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Abstract

Multi-Modal Entity Alignment aims to dis-
cover identical entities across heterogeneous
knowledge graphs. While recent studies have
delved into fusion paradigms to represent en-
tities holistically, the elimination of features
irrelevant to alignment and modal inconsis-
tencies is overlooked, which are caused by
inherent differences in multi-modal features.
To address these challenges, we propose a
novel strategy of progressive modality freez-
ing, called PMF, that focuses on alignment-
relevant features and enhances multi-modal
feature fusion. Notably, our approach in-
troduces a pioneering cross-modal associa-
tion loss to foster modal consistency. Em-
pirical evaluations across nine datasets con-
firm PMF’s superiority, demonstrating state-
of-the-art performance and the rationale for
freezing modalities. Our code is avail-
able at https://github.com/ninibymilk/PMF-
MMEA.

1 Introduction

Multi-modal Knowledge Graphs (MMKGs) inte-
grate various modalities, including text, vision,
and structural data, to provide comprehensive in-
sights into knowledge. This integration under-
pins a range of applications, from question answer-
ing (Zhu et al., 2015) and information retrieval (Di-
etz et al., 2018; Yang, 2020), to recommendation
systems (Sun et al., 2020a). Multi-Modal Entity
Alignment (MMEA) aims to identify identical en-
tities across heterogeneous MMKGs, which is es-
sential for the integrity of the knowledge repre-
sented within these KGs. The essence of MMEA
lies in identifying feature commonalities across
entities from varied modalities to determine their
alignment. The diversity in KG construction in-
troduces potential mismatches in multi-modal fea-
tures of entities meant to be aligned. For example,
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Figure 1: Illustration of irrelevant vs. relevant features
in multi-modal knowledge graphs.

Figure 1 depicts how the entity “Interstellar (film)”
might be represented in one knowledge graph G by
a poster image of a spaceship, whereas in another
knowledge graph G′, by a portrait of Anne Hath-
away, the starring actress. Although both images
are related to “Interstellar (film)”, their disparate
perspectives can weaken the semantic relationship,
challenging the alignment task. This scenario
underscores the problem of alignment-irrelevant
features, distinctly different features that compli-
cate accurate entity alignment. While recent stud-
ies (Lin et al., 2022; Chen et al., 2023a) have em-
ployed attention mechanisms to calculate cross-
modal weights at both the KG and entity levels,
they overlook the critical step of evaluating modal-
ity relevance, thereby neglecting to exclude these
irrelevant features.

Another obstacle in MMEA involves ensur-
ing semantic consistency across different modali-
ties. Achieving consistent representations across
modalities is crucial for effective entity alignment.
Existing methods (Lin et al., 2022; Chen et al.,
2023a,b) utilize contrastive learning to minimize
the intra-modal inconsistencies among aligned en-
tities, yet overlook the cross-modal inconsisten-
cies. Furthermore, the presence of alignment-
irrelevant features exacerbates these inconsisten-
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cies, complicating the task of achieving consistent
representations across modalities.

To address the aforementioned challenges, we
propose a novel method for multi-modal entity
alignment, named Progressive Modality Freezing
(PMF), designed to effectively filter out irrelevant
features. PMF is structured around three key parts:
multi-modal entity encoders, progressive multi-
modality feature integration, and a unified training
objective for MMEA. Initially, PMF separately en-
codes entity features from each modality, allowing
for flexible adjustment of input modalities. Fol-
lowing this, the method employs a progressive ap-
proach to selectively freeze features deemed less
relevant for alignment, simultaneously integrating
valuable multi-modal features based on their align-
ment relevance. The culmination of our strategy is
a unified training objective, aimed at minimizing
the discrepancies both within individual KGs and
across different modalities.

To encapsulate, our research contributes in the
following three-folds:

• We propose the Progressive Modality Freez-
ing (PMF) strategy to tackle the challenge of
irrelevant features in MMEA. By assigning
alignment-relevance scores to modalities, our
method progressively freezes features that
are alignment-irrelevant, while seamlessly in-
tegrating beneficial multi-modal information,
ensuring the emphasis remains on features of
utmost relevance.

• We are at the forefront of employing con-
trastive learning to address modality consis-
tency across multiple modalities, accompa-
nied by a unified training objective to en-
hance cross-modal consistency.

• We confirm the effectiveness of PMF across
diverse datasets and experimental settings,
where it demonstrates superior performance,
achieving state-of-the-art in the field. Our
thorough analysis further elucidates the ad-
vantage of the feature-freezing strategy.

2 Related Work

2.1 Multi-modal Knowledge Graph
Representation Learning

The field of MMKG representation learning forms
a critical foundation for tasks such as entity
alignment and link prediction, transitioning from

traditional single-modal knowledge graph meth-
ods to more complex that leverage diverse data
types. Early efforts expanded upon established
KG representation learning methods for single-
modal knowledge graphs, like those introduced
by Xie et al. (2016) and Mousselly-Sergieh
et al. (2018), adapting translational KG embed-
ding techniques (Bordes et al., 2013) to incor-
porate multi-modal data effectively. Subsequent
research has delved deeper into the impact of
multi-modal information in representation learn-
ing. Pezeshkpour et al. (2018) implemented an
adversarial method to tackle the challenge of miss-
ing data within MMKGs, while Fang et al. (2022)
explored a contrastive learning approach to lever-
age the rich, varied data and heterogeneous struc-
tures in MMKGs. These advancements highlight
the field’s move towards more sophisticated, data-
inclusive methodologies.

