
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1979–1998
August 11-16, 2024 ©2024 Association for Computational Linguistics

AIR-Bench: Benchmarking Large Audio-Language Models via Generative
Comprehension

Qian Yang1*†, Jin Xu2*, Wenrui Liu1, Yunfei Chu2, Ziyue Jiang1, Xiaohuan Zhou2

Yichong Leng2, Yuanjun Lv2, Zhou Zhao1‡, Chang Zhou2‡, Jingren Zhou2

1Zhejiang University, 2Alibaba Group
{qyang1021,liuwenrui,ziyuejiang,zhaozhou}@zju.edu.cn

{renjun.xj,fay.cyf,shiyi.zxh,lengyichong.lyc,lvyuanjun.lyj}@alibaba-inc.com
{ericzhou.zc,jingren.zhou}@alibaba-inc.com

Abstract

Recently, instruction-following audio-language
models have received broad attention for
human-audio interaction. However, the ab-
sence of benchmarks capable of evaluating
audio-centric interaction capabilities has im-
peded advancements in this field. Previous
models primarily focus on assessing different
fundamental tasks, such as automatic speech
recognition, and lack an assessment of the open-
ended generative capabilities centered around
audio. Thus, it is challenging to track the pro-
gression in the Large Audio-Language Models
(LALMs) domain and to provide guidance for
future improvement. In this paper, we introduce
AIR-Bench (Audio InstRuction Benchmark),
the first benchmark designed to evaluate the
ability of LALMs to understand various types
of audio signals (including human speech, nat-
ural sounds, and music), and furthermore, to
interact with humans in the textual format. AIR-
Bench encompasses two dimensions: founda-
tion and chat benchmarks. The former con-
sists of 19 tasks with approximately 19k single-
choice questions, intending to inspect the basic
single-task ability of LALMs. The latter one
contains 2k instances of open-ended question-
and-answer data, directly assessing the com-
prehension of the model on complex audio
and its capacity to follow instructions. Both
benchmarks require the model to generate hy-
potheses directly. We design a unified frame-
work that leverages advanced language models,
such as GPT-4, to evaluate the scores of gener-
ated hypotheses given the meta-information of
the audio. Experimental results demonstrate a
high level of consistency between GPT-4-based
evaluation and human evaluation. By reveal-
ing the limitations of existing LALMs through
evaluation results, AIR-Bench can provide in-
sights into the direction of future research.
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‡ Corresponding to Zhou Zhao (zhaozhou@zju.edu.cn)

and Chang Zhou (ericzhou.zc@alibaba-inc.com).

Dataset and evaluation code are available at
https://github.com/OFA-Sys/AIR-Bench.

1 Introduction

Recent advancements in artificial general intelli-
gence have been significantly driven by the emer-
gence of large language models (LLMs) (Brown
et al., 2020; OpenAI, 2022, 2023; Chowdhery et al.,
2022; Anil et al., 2023; Touvron et al., 2023a,b; Bai
et al., 2023a). These models exhibit remarkable
abilities in retaining knowledge, engaging in in-
tricate reasoning, and solving problems following
human intents. Motivated by the striking progress
in large language models (LLMs), the domain of
large audio-language models (LALMs) has under-
gone a revolutionary transformation. To perceive
and comprehend rich audio signals and further gen-
erate textual responses following human instruc-
tions, many works have been proposed, such as
SALMONN (Tang et al., 2023a), BLSP (Wang
et al., 2023a), Speech-LLaMA (Wu et al., 2023a),
and Qwen-Audio (Chu et al., 2023), showcasing
promising capabilities for audio-central dialogues.

However, previous LALMs (Tang et al., 2023a;
Wang et al., 2023a; Wu et al., 2023a; Chu et al.,
2023; Huang et al., 2023b; Shen et al., 2023; Gong
et al., 2023; Wang et al., 2023b) have predomi-
nantly concentrated on evaluation in specific fun-
damental tasks. The absence of a standardized
benchmark for assessing the generative instruction-
following abilities of these models has resulted in
a reliance on showcasing examples or releasing the
chat models for public experimentation to demon-
strate their conversational skills. This approach
poses significant challenges for conducting fair and
objective comparisons across different research en-
deavors. Moreover, it tends to obscure the models’
existing limitations, impeding the ability to monitor
advancements within the domain of LALMs.

For evaluation in audio domains, the majority of
research efforts have concentrated on the creation
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of benchmarks tailored to individual tasks such as
LibriSpeech (Panayotov et al., 2015) and Common
Voice benchmark (Ardila et al., 2019) for ASR.
Beyond task-specific ones, benchmarks like SU-
PERB (Yang et al., 2021a) and HEAR (Turian et al.,
2021) have been designed to test the versatility of
self-supervised learning models in a wide variety of
tasks. Regarding the assessment of LALMs’ ability
to follow instructions, to the best of our knowl-
edge, Dynamic-SUPERB (Huang et al., 2023a) is
the only benchmark devoted to this aspect. Nev-
ertheless, Dynamic-SUPERB only focuses on hu-
man speech processing and does not extend to the
assessment of models’ capabilities in producing
open-ended generations such as dialogues.

In this paper, we present AIR-Bench (Audio
InstRuction Benchmark), a novel benchmark de-
signed to evaluate the ability of LALMs to compre-
hend various audio signals and to interact following
instructions. AIR-Bench is characterized by three
primary features: 1) Comprehensive audio sig-
nals coverage. AIR-Bench offers comprehensive
coverage of audio signals, including human speech,
natural sounds, and music, ensuring a comprehen-
sive evaluation of LALMs’ capabilities. 2) Hier-
archical Benchmark Structure. The benchmark
consists of foundation and chat benchmarks. The
foundation benchmark comprises 19 distinct au-
dio tasks with over 19,000 single-choice questions,
with each question focusing only on a specific foun-
dational ability. GPT-4 (OpenAI, 2023) extends the
questions and candidate choices using dedicated
designed prompts. The chat component consists of
over 2,000 audio-prompted open-ended questions.
To enhance the complexity of the audio and achieve
a closer resemblance to the intricate audio encoun-
tered in real-life situations, we propose a novel
audio mixing strategy that incorporates loudness
control and temporal dislocation. Specifically, we
adjust the loudness and introduce different tempo-
ral offsets during the mixing process of two audio
clips. The resulting variations in relative loudness
and temporal location are then recorded as addi-
tional meta-information, contributing to a more
comprehensive textual representation of the audio.
The quality of data is upheld through automated
filtering by GPT-4, followed by manual verifica-
tion. 3) Unified, objective, and reproducible
evaluation framework. Models are required to
generate hypothesis sequences directly across both
benchmarks to align more accurately with practical
scenarios. Then, we employ GPT-4 to generate

