmful-C, Harmful-P and Offensive memes.

Models Hateful (ALBEF) Harmful-C (BLIP) Harmful-P (BLIP) Offensive (BLIP-2)

Acc. ↑ AUROC ↑ F1 ↑ MMAE ↓ F1 ↑ MMAE ↓ F1 ↑ Pre. ↑ Rec. ↑
UMR 77.20 85.64 86.99 0.1195 92.11 0.0786 69.96 70.30 69.73
UMR w/o mrm 75.40 83.48 84.45 0.1298 90.41 0.0958 67.36 67.72 68.62
UMR w/o ugm 73.60 81.82 83.39 0.1605 89.01 0.1090 66.38 67.13 66.39
UMR w/o cfm 76.40 84.37 86.80 0.1236 90.68 0.0927 67.91 68.76 68.43

Table 6: Performance comparison of various uncertainty
learning methods. UMR-COS and UMR-DIS represent
Cosine and Euclidean distances as the uncertainty met-
rics, respectively.

Models Hateful (ALBEF) Harmful-C (BLIP)

Acc. ↑ AUROC ↑ Acc. ↑ F1 ↑ MMAE ↓
UMR 77.20 85.64 87.85 86.99 0.1195
UMR-COS 75.60 83.55 85.93 85.22 0.1267
UMR-DIS 75.10 82.93 84.98 84.94 0.1281

ison methods used for each dataset vary. These
methods are outlined below: For hateful memes,
CDKT (Yang et al., 2022) is employed, which is a
cross-domain knowledge transfer model. It lever-
ages sarcasm domain knowledge to provide addi-
tional discriminative information for the relatively
small attack samples. For harmful memes, TOT
(Zhang et al., 2023) is utilized. TOT deciphers
implicit harm in memes scenarios using topology-
aware optimal transport. For offensive memes, Dis-
MultiHate (Lee et al., 2021) is employed. DisMul-
tiHate disentangles target information from memes
to improve offense content classification. Com-
pared to CDKT, the proposed UMR demonstrates
higher performance without requiring additional
domain data. UMR achieves this by adaptively
aggregating unimodal and cross-modal features
through estimating uncertainty between modalities,
without the need for complex feature representation
(such as entities and demographic information) as
required by TOT and DisMultiHate.

Furthermore, we observe that BLIP-2 could pro-
vide optimal performance on offensive memes,
while showing disappointing results on hateful
memes. The primary reason for this discrepancy
lies in the construction of the datasets. Compared to
the offensive dataset, the hateful dataset introduces
benign confounding factors (Kiela et al., 2020) to
confuse hate memes, which is particularly rare.

4.5 Quantitative Analysis

Effectiveness of each component. To assess the
influence of each component in UMR, we conduct
a series of ablation studies, as depicted in Table
5. It can be observed: 1) Removing the modal

Table 7: Performance comparison of various cross-
modal fusion methods. UMR-CAT denotes concate-
nating unimodal representations directly. UMR-CNN
denotes using a convolutional neural network for fusion.

Models Hateful (ALBEF) Harmful-C (BLIP)

Acc. ↑ AUROC ↑ Acc. ↑ F1 ↑ MMAE ↓
UMR 77.20 85.64 87.85 86.99 0.1195
UMR-CAT 74.70 82.11 85.84 85.46 0.1252
UMR-CNN 75.30 83.34 86.69 85.97 0.1246

rebalance module (w/o mrm), the performance de-
creases greatly, indicating that modality imbalance
will weaken the effectiveness of subsequent fea-
ture fusion and uncertainty learning; 2) Remov-
ing the uncertainty-guided module (w/o ugm), per-
formance decreases the most, demonstrating that
considering the contribution of each modality to
hate sentiment is the most critical factor for hate-
ful memes detection task; 3) Removing the cross-
modal fusion module (w/o cfm) and using the atten-
tion mechanism to capture dependencies between
modalities, performance has no significant changes,
verifying that MLP-based cross-modal fusion could
maintain higher performance while reducing com-
putational costs.
Uncertainty-guided analysis. Table 6 shows the
performance of various uncertainty measurement
methods. It is evident that all UMR variants exhibit
superior performance, underscoring the importance
of uncertainty learning in hateful memes detec-
tion. Notably, UMR outperforms UMR-COS and
UMR-DIS. This is primarily because UMR gen-
erates a stochastic representation for each sample
using a Gaussian distribution, whereas UMR-COS
and UMR-DIS rely on fixed unimodal representa-
tions to calculate distance, failing to capture the
uncertainty of distributions.
Cross-modal fusion analysis. As illustrated in Ta-
ble 7, the performance degradation of UMR-CAT is
evident, suggesting that merely concatenating uni-
modal features without modeling cross-modal inter-
actions is inadequate for effective multimodal rep-
resentation. UMR-CNN, on the other hand, tends
to capture locally confined semantic interactions
due to the limited size of the convolution kernel. In
contrast, UMR can explore these interactions more
globally, leading to improved performance.

4.6 Qualitative Analysis
The purpose of UMR is to model modality uncer-
tainty and alleviate modality imbalance for hateful
memes detection. To further understand UMR in-
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Figure 4: Case analysis of modality uncertainty on Hate-
ful memes.
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Figure 5: Case analysis of modality rebalance on Hate-
ful memes.

tuitively, we show some cases in Figure 4-5.
Modality uncertainty analysis. We refer to the
visualization method in ALBEF and adopt Grad-
CAM (Selvaraju et al., 2017) to visualize the third
layer cross-attention map of the multimodal en-
coder in ALBEF. As shown in Figure 4, the left
image is ALBEF and the right image is UMR. The
keyword is black, and the darker the color, the
higher the attention of black to the image area. The
visualization experiment results show that in AL-
BEF, black and the black women in the image, in-
cluding the specular reflection, are highly focused,
leading to misclassification. In UMR, black fo-
cuses more on the black parts in the image, making
the model distinguish it as non-hateful sample.
Modality rebalance analysis. As shown in Figure
5, the performance of text and image in UMR is
relatively stable and comparable. This indicates
that UMR greatly improves modality imbalance
in hateful memes. In addition, the performance
of text and image modality in multimodal models
has significantly improved compared to image-only
and text-only models, respectively.

5 Conclusion

In this paper, a hateful memes detection framework
(UMR) is proposed to address the challenges of
modality uncertainty and modality imbalance. By
extracting stochastic embeddings from a Gaussian
distribution to quantify uncertainty, the framework
adaptively aggregates cross-modal and unimodal
features. By improving cosine loss from weight
norm and inter-modal constraints, modality imbal-

ance can be alleviated. Moreover, UMR demon-
strates scalability by accommodating various multi-
modal models as backbones. Experimental results
on four widely-used datasets reveal that UMR con-
sistently outperforms baselines and achieves com-
petitive performance compared to existing methods
for hateful memes detection. Quantitative analysis
further validates the rationality of each component.

Limitations

We would like to highlight some limitations of the
proposed method and suggest potential future di-
rections. Firstly, as reported in the experimental
results, our method decreases the robustness of the
model due to inconsistent backbone performance
across different datasets. Secondly, although we
have shown the effectiveness of UMR through
case studies in this paper, a more comprehensive
analysis is required. For example, future work
can explore more advanced and interpretable back-
bone models to enhance the interpretability of hate
speech.
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