2.2 Multi-Modal Entity Alignment

The exploration of MMEA began with MMKG
(Liu et al., 2019), which provided a dataset facil-
itating entity embedding through linked images.
Building on this, MMEA (Chen et al., 2020) ad-
vanced the field by fusing relational triples, im-
ages, and numerical attributes to generate entity
embeddings.

Given the distinctiveness of images as a modal-
ity, utilizing visual data in alignment processes
has emerged as a key focus in MMEA. For in-
stance, EVA (Liu et al., 2021) exploited visual sim-
ilarities for unsupervised entity alignment, while
MSNEA (Chen et al., 2022) and UMAEA (Chen
et al., 2023b) enhanced relational feature learning
using visual cues to tackle the challenges posed by
missing and ambiguous visual data.

Central to MMEA is the integration of multi-
modal information. MEAformer (Chen et al.,
2023a) employed a dynamic weighting trans-
former for integration, whereas MCLEA (Lin
et al., 2022) aimed at bridging the modality
gap via contrastive learning. ACK-MMEA (Li
et al., 2023) introduced a strategy for normaliz-
ing multi-modal attributes, ensuring consistency
across modalities.

Iterative learning has emerged as a powerful
strategy for refining entity alignment with meth-
ods like XGEA (Xu et al., 2023) and PSNEA (Ni
et al., 2023) employing pseudo-labeling to miti-
gate scarcity of initial seeds.
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Despite these advancements, existing methods
neglect the necessity of filtering out alignment-
irrelevant features and addressing cross-modal in-
consistencies. Our method addresses these gaps
by selectively freezing less pertinent modalities
within an entity to enhance the alignment process.

3 Model

We propose a multi-modal entity alignment frame-
work based on progressively freezing entities with
irrelevant features and contrastive learning. As
shown in Figure 2, the framework consists of
three parts: multi-modal entity encoder, progres-
sive multi-modality feature integration, and cross-
graph contrastive learning. First, a multi-modal
encoder is used to transform the raw input of each
modality graph into entity embeddings. Then,
we integrate modality features progressively dur-
ing training, which gradually freezes alignment-
irrelevant features and fuse the modality graphs.
Finally, the model is optimized through con-
trastive loss between different knowledge graphs
and different modality graphs.

3.1 Preliminaries
MMKG Definition A multi-modal knowledge
graph (MMKG) is defined as G = {E ,R, T ,A},
where E is a set of entities, R is a set of relations
between entities, T ⊆ E ×R× E denotes a set of
triples in the knowledge graph, and A is a set of
multi-modal attributes of entities (e.g., textual de-
scriptions, images, etc.). For modality m ∈ M,
where M is the set of modalities, we define a
modality graph Gm that captures a unique aspect
pertinent to the knowledge graph. More specifi-
cally, Gm = {E ,R, T ,Am}, where Am is the set
of attributes associated with modality m.

Task Description In the context of multi-modal
entity alignment (MMEA), consider two MMKGs
G = {E ,R, T ,A} and G′ = {E ′,R′, T ′,A′}. The
set S = {(ei, ej)|ei ∈ E , ej ∈ E ′} denotes pre-
established pairs of entities known to correspond
to the same real-world object across both graphs.
In a supervised learning setting, a model is trained
with part of S and then tasked to predict the align-
ments of the remaining entity pairs.

3.2 Multi-Modal Entity Encoder
In the Multi-modal Entity Encoder module, we
process the features of entities from each KG ac-
cording to their respective modalities. Given an

entity ei ∈ Gm, its feature is denoted by emi . The
encoding process for each modality of an entity is
defined by the following equation:

hmi = ENCm(Θm, emi ), (1)

where ENCm represents the encoder designed for
modality m with its associated learnable parame-
ter Θm. While our framework allows the integra-
tion of any modality, for a fair comparison, we in-
corporate four modalities: structure (str), relation
(rel), attribute (att), and image (img). Details of
ENCm are attached in Appendix A.1

3.3 Progressive Multi-Modality Feature
Integration

The process of integrating multi-modal features
in a stepwise manner unfolds in three distinct
phases. Initially, the process involves calculat-
ing an alignment-relevant score for each modal-
ity graph (e.g., Gm) to discern features that are
irrelevant for alignment from those that are cru-
cial. Following this, certain features are selec-
tively ‘frozen’ based on modality scores to miti-
gate the inclusion of extraneous features. Finally,
features from various modality graphs are fused to
align multi-modal entities. This approach is exe-
cuted iteratively and progressively to identify and
incorporate beneficial features into the alignment
process throughout the training phase, ensuring a
refined alignment outcome.