reference answers given meta-information through
carefully constructed prompts. Given references
and hypotheses, following Liu et al. (2023b); Bai
et al. (2023b), we use GPT-4 (OpenAI, 2023) to
judge whether the choice is correct for the founda-
tion benchmark or score hypotheses for the chat
benchmark. We further perform a second scoring
by swapping their positions to eliminate the posi-
tion bias. Based on comprehensive experiments on
9 LALMs, we observe that existing LALMs either
have limited audio understanding or instruction-
following capabilities, leaving significant room for
improvement in this field.

Our contribution is summarized below:

• AIR-Bench is the first generative evaluation
benchmark for large audio-language models,
encompassing a wide array of audio such
as speech, natural sounds, and music. AIR-
Bench is a large and hierarchical benchmark,
consisting of the foundation benchmark with
19 audio tasks and over 19k single-choice
questions, alongside a chat benchmark with
over 2k meticulously curated open-ended au-
dio questions for comprehensive evaluation.

• We propose a novel audio mixing strategy
with loudness control and temporal disloca-
tion to enhance the complexity of the audio.

• A unified, objective, and reproducible evalua-
tion framework has been developed to assess
the quality of generative hypotheses.

• We conducted a thorough evaluation of 9 mod-
els for the purpose of benchmarking. The eval-
uation code, datasets, and an open leaderboard
will be made publicly available soon.

2 Related Work

Benchmarks for Audio Processing. Previous
studies have primarily focused on evaluating
the specific fundamental capabilities of mod-
els. In the field of speech processing, automatic
speech recognition is one of the most popular
tasks, with representative benchmarks including
Librispeech (Panayotov et al., 2015), Common
Voice (Ardila et al., 2019), and FLEURS (Con-
neau et al., 2022). Additionally, there are various
benchmarks available for different speech process-
ing tasks such as speech-to-text translation (Wang
et al., 2020a,b; Jia et al., 2022) and emotion recog-
nition (Cao et al., 2014; Livingstone and Russo,
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2018). In the field of sound processing, several
benchmarks have emerged such as Clotho (Drossos
et al., 2020) and Audiocaps (Kim et al., 2019a)
for automatic audio captioning, and AVQA (Yang
et al., 2022) for sound question answering. In the
domain of music processing, numerous datasets are
available, including MusicCaps (Agostinelli et al.,
2023) for automatic music captioning, and MUSIC-
AVQA (Li et al., 2022) for music question answer-
ing. Note that most existing question-answering
benchmarks, such as Clotho-AQA, AVQA, and
MUSIC-AVQA, have highly constrained answer
formats for ease of close-ended evaluation or con-
version into classification tasks, rather than sup-
porting open-ended generation.

Besides the aforementioned datasets that focus
on specific tasks, there are benchmarks like SU-
PERB (Yang et al., 2021b) and HEAR (Turian
et al., 2022) for comprehensive evaluation of self-
supervised learning models. When it comes to as-
sessing the ability of LALMs to follow instructions,
Dynamic-SUPERB is the only benchmark dedi-
cated to this aspect. However, Dynamic-SUPERB
focuses on human speech processing and does not
cover open-ended dialogue generation. In contrast,
AIR-Bench is the first large-scale generative evalu-
ation benchmark for large audio-language models,
encompassing various audio types such as speech,
natural sounds, and music.

Large Audio-Language Models following Hu-
man Instruction Recently, there has been sig-
nificant interest in instruction-following end-to-
end audio-language models. Several models have
emerged, each focusing on different audio do-
mains. For instance, there are models specif-
ically focusing on speech processing, such as
SpeechGPT (Zhang et al., 2023), BLSP (Wang
et al., 2023a), and LLaSM (Shu et al., 2023). Simi-
larly, there are models tailored for sound process-
ing, like LTU (Gong et al., 2023), and for music
processing, such as LLark (Gardner et al., 2023).
In contrast, SALMONN (Tang et al., 2023b) and
Qwen-Audio (Chu et al., 2023) are trained using
various audio types, showcasing strong universal
audio understanding abilities. However, these mod-
els are evaluated on different fundamental tasks,
making it difficult to conduct a fair comparison.
Furthermore, these models rely on showcasing ex-
amples or public demos to demonstrate their con-
versational skills and do not perform rigorous ex-
periments to evaluate their instruction-following

Figure 1: The overview of AIR-Bench. AIR-Bench
includes a range of ability dimensions, namely the foun-
dation and chat abilities, which cater to various audio
types such as speech, sound, and music. The founda-
tional dimension comprises 19 distinct leaf abilities,
each of which is assessed using a single-choice question
format. The chat dimension assesses abilities through
an open-ended question-and-answer format, incorporat-
ing diverse audio sources and mixed audio.

abilities. To address these issues, this paper in-
troduces AIR-Bench, which proposes two bench-
marks - the foundation benchmark and the chat
benchmark, enabling a fair comparison of the
models’ foundational abilities and their high-level
instruction-following capabilities respectively.

3 AIR-Bench

There exist three unique characteristics that dif-
ferentiate AIR-Bench from existing benchmarks
for audio understanding: i) AIR-Bench is the first
work to incorporate task evaluation from all types
of audio in a hierarchical taxonomy; ii) AIR-Bench
is the first generative evaluation benchmark that
handles the free-form output of LALMs; iii) AIR-
Bench adopts GPT-4-based automatic evaluation
yielding trustworthy evaluation results with afford-
able cost. In Sec. 3.1, we present the hierarchical
taxonomy of AIR-Bench and discuss the design phi-
losophy behind it. In Sec. 3.2 and Sec. 3.3, we in-
troduce how we collect the audio-central question-
answer pairs for foundation and chat tasks. In
Sec. 3.4, we present the evaluation framework.