3.3.1 Feature Relevance Measuring
We assess the likelihood that features from a given
modality of an entity will contribute to the align-
ment process, thereby enabling the identification
of potential alignment-irrelevant features within
each modality graph. The alignment-relevant
scores for a modality graph Gm are denoted as
Wm, calculated by the following equation:

Wm = SCORE(Gm,G′
m), (2)

where SCORE(·) represents a score function.
Specifically, for an entity emi from Gm and con-
sidering a corresponding modality graph G′

m from
target knowledge graph G′, the alignment-relevant
score is computed as:

wm
i = Relu


 αm

i − δ

max
ej∈E

(αm
j )− δ


 , (3)

αm
i = max

ek∈E ′

(
hmi · hmk
|hmi ||hmk |

)
, (4)
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Figure 2: Overview of the PMF Model. The framework consists of three components: the Multi-Modal Entity
Encoder (&3.2), Progressive Multi-Modality Feature Integration (&3.3), and Cross-Graph Contrastive Learning
(&3.4). At epoch t, the multi-modal encoder ENCm transforms raw inputs from each modality graph into entity
embeddings Ht

m. Progressive Feature Integration (&3.3.4) occurs during training, employing Irrelevant Fea-
ture Freezing (&3.3.2) and performing Relevant Feature Fusion (&3.3.3) guided by Relevant Feature Measuring
(&3.3.1). The model is optimized using Cross-KG Alignment Loss Lt

CKG (&3.4.2) and Cross-Modality Associa-
tion Loss Lt

CM (&3.4.1).

where δ is a dynamic threshold. The collection of
wm
i for all entities constitutes Wm. In a parallel

manner, the alignment-relevant scores W ′
m for G′

m

are computed similarly.
The underlying rationale for the alignment-

relevant score is to ascertain whether an entity
from the current modality graph Gm exhibits sim-
ilarity with entities from the modality graph G′

m.
Should the features hmi of an entity ei in Gm

lack similar counterparts in G′
m, the correlation be-

tween hmi and the entity aligned with ei in G′
m

would consequently be weak. As such, hmi is less
likely to contribute positively to the alignment pro-
cess. To facilitate a reasonable measurement of
feature similarity within a modality, we normal-
ize this metric using the highest similarity across
all entities from the same modality graph. This
alignment-relevant score is subsequently utilized
to guide the processes of modality feature freezing
and fusion.

3.3.2 Irrelevant Feature Freezing
To minimize the detrimental impact of alignment-
irrelevant features on the training process, we in-
troduce a feature-freezing strategy. This approach
selectively prevents back-propagation for specific
entities within particular modality graphs, thereby
preserving the integrity of the training regime. For-
mally, we define Gt

m by extending Gm with a func-
tion F t

m : E → {0, 1}, to characterize whether
entity e is frozen at step t. More specifically,
Gt
m = {E ,R, T ,Am,F t

m}, where for each entity
e in E , e is frozen only if F t

m(e) = 0. Correspond-

ingly, we refer Ht
m and Wt

m to the representation
of all entities and their alignment-relevant score at
step t, respectively. All elements in vector F0

m are
initialized as 1.

The formalization of the entity freezing process
is given by:

F t
m = FREEZE(Wt

m,Gt
m). (5)

At step t, when the alignment-relevant score wm
i

for entity ei from Gt
m is zero, it is inferred that

this entity does not contribute positively towards
the training of the alignment model. Conse-
quently, the gradient update for features hmi asso-
ciated with such an entity is halted during back-
propagation. The freezing operation for an entity
emi , contingent upon its score wm

i , is defined as:

FREEZE(emi ) =

{
0 if wm

i = 0,

1 otherwise.
, (6)

where 0 indicates "stop gradient", ensuring that
the gradient flow is interrupted for entities deemed
irrelevant, with wm

i ∈ W t
m. FREEZE(·) sys-

tematically applies across all entities within Gt
m.

This feature freezing is enacted across all modality
graphs of each KG (e.g., G and G′) to optimize the
alignment model’s focus on beneficial features.

3.3.3 Relevant Feature Fusion
Recognizing that the significance of the features of
each modality may vary across entities, we lever-
age the alignment-relevant scores introduced in
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Eq. 3 as a guide during the fusion process.

Ht
joint = CONCAT

m∈M
(Wt

m,Gt
m), (7)

where CONCAT(·) symbolizes the fusion opera-
tor acting on all modality graphs Gt

m, integrating
them into a joint representation Ht

joint.
In practice, for each entity ei, the representa-

tions hmi are weighted by their respective confi-
dence wm

i , ensuring that modalities with higher
relevance scores have a greater influence in the
fused representation. Accordingly, at step t, this
fusion process is defined as follows:

hjointi = ⊕
m∈M

([wm
i · hmi ]), (8)

where ⊕ denotes the vector concatenation oper-
ation, and hjointi represents the composite fea-
ture embedding for entity ei, synthesized from all
modalities. The collective hjointi across all entities
at step t forms Ht

joint.

3.3.4 Progressive Feature Integration
By integrating information from each modality
graph, we can progressively optimize entity align-
ment. This is done by iteratively refining fea-
ture relevance, and gradually isolating alignment-
irrelevant features from overt to subtle ones. Ini-
tially, basic representations are used to gauge
modality confidence and selectively freeze modal-
ity features, employing a lower threshold to ex-
clude overtly irrelevant features due to nascent
modality representations. As training advances,
the model accumulates a deeper understanding of
modal information, systematically increasing the
threshold to prune less obvious features indepen-
dent of alignment goals.