3.1 Overview
Chat interaction based on audio is a complex task
that encompasses a variety of fundamental compe-
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tencies. For instance, humans are able to respond
to sound events due to their capacities for sound
perception and common sense reasoning. Similarly,
the ability to respond to others’ spoken words is
predicated on foundational skills such as speech-to-
text recognition and emotion recognition. Based on
the motivation, we propose the hierarchical bench-
mark AIR-Bench by dividing it into foundation and
chat benchmarks. The fundamental one is designed
to assess capabilities across individual subtasks,
serving to diagnose weaknesses within the model,
while the chat benchmark directly evaluates com-
plicated audio-based open-ended questions. The
data sample is denoted as (A,Q,R), where A de-
notes the audio, Q represents the query and R is
the reference answer.

• Foundation benchmark: The purpose of the
benchmark is to evaluate the individual capa-
bilities of foundational tasks. To reduce the
task difficulties and enable the evaluation of
various models, we utilize the single-choice
question-answering format. Specifically, the
query Q is formed by concatenating a ques-
tion q and candidate choices C, denoted as
Q = (q, C). We curate a collection of 19 au-
dio tasks that span multiple audio types, such
as speech, music, and sound. These tasks in-
clude tasks like emotion recognition, acoustic
scene classification, and music QA. 1

• Chat benchmark: The benchmark encom-
passes any form of question and answer pairs
that could arise from audio signals, with the
aim of reflecting the model’s ability to gen-
uinely follow user instructions to perform per-
ceiving, reasoning, and interacting within real-
world applications. According to the type of
audio, the benchmark is categorized into four
dimensions: speech, sound, music, and mixed
audio, where mixed audio refers to audio that
is a mixture of multiple types of audio, such
as human voice with background music.

The overview of AIR-Bench is shown in Fig. 1.

3.2 Foundation Benchmark

Data Source. We collected over 19k data sam-
ples for the foundation dimension, encompassing
19 different subtasks. The data source and statistics

1For transcription tasks such as ASR, we incorporate them
into the chat benchmark since they are not suitable for the
single-choice task format.

Types Task Dataset-Source Num

Speech

Speech grounding Librispeech (Panayotov et al., 2015) 0.9k
Spoken language identification Covost2 (Wang et al., 2020b) 1k

Speaker gender recognition
(biologically)

Common voice (Ardila et al., 2019)
MELD (Poria et al., 2018)

1k

Emotion recognition
IEMOCAP (Busso et al., 2008)

MELD (Poria et al., 2018)
1k

Speaker age prediction Common voice (Ardila et al., 2019) 1k
Speech entity recognition SLURP (Bastianelli et al., 2020) 1k

Intent classification SLURP (Bastianelli et al., 2020) 1k
Speaker number verification VoxCeleb1 (Nagrani et al., 2020) 1k
Synthesized voice detection FoR (Reimao and Tzerpos, 2019) 1k

Sound

Audio grounding AudioGrounding (Xu et al., 2021) 0.9k
Vocal sound classification VocalSound (Gong et al., 2022) 1k

Acoustic scene classification
CochlScene (Jeong and Park, 2022)

TUT2017 (Mesaros et al., 2017)
1k

Sound question answering
Clotho-AQA (Lipping et al., 2022)

AVQA (Yang et al., 2022)
1k

Music

Music instruments classification
Nsynth (Engel et al., 2017)

MTJ-Jamendo (Bogdanov et al., 2019)
1k

Music genre classification
FMA (Defferrard et al., 2016)

MTJ-Jamendo (Bogdanov et al., 2019)
1k

Music note analysis-pitch Nsynth (Engel et al., 2017) 1k
Music note analysis-velocity Nsynth (Engel et al., 2017) 1k
Music question answering MUSIC-AVQA (Li et al., 2022) 0.8k
Music emotion detection MTJ-Jamendo (Bogdanov et al., 2019) 1k

Table 1: The statistics of the foundation benchmark.

Types Dataset-Source Num Question Example

Speech

Fisher (Cieri et al., 2004)
SpokenWOZ (Si et al., 2023)

IEMOCAP (Busso et al., 2008)
Common voice (Ardila et al., 2019)

800
Did the first speaker have any more
questions or need further information?

Sound Clotho (Drossos et al., 2020) 400
What should you do to the cloth
according to the voice in the audio?

Music MusicCaps (Agostinelli et al., 2023) 400

How might the elements of the music
in the audio, despite its poor sound
quality, musically convey a sense of
patriotism and ceremonial grandeur
within a 150-word essay?

Mixed

Audio

Common voice (Ardila et al., 2019)
AudioCaps (Kim et al., 2019b)

200
What sound is heard along with the male
speaker in his twenties?

Common voice (Ardila et al., 2019)
MusicCaps (Agostinelli et al., 2023)

200
What type of melody can be heard in the
background of the male speaker’s audio?

Table 2: The statistics and examples of the chat bench-
mark.

are provided in Table 1. To ensure a fair and com-
prehensive evaluation of each capability, we aimed
for an even distribution of problems related to dif-
ferent abilities during the data collection process.
All audio sources were obtained from the original
dev or test subsets to prevent data leakage.

Single-choice Query and Reference. The query
Q is formed by concatenating a question q and can-
didate choices C. For the question q, we mainly
construct questions through GPT-4 (OpenAI, 2023),
except for QA tasks since the datasets inherently
contain questions and we can directly re-use them.
Specifically, we design the prompt for the distinct
task and provide three questions as demonstrations.
Subsequently, GPT-4 generates additional diverse
questions based on these inputs. The generated
questions are manually reviewed, and 50 different
questions are selected for each task. The variability
in question format aims to evaluate the model’s abil-
ity to follow instructions rather than being overly
reliant on specific templates. For each question,
we further generate candidate choices C from dif-
ferent sources: 1) For tasks with choices in orig-
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inal datasets like AVQA (Yang et al., 2022), we
directly re-use it; 2) For classification tasks, we
randomly select options from the predetermined
set of categories to serve as candidate choices; 3)
For other tasks, we prompt GPT-4 to generate can-
didate choices directly, consisting of one correct
option and three incorrect options. We encourage
these incorrect options to resemble the correct one,
making the single-choice task more challenging.
The reference answer is the golden correct choice.
To avoid position bias, the candidate choices are
randomly shuffled. We provide examples of each
task in Table 5 of the Appendix.