The process unfolds as follows: Assuming the
model has been trained for t epochs, in epoch t+1,
we compute the alignment-relevant scores Wt+1

m

using the current stage of Gt
m and G ′t

m. Concur-
rently, the threshold δ for discerning feature rel-
evance is increased at a predefined rate. Based
on the newly calculated scores Wt+1

m , entities are
frozen to reflect the updated insights, updating
each modality graph to Gt+1

m . Subsequently, these
refined modality graphs are merged, leveraging
the latest alignment-relevant scores to produce the
joint graph representation Ht+1

joint, as formalized in
Equation (2), (5) and (7).

Comparatively, alternatives like “early integra-
tion” or “late integration” present limitations.

Early integration might only freeze superficially
irrelevant features due to the premature stage of
training, which can be challenging to correct in
later stages. Our progressive strategy synergisti-
cally blends the benefits of both approaches, ensur-
ing a balanced and effective integration of modal-
ity information throughout the training lifecycle.

3.4 Multi-Modal Entity Alignment Objective

Our framework adopts contrastive learning as a
pivotal strategy to extract and leverage alignment
information across knowledge graphs and to dis-
cern semantic associations between various modal-
ity graphs. To accomplish this, we have devel-
oped a composite loss function that integrates both
cross-KG alignment and cross-modality associa-
tion within a unified learning objective. The over-
all loss function at step t is defined as follows:

Lt = Lt
CM + Lt

CKG, (9)

where Lt
CKG is the alignment loss across different

KGs, and Lt
CM denotes the association loss across

modalities within each KG.

3.4.1 Cross-Modality Association Loss
One significant source of inconsistencies across
modalities is alignment-irrelevant features. Freez-
ing features within each modality graph allows our
framework to more effectively draw together the
remaining modal features that are beneficial for
alignment.

Specifically for each entity ei, we compute the
contrastive loss between pairs of modality graphs
Gp and Gq. The loss function aims to minimize the
distance between positive pairs (epi , e

q
i ) and maxi-

mize the separation between negative pairs (epi , e
q
j)

and (epj , e
q
i ). Here ei and ej are entities in the same

knowledge graph G. For each positive pair (epi , e
q
i ),

the cross-modality loss at step t is defined as:

ltCM(epi , e
q
i ) =

exp(hp
i · hq

j/τ)

exp(hp
i · hq

j/τ) +
∑

(e
p
j ,e

q
k
)∈N−

i,p,q

exp(hp
i · hq

j/τ)
,

(10)

where hpi∈Ht
p, hqj∈Ht

q, and exp(hpi ·h
q
j/τ) are

scaled by a temperature factor τ , and set N−
i,p,q rep-

resents negative samples, encompassing all other
entity pairs from the modality graphs Gp and Gq.

The framework computes the contrastive loss
for entities across each modality graph of the two
KGs. The final cross-modality loss is then deter-
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mined by:

Lt
CM =

∑

p,q∈M

∑

ei∈E∪E′
βpβq

(
− log ltCM(epi , e

q
i )
)
, (11)

where βp and βq are hyper-parameters associated
with modality p and q, adjusting the learning rate
for features of the corresponding modality.

3.4.2 Cross-KG Alignment Loss
Pre-aligned entity pairs serve as crucial supervi-
sion signals in multi-modal entity alignment. Our
approach employs supervised contrastive learning
to elucidate the alignment relations between en-
tities from corresponding modality graphs of dif-
ferent KGs. We formalized this supervised con-
trastive learning process at step t as follows:

ltckg(e
m
i , emj ) =

exp(hm
i ·hm

j /τ)

exp(hm
i ·hm

j /τ) +
∑

ek∈N−
i

exp(hm
i ·hm

k /τ)
,

(12)

where N−
i encompasses a set of in-batch negative

samples for emi .
Given the undirected nature of entity alignment,

we compute the contrastive loss considering both
directions across KGs, which is defined as:

Lt
CKG =

∑

m∈M+

∑

(ei,ej)∈S
− 1

2
log

(
ltckg(e

m
i , emj )

+ltckg(e
m
j , emi )

)
,

(13)
where M+ is the set of modalities, including

M and “joint” as a special modality that encap-
sulates the fusion features of multi-modal infor-
mation. Note that the representations of modality
“joint” is taken from Ht

joint.

3.5 Alignment Prediction
The alignment of entities is executed sequentially,
focusing on the similarity between their fused
multi-modal embeddings. Specifically, for each
entity ei within the joint modality graph Gjoint

that remains unaligned, we seek its counterpart, ej ,
in the corresponding joint modality graph G′

joint.
The sequence in which entities are aligned follows
a greedy strategy. The chosen ej is the unaligned
entity that exhibits the highest cosine similarity
score with ei.

4 Experiment

4.1 Experiment Setup
Datasets To evaluate the effectiveness of our
proposed method, we utilized three publicly avail-

able MMEA datasets. MMKG (Liu et al.,
2019) features two subsets extracted from Free-
base, YAGO, and DBpedia. Multi-OpenEA (Sun
et al., 2020b), augmented with entity images
from Google search queries, includes two mul-
tilingual subsets and two monolingual subsets.
DBP15K (Sun et al., 2017; Liu et al., 2021) com-
prises three subsets from DBpedia’s multilingual
version. Seed alignments are designated for 20%
of MMKG and Multi-OpenEA entity pairs and
30% for DBP15K entity pairs, aligning with pro-
portions used in prior studies (Chen et al., 2020;
Liu et al., 2021; Lin et al., 2022; Chen et al.,
2023a,b).

Baselines We compare our approach against
six leading multi-modal alignment methods:
MMEA (Chen et al., 2020), EVA (Liu et al.,
2021), MSNEA (Chen et al., 2022), MCLEA (Lin
et al., 2022), MEAformer (Chen et al., 2023a),
and UMAEA (Chen et al., 2023b). We replicated
MEAformer and UMAEA using their publicly
available code to establish robust baselines. Al-
though other notable methods like ACK-MMEA
(Li et al., 2023) exist, their exclusion was due to
the lack of open-source code, ensuring fairness in
our comparisons.

Evaluation Metrics We employ two metrics for
evaluation. Hits@1 (abbreviated as H@1) mea-
sures the accuracy of top-one predictions. Mean
Reciprocal Rank (MRR) assesses the average in-
verse rank of the correct entity. Higher values of
H@1 and MRR indicate better performance.

Implement Details The total training epochs
are set to 250, with an option for an additional 500
epochs using an iterative training strategy. Our
training regimen incorporates a cosine warm-up
schedule (15% step for LR warm-up), early
stopping, and gradient accumulation, utilizing the
AdamW optimizer with a consistent batch size
of 3500. Details of the experimental setup are
available in the Appendix A.

4.2 Overall Results

Table 1 shows a comprehensive comparison be-
tween iterative and non-iterative methods across
the three datasets, showcasing our model outper-
forms all nine sub-datasets.

Our approach significantly surpasses other non-
iterative methods across various datasets. Specif-
ically, on DBP15K, we see an improvement in
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Table 1: Comparison of overall performance presenting both non-iterative and iterative results. The highest-
performing baseline results are underlined, and any instances where our method sets a new state-of-the-art are
highlighted in bold. Results with an asterisk (*) indicate our reproduction under identical settings.

Model
MMKG Multi-OpenEA DBP15K

FBDB15K FBYG15K EN-FR-V1 EN-DE-V1 D-W-V1 D-W-V2 ZH-EN JA-EN FR-EN
H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR

no
n-

ite
ra

tiv
e

MMEA .265 .357 .234 .317 - - - - - - - - - - - - - -
MSNEA .114 .175 .103 .153 .692 .734 .753 .804 .800 .826 .838 .873 .609 .685 .541 .620 .557 .643

EVA .199 .283 .153 .224 .785 .836 .922 .945 .858 .891 .890 .922 .683 .762 .669 .752 .686 .771
MCLEA .295 .393 .254 .332 .819 .864 .939 .957 .881 .908 .928 .949 .726 .796 .719 .789 .719 .792

MEAformer* .418 .519 .327 .418 .836 .882 .954 .971 .909 .933 .944 .962 .771 .835 .764 .834 .772 .841
UMAEA* .454 .552 .355 .451 .847 .891 .955 .970 .905 .930 .948 .967 .800 .860 .801 .862 .818 .877

PMF .539 .620 .459 .539 .912 .942 .973 .983 .955 .970 .981 .989 .835 .884 .835 .885 .850 .898
improve 8.5% 6.8% 10.4% 8.8% 6.5% 5.1% 1.8% 1.2% 4.6% 3.7% 3.3% 2.2% 3.5% 2.4% 3.4% 2.3% 3.2% 2.1%

ite
ra

tiv
e

MSNEA .149 .232 .138 .210 .699 .742 .788 .835 .809 .836 .862 .894 .648 .728 .557 .643 .583 .672
EVA .231 .318 .188 .260 .849 .896 .956 .968 .915 .942 .925 .951 .750 .810 .741 .807 .765 .831

MCLEA .395 .487 .322 .400 .888 .924 .969 .979 .944 .963 .969 .982 .811 .865 .805 .863 .808 .867
MEAformer* .578 .661 .444 .529 .903 .935 .963 .977 .954 .970 .969 .981 .847 .892 .842 .892 .845 .894

UMAEA* .561 .660 .463 .560 .895 .931 .974 .984 .945 .965 .973 .984 .856 .900 .857 .904 .873 .917
PMF .624 .702 .543 .620 .923 .950 .980 .988 .960 .973 .986 .992 .867 .908 .866 .909 .879 .921

improve 4.6% 4.1% 8.1% 6.0% 2.0% 1.5% 0.6% 0.4% 0.6% 0.3% 1.3% 0.8% 1.1% 0.8% 0.9% 0.5% 0.6% 0.4%

Table 2: Non-iterative model performance comparison
utilizing surface information on DBP15K.

Model
DBP15K

ZH-EN JA-EN FR-EN
H@1 MRR H@1 MRR H@1 MRR

MSNEA .929 .951 .964 .976 .990 .994
EVA .887 .913 .938 .955 .969 .980

MCLEA .926 .946 .961 .973 .987 .992
MEAformer* .944 .962 .976 .985 .990 .994

UMAEA* .945 .963 .978 .986 .990 .994
PMF .958 .973 .985 .990 .992 .995

H@1 of up to 3.5% over the nearest competi-
tor. The Multi-OpenEA datasets show enhance-
ments in the range of 1.8% to 6.5%, while the
FBDB15K and FBYG15K datasets experience
substantial gains, with increases up to 10.4%.
These improvements highlight our method’s capa-
bility to effectively filter out conflicting and lower-
quality modality information, enhancing overall
alignment accuracy.