3.3 Chat Benchmark

Emotion: relax
Gender: male
Speech Transcription: This piece of music 
truly brings me a sense of relaxation.

Music Caption:  soft piano 
accompaniment and takes off to an 
upbeat groove.

loundess�
control

loundess�
control

+3db -3db
Temporal�Dislocation�Mixing

Age:  teens
Gender:   male
Speech Transcription: 
This piece of music truly brings me a sense of relaxation.
Music Caption:  
soft piano accompaniment and takes off to an upbeat groove.
Ahead: meanwhile
Louder: speech

Figure 2: Loudness and temporal location controlled
mixing strategy. Loudness control aims to provide
Louder meta-information, indicating which audio clip
exhibits a higher volume. Temporal dislocation mixing
aims to provide the Ahead meta-information, referring
to the temporal relationship between the two audio clips.

Data Source and Audio Mixing Strategy. As
shown in Table 2, we have collected more than 2k
data samples spanning various audio types includ-
ing speech, sound, music, and mixed audio. The
purpose of introducing mixed audio is to augment
the complexity of the audio signals and make it
closer to audio from real-world audio scenarios. To
achieve this, we propose a novel mixing strategy
involving loudness control and temporal disloca-
tion, as illustrated in Fig. 2. Specifically, we can
adjust the relative loudness and temporal relation-
ship between two audio clips for mixing. Then, we
can create a complex audio signal that combines
their meta-information, such as speech transcrip-
tion accompanied by a background music caption.
Furthermore, the meta-information also includes
labels indicating which audio clip is louder and

which is ahead in the temporal sequence.

Open-ended Query and Reference. To prompt
GPT-4 to generate open-ended question-answer
pairs for audio, we should interpret the rich in-
formation in each audio with texts. We collect all
of meta-information such as gender, age, emotion,
transcription, language for speech, caption for nat-
ural sound, and instrument, caption for music from
the original dataset. Rather than relying on pre-
trained models to extract this meta-information for
each audio clip, we adopt the ground truth meta-
information to avoid potential errors.

After gathering meta-information about the au-
dio, we manually construct prompts (see Ap-
pendix 5 for guiding GPT-4 in generating question-
answer pairs that specifically focus on different
abilities). These prompts are carefully designed to
ensure a comprehensive coverage of chat interac-
tions, taking into consideration the diverse range
of audio signals involved. We design the prompts
to facilitate the generation of questions related to
the perception and reasoning for different types
of audio. For the natural sound, the prompts are
further tailored to generate questions that involve
determining appropriate responses to sound events
within a specific scenario. For the music category,
prompts are devised to elicit creative writing and
story-generation questions based on music compo-
sition. To ensure the quality of the generated re-
sults, these prompts are designed in a manner that
enables GPT-4 to automatically filter out responses
that are not directly related to audio. Additionally,
we manually reviewed all the question-answer pairs
to ensure the quality of the questions and the relia-
bility of the answers. The generated answers from
GPT-4 are considered as references.

3.4 Evaluation Strategy

In this paper, we leverage a unified evaluation
method, as shown in Fig. 3, by viewing both the
single-choice question in the foundation bench-
mark, and the open-ended question in the chat
benchmark, as the generation tasks for the purpose
of better alignment with actual use case scenarios
of LALMs. That is, given audio and questions,
LALMs are required to directly generate the an-
swers as hypotheses, rather than comparing the per-
plexity on the probability of different reference an-
swers via teacher forcing. Automated and accurate
evaluation of open-ended generation is a challeng-
ing problem. Traditional automatic metrics such
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Foundation：
B. Sad

Chat:
The speaker is referring to 
attending a funeral.

Foundation:
How do you feel about the speaker's 
emotional tone?
A. Neutral     B. Sad
C. Angry       D. Surprised
Answer: B

Chat:
What event is the speaker likely 
referring to?

Emotion: Sad
Gender: Male 
Transcription: and just going 
to the funeral it’s.

Foundation:
Based on the speaker's 
emotional tone, it seems like 
they are feeling sad.

Chat: 
Attending a funeral.

Audio

Question

Meta-Information

Hypothesis

Reference
Foundation: Correct

Chat：9

Audio LLM

Generator

Evaluator

Figure 3: Automated generative evaluation for large audio-language models (LALMs). In the evaluation framework,
LALMs are provided with audio input along with a corresponding question, following which they generate a
hypothesis. The performance of the hypothesis is then assessed using the GPT evaluator, which compares it against
a reference answer by considering the meta-information and the question. For the foundation benchmark, the
reference answer is the golden choice extracted from the meta-information, and the evaluation score is binary, with
0 indicating an incorrect answer and 1 representing a correct answer. For the chat benchmark, the reference answer
is produced by the GPT-4 generator. The reference answer serves as a reference for scoring, stabilizing the scoring
process. The output score for the chat benchmark ranges from 1 to 10, based on the assessment of usefulness,
relevance, accuracy, and comprehensiveness of the hypothesis.

as WER, ROUGE (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005) have shown a low correlation
with human judgments (Liu et al., 2023a). Recently,
LLM-based evaluation, such as GPT-4, shows bet-
ter human preference alignment (Zheng et al., 2023;
Liu et al., 2023a). In this work, we adopt reference-
based GPT-4 evaluators to judge the generation
quality of LALMs in the audio domain.