To assess our model’s performance with added
textual data, we initialized text modality embed-
dings using surface representations from (Lin
et al., 2022). The incorporation of textual infor-
mation markedly enhances entity alignment, as ev-
idenced by the results in Table 2 for the DBP15K
dataset. Despite all models benefiting from this su-
pervisory signal, our method outperforms the base-
lines and demonstrates its robustness in leveraging
textual data for improved alignment.

4.3 Ablation Study

To assess the contribution of various components
within our framework, we introduce five vari-
ants: Feature Relevance Measuring (FRM), Irrel-
evant Feature Freezing (IFF), Relevant Feature

Figure 3: Comparison of variants of PMF on DBP15K
in terms of H@1.

Fusion (RFF), Progressive Integration (PI), and
Cross-Modality Association Loss (LCM). By in-
dividually removing or modifying these compo-
nents, their contributions to the performance were
assessed. As depicted in Figure 3, the omis-
sion of the FRM component leads to a signifi-
cant drop in H@1 performance across all datasets.
For example, H@1 fell from 0.835 to 0.749 on
DBP15KZH−EN. The influence of FRM extends
to both IFF and RFF components, with RFF show-
ing a more significant impact on performance due
to its integral role in modality fusion and its effect
on the overall training loss.

Further, replacing our "progressive" integration
strategy with a "static" one, where FRM occurs
only once, resulted in a marked performance
downturn. This underscores the significance of
progressively identifying alignment-irrelevant fea-
tures, a task challenging to accomplish in a single
iteration. Eliminating LCM also led to a decline in
model performance. This underlines the effective-
ness of cross-modality loss in fostering consistent
entity representation learning across modalities.
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4.4 Modality Analysis
4.4.1 Impact of Different Modality

Figure 4: Impact of various modalities on DBP15K in
terms of H@1.

We examined the influence of modality informa-
tion on entity alignment on DBP15K, as depicted
in Figure 4. The absence of any modality no-
tably hinders performance, with structure and im-
age modalities showing the most significant effect.
The foundational role of structures in KGs and the
distinctive features provided by images underscore
their importance in alignment.

A slight drop in performance is observed when
either relation or attribute is excluded, attributed to
the typically lower count of attributes and relations
compared to entities, which may lead to attribute
or relation overlaps among different entities. Con-
versely, a notable performance drop occurs when
both are removed. This suggests a complementary
relationship between attributes and relations that
enhances alignment.

4.4.2 Distribution of Modality Scores

Figure 5: Distribution of relevance scores across modal-
ities for pre-aligned entity pairs in DBP15KFR−EN.

We examined the distribution of modality
scores to understand the contribution of differ-
ent modalities to entity alignment, as depicted

in Figure 5. Each point in the figure represents
an aligned entity pair, with axes reflecting their
modality scores across source and target KGs.

Attributes, relations, and structures show a
widespread and increased distribution of scores,
indicating their positive impact on alignment. Con-
versely, image modality shows a distinct, concen-
trated pattern, highlighting the variability in image
features between aligned entities due to the lim-
ited scope of images and inconsistencies in KG
construction. This underscores the benefit of ex-
cluding less reliable image features. Moreover,
the presence of data points near the axes suggests
challenges with one-sided visual information. In-
terestingly, a strong positive correlation emerges
between modality scores of aligned entities, vali-
dating our modality scoring approach. This corre-
lation implies that when a modality is less helpful
for one entity in an aligned pair, it tends to be sim-
ilarly low for the counterpart.

4.5 Parameters Analysis

Figure 6: Impact of varying threshold δ on frozen ratio
and H@1 performance: the x-axis represents δ values
ranging from 0.1 to 0.95.

To further investigate the impact of parameters
on integration, we analyze how varying the thresh-
old parameter δ impacts the frozen ratio in image
modality and alignment performance on DBP15K.
Figure 6 shows that when δ is below 0.4, minimal
changes are observed in both the ratio and H@1
performance, likely due to the absence of images
for certain entities. Beyond this point, as δ as-
cends, we note a gradual increase in the frozen ra-
tio, paralleled by an improvement in H@1, despite
the initial decline. This underscores the benefits of
selectively and gradually freezing entities. A no-
table drop in H@1 performance for some datasets
occurs at δ = 0.95, indicating that images are ben-
eficial for alignment and should not be frozen ex-
cessively.

Further experimental analysis results of the
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Table 3: Case study of representative frozen images on
DBP15KFR−EN during training.

Source-KG(French) Target-KG(English)
Entity Image Entity Image

E
ar

ly
fr

oz
en Louis XV

Louis XV of
France

Président du
Mexique

President of
Mexico

Université
Stanford

Stanford
University

Disque
compact

Compact
disc

L
at

e
fr

oz
en

Juliana of
the

Netherlands

Juliana of
the

Netherlands

Brampton
(Ontario)

Brampton

STS-129 STS-129

Queens of
the Stone

Age

Queens of
the Stone

Age

feature-freezing process of PMF, including addi-
tional experiments, are available in Appendix B.