However, GPT-4 cannot be directly used as an
evaluator since it cannot receive audio inputs. To
address this limitation, we offer the GPT-4 model
rich meta-information of audio to replace audio
input. Subsequently, we present questions and em-
ploy GPT-4 to evaluate the hypotheses produced
by LALMs. To ensure consistency and fairness
for evaluation, each model’s answer is compared
against the same reference answer for scoring. For
the foundation benchmark, the reference answer
is the golden choice, and we prompt the evalua-
tor to determine whether the hypothesis is correct
or not. For the chat benchmark, the reference an-
swer is generated by GPT-4, and we prompt the
evaluator to provide a score ranging from 1 to 10,
based on the assessment of usefulness, relevance,
accuracy, and comprehensiveness of the hypothesis.
The prompts used in the evaluation process can be
found in Appendix 5. Note that for the chat bench-
mark, the role of the reference is not to serve as the

ground truth answer, but rather as a reference for
scoring by GPT-4, in order to stabilize its scoring.
Additionally, to mitigate any potential position bias
resulting from the order of hypothesis and refer-
ence, following Bai et al. (2023b), we perform a
second scoring round by swapping their positions
and then compute the average of the two scores.
Unless otherwise specified, the GPT-4 evaluator is
GPT-4 Turbo, the gpt-4-0125-preview version 2.

4 Experiments

4.1 Models

We evaluate the performance of various LALMs
with instruction-following capabilities. These
models are either open-sourced or accessible
through public APIs, such as SpeechGPT (Zhang
et al., 2023), BLSP (Wang et al., 2023a),
SALMONN (Tang et al., 2023a), Qwen-Audio-
Chat (Chu et al., 2023), and Qwen-Audio Turbo 3.
Additionally, we consider large multi-modality
models with audio understanding abilities like
PandaGPT (Su et al., 2023), Macaw-LLM (Lyu
et al., 2023), and NExT-GPT (Wu et al., 2023b).
Besides, we also incorporate a sequential approach

2https://platform.openai.com/docs/models/gpt-4-and-gpt-
4-turbo

3https://help.aliyun.com/zh/dashscope/developer-
reference/qwen-audio-api
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Benchmark Foundation Chat

Categories Speech Sound Music Average Speech Sound Music Mixed
Audio Average

SALMONN 37.8% 33.0% 37.1% 36.0% 6.16 6.28 5.95 6.08 6.11
Qwen-Audio-Chat 58.7% 60.2% 44.8% 54.5% 6.47 6.95 5.52 5.38 6.08
Qwen-Audio Turbo 63.4% 61.0% 48.9% 57.8% 7.04 6.59 5.98 5.77 6.34

BLSP 36.6% 31.4% 26.1% 31.4% 6.17 5.55 5.08 4.52 5.33
PandaGPT 39.0% 43.6% 38.1% 40.2% 3.58 5.46 5.06 2.93 4.25

Macaw-LLM 32.2% 30.1% 29.7% 30.7% 0.97 1.01 0.91 1.00 1.01
SpeechGPT 34.3% 27.5% 28.1% 30.0% 1.57 0.95 0.95 1.14 1.15
NExT-GPT 33.6% 32.2% 28.9% 31.5% 3.86 4.76 4.18 2.92 4.13

Whisper+GPT-4 53.6% / / / 7.54 / / / /

Table 3: The comparison of different LALMs on AIR-Bench.

Model Name Exact
Matching

GPT
Align

SALMONN 97.3% 100.0%
Qwen-Audio-Chat 30.7% 100.0%
Qwen-Audio Turbo 48.2% 100.0%

BLSP 100.0% 100.0%
PandaGPT 30.8% 100.0%

Macaw-LLM 0.1% 100.0%
SpeechGPT 0.0% 100.0%
NExT-GPT 98.1% 100.0%

Table 4: The success rate of different strategies of match-
ing hypotheses with the golden choices for the founda-
tion benchmark. The success rate denotes the probabil-
ity that the model successfully responds to one of the
choices.

comprising Whisper-large-v2 (Radford et al., 2023)
and GPT-4 Turbo (OpenAI, 2023) for tasks related
to speech as a baseline. We evaluate the perfor-
mance of all these models on both fundamental
and chat benchmarks, utilizing their latest publicly
available checkpoints. In cases of multiple check-
points, we select the model with the largest param-
eter size. For all models, we directly follow their
default decoding strategies for evaluation.

4.2 Main Results
The results of LALMs are presented in Table 3.
The detailed results are shown in Table 6. For the
foundation benchmark, we also conduct a compari-
son between the use of an exact matching strategy
with our proposed GPT-4 alignment strategy. As
an example, we try to match ‘B’, ‘B.’, ‘B)’, etc.
with LALMs’ hypothesis for the exact matching.
The results are shown in Table 4. We can find that
BLSP and SALMONN have a high success rate
in directly generating the choice, showcasing their
strong ability to follow single-choice instruction.

However, we find that it is challenging to precisely
extract the predicted choice from the hypotheses of
other models due to significant variations in the out-
put formats of different LALMs. However, with the
assistance of GPT-4 as the evaluator, the success
rate for all models can be improved to 100%.

According to Table 3, Qwen-Audio-Chat and
Qwen-Audio Turbo demonstrate superior perfor-
mance in the foundation benchmark, surpassing
other models in the domains of speech, sound, and
music. Second to the two models, PandaGPT and
SALMONN also exhibit noteworthy performances.
Regarding the chat benchmark, Qwen-Audio Turbo
achieves the highest average score, followed by
SALMONN and Qwen-Audio-Chat with scores of
6.11 and 6.08, respectively. Among these models,
SALMONN outperforms others in terms of mixed
audio understanding. Note that the speech dimen-
sion in the foundation benchmark includes tasks
beyond speech transcriptions, such as speaker gen-
der, age, and emotion prediction, while the speech
in the chat benchmark primarily revolves around
speech transcriptions. Thus, Whisper plus GPT-4
receives a relatively low score in the foundation
benchmark but obtains the highest score in the chat
benchmark.

Based on these results, we have several observa-
tions: 1) The existing LALMs either have limited
audio understanding or instruction-following capa-
bilities. For instance, Qwen-Audio Turbo achieves
the highest average score in both foundation and
chat benchmarks while the model displays a weak
proficiency in following single-choice instructions
such as often directly generating a full sentence
semantically akin to one of the choices, and thus
receives a low success rate for the exact matching;
2) As for chat abilities related only to speech tran-
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(a) (b) Human evaluation for (c) Positional bias of
the foundation benchmark the chat benchmark evaluation

Figure 4: The experiments of human evaluation and the position bias of GPT-4 evaluator. Figure (a) and (b) are the
results of consistency between the GPT-4 evaluator and human judgment on the foundation benchmark and chat
benchmark, respectively. Figure (c) refers to the result of scores by interchanging the position of the hypothesis and
reference during evaluation on the chat benchmark.

scription, none of the models surpass the sequential
baseline Whisper plus GPT-4.