4.6 Case Study
To illustrate differences in features frozen at dif-
ferent stages, in Table 3, we select frozen image
information during training in the DBP15KFR−EN

dataset arranged in a time series. Early frozen im-
age pairs show significant differences. For exam-
ple, the "President_of_Mexico" entity corresponds
to a presidential portrait in the DBPFR but to a na-
tional flag image in the DBPEN. Images will not
benefit the process of alignment in this case. After
several epochs of training, the differences between
frozen image pairs frozen later are smaller. For
example, the "Juliana_of_the_Netherlands" entity,
where the image in DBPFR is a photo of the queen
in her youth, while in DBPEN, it is a photo of the
queen in her old age. These cases reflect the pro-
cess of effectively detecting alignment-irrelevant
features based on the principle of progressing from
easy to difficult cases.

5 Conclusion

In this study, we presented the Progressive Modal-
ity Freezing (PMF) model to advance Multi-
Modal Entity Alignment. By measuring and eval-
uating the relevance of various modalities, PMF
progressively freezes features deemed less critical,
thereby facilitating the integration and consistency
of multi-modal features. Furthermore, we intro-
duced a unified training objective tailored to foster
a harmonious contrast between KGs and modali-
ties. Empirical evaluations on nine sub-datasets
affirm the superiority of PMF and validate the ra-
tionale behind the selective freezing of modalities.

Limitations

PMF marks a significant advancement in MMEA,
yet it encounters limitations in two main aspects.

First, the method for measuring the alignment
relevance of modal features by evaluating their
usefulness in identifying similar traits across KGs
sometimes shows inconsistent reliability. As
shown in Figure 6, a minor decline in H@1 when δ
is below 0.5 suggesting that essential modal infor-
mation may be prematurely frozen. Future work
should aim to refine the approach for scoring align-
ment relevance, ensuring a more consistent and ac-
curate identification of pertinent features.

Second, our model predominantly exhibits effi-
ciency in non-iterative learning settings, with its
performance often unstable under iterative learn-
ing frameworks. This limitation stems from the
model’s initial design, which is inherently opti-
mized for non-iterative settings, limiting the effec-
tiveness of incorporating iterative strategies like
pseudo seeds for enhancing progressive freezing.
Further attempts will explore improved ways to in-
tegrate iterative learning with progressive freezing
for enhanced results.
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Appendix

A Detailed setup

A.1 Encoders of each modality

We incorporate four modalities, including struc-
ture, image, relationship, and attribute, to imple-
ment and evaluate the proposed method. The set-
tings of encoders for each modality are as follows.

The modality of structures describes the topo-
logical structure of entities in the knowledge graph.
Specifically, the input of structural modal is the
connections between various entities in the knowl-
edge graph. The connections can be described by
the adjacency matrix of the knowledge graph. Let
the adjacency matrix of G be A, we use graph at-
tention networks (GAT) to encode structural infor-
mation. Therefore, we define:

hi
str = GAT(A, estri ), (14)

Where estri is the randomly initialized representa-
tion of the entity ei.

The modality of relations consists of the rela-
tionships related to each entity in text form. The
relational feature of entity ei is the set of rela-
tion names from all the triples in which ei occurs.
Since the number of relations is limited, we use
the bag-of-words method to process input features.
ereli is defined as a one-hot vector, and the di-
mension is determined by the number of relations.
ENCrel consists of a fully connected layer.

Similarly, textual entity attributes constitute
an independent modality. Since the number of
attributes is also limited, we adopt a process-
ing method similar to the modality of relations.
Specifically, ENCatt is a fully connected layer,
and the input eatti is defined as a one-hot vector,
and the dimension depends on the number of at-
tributes.

The image modality is composed of the visual
entity attributes. Encoding images is usually diffi-
cult and requires a large amount of images for pre-
training. Therefore, we first use a fixed pre-trained
vision model (Simonyan and Zisserman, 2014; He
et al., 2016; Radford et al., 2021), to convert the
original pixel information into a vector representa-
tion eimg

i . Then, a trainable fully connected layer
is used as ENCimg.

The encoder of relations, attributes, and images
can be expressed by:

hi
m = FCm(emi ), (15)

where FCm is a trainable fully connected layer,
m ∈ {rel, attr, img}.

A.2 Dataset Statistics
Statistics for DBP15K, Multi-OpenEA, and
MMKG are presented in Table 4. The column
named "EA pairs" indicates pre-aligned entity
pairs. Note that not every entity is paired with im-
ages or counterparts in the alternate KG.

A.3 Metric Details
We evaluate the performance of entity alignment
tasks using two common metrics: Hits@n and
MRR.

Hits@n is a widely used performance metric in
entity alignment tasks. It is calculated as follows:
Given a total number of entity pairs N , for each en-
tity in graph G, compute its similarity with poten-
tial matching entities in graph G′ and rank them ac-
cording to their scores. If the correct entity’s rank
is within the top n positions, the Hits@n count is
incremented. The value of Hits@n is the percent-
age of the Hits@n count out of the total number
of entity pairs N . Higher Hits@n values indicate
better alignment performance.

Hits@n =
1

N

N∑

i=1

I(ranki ≤ n) (16)

MRR (Mean Reciprocal Rank) is a general eval-
uation metric for search algorithms and, when ap-
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Table 4: Statistical details for MMEA datasets.