4.3 Human Evaluation

To evaluate the consistency between the evalua-
tions of GPT-4 and human judgments, we design
experiments for both the foundation and chat bench-
marks. For the foundation benchmark, we instruct
the testers to determine which option aligns closest
with the hypothesis. We then compare the option
selected by human testers with the option chosen by
GPT-4 to assess the extent of agreement. For this
consistency analysis, we employed Qwen-Audio-
Chat as a representative model and randomly se-
lected 400 questions from the benchmark. These
questions were then evaluated by three native En-
glish speakers. Additionally, we also compared the
performance of GPT-4 with GPT-3.5 Turbo. As
depicted in Figure 4 (a), GPT-4 Turbo, serving as
the evaluator, exhibited a high level of consistency
at 98.2% with human judgments. Comparatively,
GPT-3.5 Turbo had a slightly lower consistency
rate of 96.4%.

Regarding the chat benchmark, obtaining a nu-
merical score on a scale of 1 to 10 directly from
testers poses challenges. Therefore, we resort to a
pairwise comparison of the models instead. Testers
listen to audio and compare the performance of
both models based on their usefulness, relevance,
accuracy, and comprehensiveness to the given ques-
tion, indicating their preference as either “A is bet-
ter”, “B is better”, or “Both are equal”. Subse-
quently, we convert the GPT-4 scores into the same
preference-based rating as the human testers for
any two models. We then assess the consistency

between the two sets of results. For the chat bench-
mark, we conduct pairwise comparisons among
Qwen-Audio-Chat, SALMONN, BLSP, and GPT-
4. We randomly select 200 questions and have
them evaluated by three native English speakers.
As depicted in Figure 4 (b), the pairwise preference
consistency scored above 70%, demonstrating a
high level of agreement.

4.4 Ablation Study of Positional Bias

In our evaluation framework, we adopt a strategy of
scoring twice by interchanging the positions of the
hypothesis and reference and calculating the aver-
age of the two scores. This approach helps mitigate
the bias that may arise from the positional place-
ment. The outcomes of these two evaluations are
presented in Figure 4 (c). We observe that the GPT-
4 evaluator exhibits a clear bias in scoring when
the hypothesis is placed before the reference. This
highlights the importance of conducting a second
scoring to account for addressing this bias.

5 Conclusion

In this paper, we present AIR-Bench, the first gen-
erative evaluation benchmark designed specifically
for audio-language models. AIR-Bench comprises
19 audio tasks with over 19k single-choice ques-
tions in the foundation benchmark, as well as over
2k open-ended audio questions in the chat bench-
mark. Notably, the benchmark covers diverse au-
dio types such as speech, natural sounds, and mu-
sic. We also propose a novel audio mixing strategy
to simulate audio from real-world scenarios more
accurately. A standardized, objective, and repro-
ducible evaluation framework is employed to au-
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tomatically assess the quality of hypotheses gener-
ated by LALMs. We conduct a thorough evaluation
of 9 prominent open-source LALMs. Additionally,
we plan to launch and maintain a leaderboard that
will serve as a platform for the community to ac-
cess and compare model performance consistently
over time.

6 Limitations

The objective of AIR-Bench is to develop a large-
scale, extensive and generative evaluation frame-
work that encompasses a wide range of audio do-
mains and tasks. However, AIR-Bench currently
has several limitations. Firstly, it does not incor-
porate tasks involving multiple audio comparisons,
such as assessing music coherence, for both the
foundation and chat benchmark. Besides, AIR-
Bench does not encompass the evaluation of multi-
turn dialogues that may involve multiple audio in-
puts. For evaluation, AIR-Bench relies on a power-
ful and robust evaluator such as GPT-4. However,
the availability and accessibility of the GPT-4 API
are external factors beyond our control. In the event
that GPT-4 transitions to a closed-source model or
implements higher pricing standards in the future,
alternative evaluators will need to be explored and
considered.

7 Ethical Considerations

The AIR-Bench initiative uses publicly available
datasets to create a collection of relevant question-
and-answer data. It then uses automated methods
to evaluate this data, which is a more efficient al-
ternative to manually evaluating it. However, there
are challenges with this automated evaluation ap-
proach, including the potential for data misuse and
the introduction of biases. To prevent data mis-
use, we follow the licenses and usage guidelines
associated with the original open-source materi-
als when generating related data. It’s important to
point out that the automated evaluation could be
biased. These biases may come from the datasets
themselves or the scoring algorithms used, causing
differences between automated evaluation results
and human judgment. Therefore, the outcomes
obtained from automated evaluations should be
viewed with caution and used as a general bench-
mark, rather than a definitive measure.
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A Detailed Results of Foundation
Benchmark

In Table 6, we delineate the performance assess-
ment for each model across the various tasks on
the foundation benchmark. With the exception
of Speaker Gender Recognition and Synthesized
Voice Detection, which are binary-choice tasks, all
other tasks necessitate a selection from four op-
tions. As such, a random selection in the Speaker
Gender Recognition and Synthesized Voice Detec-
tion datasets would theoretically achieve an accu-
racy of 50%, while the expected accuracy for ran-
dom choices across the remaining datasets stands
at 25%. Consequently, any performance metrics
that approximate these random baselines are indica-
tive of an absence of discernible proficiency in the
respective tasks.

B GPT Prompts for the Chat benchmark

In Figure 5, we display the carefully crafted
prompts that we have developed on our chat bench-
mark. The figure is divided into two sections, the
upper section contains prompts designed specifi-
cally for generating question-answer pairs related
to reasoning, while the lower section features
prompts aimed at assessing the chat performance
scores of the models.