Dataset KG # Ent. # Rel. # Attr. # Rel. Triples # Attr. Triples # Image # EA pairs

DBP15KZH−EN
ZH (Chinese) 19388 1701 8111 70414 248035 15912 15000EN (English) 19572 1323 7173 95142 343218 14125

DBP15KJA−EN
JA (Japanese) 19814 1299 5882 77214 248991 12739 15000EN (English) 19780 1153 6066 93484 320616 13741

DBP15KFR−EN
FR (French) 19661 903 4547 105998 273825 14174 15000EN (English) 19993 1208 6422 115722 351094 13858

Multi-OpenEAEN−FR
EN (English) 15000 267 308 47334 73121 15000 15000FR (French) 15000 210 404 40864 67167 15000

Multi-OpenEAEN−DE
EN (English) 15000 215 286 47676 83755 15000 15000DE (German) 15000 131 194 50419 156150 15000

Multi-OpenEADW−V 1
DBpedia 15000 248 342 38265 68258 15000 15000Wikidata 15000 169 649 42746 138246 15000

Multi-OpenEADW−V 2
DBpedia 15000 167 175 73983 66813 15000 15000Wikidata 15000 121 457 83365 175686 15000

FBDB15K FB15K 14951 1345 116 592213 29395 13444 12846DB15K 12842 279 225 89197 48080 12837

FBYG15K FB15K 14951 1345 116 592213 29395 13444 11199YAGO15K 15404 32 7 122886 23532 11194

plied to entity alignment tasks, calculates the sim-
ilarity between each entity in graph G and poten-
tial matching entities in graph G, ranking them
according to their scores. If the correct entity is
ranked n, the score is 1

n . The sum of scores for
all entities yields the MRR score. MRR reflects
the overall performance of the entity alignment al-
gorithm, with higher MRR scores indicating better
alignment results.

MRR =
1

N

N∑

i=1

1

ranki
(17)

A.4 Implementation Details
For a fair comparison with recent works (Chen
et al., 2023a,b), we have standardized our exper-
imental setup as follows:

• Iterative Learning: We adopt the approach
of (Lin et al., 2022) and employ a probation
method for iterative training. This method
collects pairs of mutual nearest entities every
5 epochs. Pairs that consistently remain near-
est neighbors for 10 rounds are added to the
training set.

• Multi-modal Encoders: For relations and
attributes, we use the Bag-of-Words (BoW)
model to encode relations (xr) and attributes
(xa) as fixed-length vectors with a dimen-
sion of dr = 1000. For entity names’ sur-
face information, we use 300-dimensional
GloVe vectors and character bigrams. We en-
hance this method by applying machine trans-
lations to entity names, following (Mao et al.,

2021). For images, we use ResNet-152 (He
et al., 2016) as pre-trained visual encoders
with a vision feature dimension (dv) of 2048
in DBP15K. For Multi-OpenEA, CLIP (Rad-
ford et al., 2021) is used with dv = 512. In
FBDB15K/FBYG15K, VGG-16 (Simonyan
and Zisserman, 2014) is employed with dv =
4096. It should be noted that we assign a
zero vector as the embedding for missing im-
ages to minimize their impact on cross-modal
learning.

• Hyper Parameters: We unify the hidden
layer dimensions across all networks to 300.
The parameter τ is set to 0.05 to emphasize
challenging negative samples in the contrast
loss. The dynamic threshold δ in Eq. 3 for
progressively freezing entities begins at 0.1
and increases by 1.2 until it reaches a max-
imum of 0.9. For the structure, relation, at-
tribute, and image modalities, βm values in
Eq. 11 are respectively set to 0.1, 0.1, 0.1, and
10, scaling the learning rate of modality fea-
tures.

• Computational Overhead: Our experi-
ments, conducted on a Tesla V100 SXM2
32GB GPU, demonstrate the superior ef-
ficiency of our model, which completes
training in only 20 minutes. This is
notably faster than the baseline model,
MEAformer (Chen et al., 2023a), at 33 min-
utes, and UMAEA (Chen et al., 2023b) at 29
minutes. The number of learnable parameters
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is 13.1M for DBP15K and Multi-OpenEA,
and 9.9M for MMKG.

B Detailed analysis

B.1 Low Resource

Figure 7: H@1 performance with different ratios
of seed alignments ranging from 0.01 to 0.3 on
DPB15KZH−EN (left) and FBDB15K (right). The x-
axis denotes ratios and the y-axis denotes H@1.

To assess the stability of the proposed method
under conditions of limited seed alignments, we
conducted evaluations on two distinct datasets–
DBP15KZH−EN and FBDB15K, using seed align-
ment ratios varying from 0.01 to 0.30. Figure 7
illustrates a clear gap between performances as
the ratio escalates. Notably, with merely 1% seed
alignments in the DBP15KZH−EN dataset, our
model was able to achieve a H@1 score of .648,
markedly outperforming the MEAformer, which
scored .456. This result highlights the model’s ro-
bustness and its considerable promise for applica-
tions in few-shot entity alignment.

B.2 Analysis of Freezing Process

Figure 8: The ratio of entities with images that are
frozen during the training epochs in DBP15K.

To delve deeper into the impacts of the progres-
sive manner, we take the freezing process of im-

age modality on the DBP15K dataset as an exam-
ple, analyzing the trend of the proportion of enti-
ties being frozen as training epochs change. Fig-
ure 8 indicates that as training epochs increase,
the proportion of entities frozen shows an expo-
nential rising trend, ultimately stabilizing at about
55%. The high rate of frozen images is partly
due to a high image missing rate of up to 30% in
the DBP15K dataset, and it also reflects high am-
biguity in image information within multi-modal
knowledge graphs.
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