When generating questions and reference an-
swers, we guide the process by specifying the type
of questions to be elicited, allowing GPT-4 to au-
tomatically exclude data that is less amenable to
question formulation. For the evaluation of the chat
performance scores, we instruct GPT-4 to take a
multifaceted approach, scoring both the reference
answers and the model responses. This ensures
that the reference answers consistently serve as a
standard for comparison.

C Prompts Engineering for GPT Scoring

In this section, we partially demonstrate the process
of adjusting the prompt aimed at assessing the chat
performance scores of the models.
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• If we streamline our prompt by removing
the descriptions pertaining to helpfulness, rel-
evance, accuracy, and comprehensiveness,
specifically by omitting "Please rate the help-
fulness, relevance, accuracy, and comprehen-
siveness of their responses." and "In the sub-
sequent line, please provide a comprehensive
explanation of your evaluation, avoiding any
potential bias and ensuring that the order in
which the responses were presented does not
affect your judgment.", we found that across
multiple tests, many responses that were orig-
inally scored a perfect 10 were downgraded
to a 9 or 8, while the unequivocally incor-
rect responses saw their scores rise from an
initial 1 to a 2 or 3. This suggests that includ-
ing these ’superfluous’ descriptions aids the
model in assigning more precise scores dur-
ing the evaluation process and helps to avoid
’normalization’ of scores.

• If we change the positioning, such as moving
the entire [Detailed Audio Description] sec-
tion behind the [Question] and [Answer], or
swapping the positions of [Question] and [An-
swer]; these alterations impact the scoring,
turning originally correct evaluations incor-
rect. Absolutely correct answers were inex-
plicably awarded scores as low as 5, whereas
absolutely incorrect responses occasionally re-
ceived scores around 5 as well. Therefore, our
conclusion is that the prompt exhibits a strong
sensitivity to the permutation of positions. Mi-
nor punctuation or grammatical errors do not
affect the scoring.

D Examples of the Foundation
Benchmark

In Table 5, we present data examples for each task
within the foundation benchmark.

E Examples of LALMs’ responses

In Figure 6, we illustrate a representative response
from various models on the foundation benchmark.
The upper portion of the figure displays the ques-
tion along with the metadata for the corresponding
audio. This metadata is not provided as input to
the models under evaluation, the models only have
access to the audio and the question posed. The
lower two columns of the figure document the re-
sponses from the 9 models being tested. Similarly,

an example of responses from various models on
the chat benchmark can be seen in Figure 7.

F Details in Human Evaluation

We conducted a pairwise crowd worker evaluation
to assess the alignment between the judgments de-
rived from GPT-4 and those of human evaluators
for both the foundation and chat benchmarks. Each
pair of evaluations was scrutinized by three native
English-speaking judges. During the evaluation
process, we required that the entire test be con-
ducted in a quiet environment, with human eval-
uators wearing headphones to listen to the audio
and to isolate noise. After obtaining the test results,
we conducted sample feedback; if we identified
any instances of erroneous annotations, we would
report back to the outsourcing platform for them to
carry out a re-evaluation.

• For the foundation benchmark, we randomly
selected 400 questions from the pool of model
responses. These were accompanied by both
GPT-3.5 and GPT-4 alignment results. Eval-
uators were instructed to ascertain whether
the responses provided by GPT-3.5 Turbo and
GPT-4 Turbo was accurate. The screenshots
of instructions for the foundation benchmark
is shown in Figure 8.

• For the chat benchmark, we randomly chose
200 dialogues from the responses generated
by Qwen-Audio-Chat, SALMONN, BLSP,
and GPT-4, respectively. Evaluators were
tasked with determining which model exhib-
ited superior or equivalent performance. The
screenshots of instructions for the chat bench-
mark is shown in Figure 9.

• For the chat benchmark, we further analyzed
correlation with human judgment based on
task and audio type. After conducting a sta-
tistical analysis of the randomly selected QA
pairs, we found that Speech accounts for 42%,
Sound for 22%, Music for 16%, and Mixed
Audio for 20%. To further confirm the associa-
tion between human judgment and audio type,
we categorized the results from Figure 4(b) by
audio type. As shown in Table 7, the statistical
results presented in the table indicate that QAs
involving Music and Mixed Audio categories
tend to have slightly higher alignment most
of the time, whereas QAs involving Sound
and Speech categories tend to have slightly
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lower alignment most of the time. We spec-
ulate that the reasons for the discrepancies
might be: there are many situational questions
in the Sound category QAs (such as ’What
would you do if you heard this sound’), and
many reasoning questions in the Speech cat-
egory QAs. These more complex questions
pose relatively greater challenges for GPT’s
evaluation.
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Types Task Question Example Choice Example

Speech

Speech Grounding Choose when ‘hate’ is spoken.
A.[7.67, 8.05] B.[1.03, 1.53]
C.[3.07, 3.27] D.[7.02, 7.21]

Spoken language identification Recognize the language of the speech. A.en B.ja C.de D.fr
Speaker gender recognition
(biologically)

Detect the gender of the speaker in this audio file. A.male B.female

Emotion recognition What emotion is at the forefront of the speaker’s words?
A.angry B.happy
C.sad D.neutral

Speaker age prediction Which age range do you believe best matches the speaker’s voice?

A.teens to twenties
B.thirties to forties
C.fifties to sixties
D.seventies to eighties

Speech entity recognition Tell me the first ‘transport_type’-connected word in this audio.
A.go B.how
C.metro D.train

Intent classification What’s your opinion on the speaker’s goal in this sound clip?

A.audio_volume_up
B.news_query
C.lists_createoradd
D.play_podcasts

Speaker number verification The speech features how many speakers? A.2 B.4 C.3 D.1
Synthesized voice detection Based on your assessment, is this speech Real or Fake? A.fake B.real

Sound

Audio grounding
What are the exact times when ‘a woman briefly talks’ is
present in the clip?

A.[0.44, 2.38]
B. [3.85, 4.11]
C. [9.01, 10.02]
D. [4.15, 7.83]

Vocal sound classification What’s the provenance of the sound in this clip?
A.Sigh B.Throat clearing
C.Cough D.Sneeze

Acoustic scene classification What venue are the sounds indicative of?
A.kitchen B.elevator
C.street D.crowded indoor

Sound question answering What animal makes a sound in the video?
A.cattle B.horse
C.cat D.bird

Music

Music instruments classification Discern the principal instrument in this tune.
A.bass B.string
C.brass D.mallet

Music genre classification What’s the genre identity of this music?
A.Jazz B.Rock
C.Country D.Experimental

Music note analysis-pitch What is the MIDI pitch level of the note played?

A.midi_pitch_19
B.midi_pitch_29
C.midi_pitch_37
D.midi_pitch_71

Music note analysis-velocity What numerical value is the MIDI velocity for this note?

A.midi_velocity_127
B.midi_velocity_50
C.midi_velocity_100
D.midi_velocity_25

Music question answering Is the guzheng louder than the piano? A.yes B.no C.four D.one

Music emotion detection What kind of sentiment does this music invoke?
A.meditative B.positive
C.trailer D.advertising

Table 5: Examples of questions and choices on the foundation benchmark.
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Categories Qwen-Audio Qwen-Audio Turbo SALMONN BLSP NExT-GPT SpeechGPT PandaGPT Whisper+GPT-4
Speech grounding 56.1% 45.4% 25.3% 25.0% 25.4% 28.8% 23.0% 35.0%
Spoken language

identification 92.8% 95.9% 28.1% 30.8% 23.7% 39.6% 34.6% 96.8%

Speaker gender
recognition 67.2% 82.5% 35.5% 33.2% 57.0% 29.2% 66.5% 21.9%

Emotion recognition 43.2% 60.0% 29.9% 27.4% 25.7% 37.6% 26.0% 59.5%
Speaker age
prediction 36.0% 58.8% 48.7% 51.2% 62.4% 20.4% 42.5% 41.1%

Speech entity
recognition 71.2% 48.1% 51.7% 37.2% 26.1% 35.9% 34.0% 69.8%

Intent classification 77.8% 56.4% 36.7% 46.6% 25.6% 45.8% 28.5% 87.7%
Speaker number

verification 35.3% 54.3% 34.3% 28.1% 25.4% 32.6% 43.2% 30.0%

Synthesized voice
detection 48.3% 69.3% 50.0% 50.0% 30.8% 39.2% 53.1% 40.5%

Audio grounding 23.9% 41.6% 24.0% 34.6% 62.2% 26.1% 38.3% /
Vocal sound
classification 84.9% 78.1% 45.3% 29.8% 23.5% 26.2% 31.6% /

Acoustic scene
classification 67.5% 61.3% 34.1% 25.2% 24.1% 23.7% 55.7% /

Sound question
answering 64.6% 62.8% 28.4% 36.1% 18.8% 33.9% 48.7% /

Music instruments
classification 59.1% 59.6% 41.3% 22.8% 24.3% 29.1% 47.7% /

Music genre
classification 71.2% 77.1% 45.3% 26.1% 28.1% 29.3% 39.8% /

Music note
analysis-pitch 28.6% 30.1% 26.4% 23.5% 25.1% 24.1% 26.4% /

Music note
analysis-velocity 25.4% 25.1% 22.8% 24.9% 23.1% 25.2% 27.2% /

Music question
answering 48.2% 62.5% 54.6% 31.0% 47.1% 31.3% 50.7% /

Music emotion detection 36.1% 39.0% 32.2% 28.3% 25.4% 29.7% 36.7% /

Table 6: The accuracy of each model across all tasks in the foundation benchmark.

Type GPT-4 vs
BLSP

GPT-4 vs
Qw.Chat

GPT-4 vs
SALMONN

SALMONN
vs BLSP

SALMONN
vs Qw.Chat

Qw.Chat
vs BLSP

Speech 77% 76% 89% 73% 75% 69%
Sound 73% 66% 96% 66% 75% 73%
Music 75% 88% 88% 81% 84% 75%
Mixed Audio 83% 88% 93% 75% 78% 70%

Table 7: Association between human judgment and audio type.
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You are a helpful and precise assistant for checking the quality of the answer.

[Detailed Audio Description]

[Question]

[The Start of Assistant 1s Answer]

[The End of Assistant 1s Answer]
[The Start of Assistant 2s Answer]

[The End of Assistant 2s Answer]
[System]
We would like to request your feedback on the performance of two AI assistants in 
response to the user question and audio description displayed above. AI assistants are 
provided with detailed audio descriptions and questions.
Please rate the helpfulness, relevance, accuracy, and comprehensiveness of their responses. 
Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates 
better overall performance. Please first output a single line containing only two values 
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a 
space. In the subsequent line, please provide a comprehensive explanation of your 
evaluation, avoiding any potential bias and ensuring that the order in which the responses 
were presented does not affect your judgment.

     Format of Prompt for Creating QA in Chat Benchmark
[System Prompt]
You are an AI audio assistant capable of analyzing sound. You will create some questions 
and answers. The questions you pose should simulate what queries might arise when a 
person hears this sound.

[Question & Answer Requirements]
Here I will give you the detailed requirements for creating questions in the following 
aspects. (1)Create some relatively difficult questions, and using the audio information I've 
provided you, ask questions that require reasoning, such as what to do next, and how to 
react. (2)If you find the sound too simple to generate any complex questions, then output 
"No QA Pairs." (3)Don't explain your question and answer. (4)Do not generate answers for 
questions that are uncertain or unknown. (5)Do not include any descriptions of the sound in 
the question, as this would require the user to first know what the sound is. (6)Your output 
format is either "No QA Pairs" or several dict containing key "Question" and "Answer" in a 
list.

[Detailed Audio Description]
The list in the next line provides descriptions of the audio, with each sentence being an 
annotation of the audio made by different annotators. To reiterate, do not mention any 
information about this audio clip in the question, use "the sound" as a substitute.

     Format of Prompt for Scoring in Chat Benchmark

Figure 5: GPT prompts for creating QA in the foundation benchmark and scoring in the chat benchmark.
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Figure 6: The illustration of the models’ responses on the foundation benchmark.
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Figure 7: The illustration of the model’s responses on the chat benchmark.

1997



Figure 8: Screenshot of human evaluation for the foundation benchmark.

Figure 9: Screenshot of human evaluation for the chat benchmark.
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