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Abstract

Counterhate arguments can effectively fight
and limit the spread of hate speech. However,
they can also exacerbate the hate, as some peo-
ple may respond with aggression if they feel
threatened or targeted by the counterhate. In
this paper, we investigate replies to counterhate
arguments beyond whether the reply agrees or
disagrees with the counterhate argument. We
present a corpus with 2,621 replies to counter-
hate arguments countering hateful tweets, and
annotate them with fine-grained characteristics.
We show that (a) half of the replies (51%) to the
counterhate arguments disagree with the argu-
ment, and (b) this kind of reply often supports
the hateful tweet (40%). We also analyze the
language of counterhate arguments that elicit
certain types of replies. Experimental results
show that it is feasible to anticipate the kind of
replies a counterhate argument will elicit.

1 Introduction

Hate messages and offensive language are com-
monplace in social media platforms. Twitter re-
ported that more than 1.1 million accounts spread
hateful content in the second half of 2020, a 77%
increase with respect to the first half of the same
year.1 In a recent survey of 10,093 adults in the
U.S., 41% of participants reported online harass-
ment on a personal level, and almost two-thirds of
adults under the age of 30 reported experiencing
internet harassment (Vogels, 2021). These figures,
alongside other surveys,2,3 demonstrate the preva-
lence of hate speech on the internet. To address
this problem, the European Commission partnered
with popular social media platforms to announce a
"Code of conduct on countering illegal hate speech
online" (European Commission, 2019), which con-
tains several commitments to prevent the spread of
online hate speech across Europe.

1https://time.com/6080324/twitter-hate-speech-penalties/
2https://legalresearch.elsa.org/library/ohs/
3https://rm.coe.int/1680700016

The enormous amount of daily data makes these
platforms rely on users who manually flag hate-
ful content (Crawford and Gillespie, 2016). This
approach requires spending millions of dollars
yearly on manual hate speech verification and mod-
eration (Seetharaman, 2018). An alternative is
to automatically fight hate speech by using hate
speech classifiers (Section 2). However, removing
users’ content—as effective as it may be—restricts
free speech. According to the Pew Research Cen-
ter (Duggan, 2017), “Despite this broad concern
over online harassment, 45% of Americans say it
is more important to let people speak their minds
freely online, and 53% feel that it is more important
for people to feel welcome and safe online.”

A complementary strategy to address hateful
content that does not interfere with free speech is
to counter the hate with counterhate arguments in
order to divert the discourse away from hate. Coun-
terhate arguments can effectively fight and limit the
spread of hate speech without removing or block-
ing any content (Gagliardone et al., 2015; Schieb
and Preuss, 2016). Counterhate arguments usu-
ally are positive arguments that oppose hate speech
with logic and facts. However well-intentioned,
counterhate arguments may worsen the situation,
as some people may respond with aggression if
they feel threatened or targeted by the argument
(Rains, 2013; Clayton et al., 2019).

Upon these motivations, we study the kind of
replies counterhate arguments elicit. Specifically,
we investigate replies to counterhate arguments be-
yond whether the reply agrees or disagrees with
the counterhate argument. We consider Twitter
threads consisting of (a) a hateful tweet, (b) a coun-
terhate tweet countering (a), and (c) all replies to
the counterhate tweet. We define a hateful tweet as
any tweet that contains abusive language directed
to individuals or groups of people. On the other
hand, a counterhate tweet is a response tweet that
explicitly or implicitly disagrees with the hateful
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Figure 1: Twitter thread originating with a hateful tweet.
This paper investigates the replies to counterhate tweets.
In the first example, the reply not only agrees with the
counterhate tweet, but also adds additional counterhate.
On the other hand, the second reply not only disagrees
with the counterhate tweet, but also shows support for
the hateful tweet.

tweet. A reply is any response to the counterhate
tweet. Consider the example in Figure 1. The hate-
ful tweet contains hateful content towards a man
(shown in a picture in the original tweet). The reply
to the first counterhate tweet not only agrees with
the counterhate tweet, but also includes additional
counterhate arguments (e.g., he’s done a great job).
Conversely, the reply to the second counterhate
tweet not only disagrees with the counterhate tweet,
but also includes an opinion supporting the hateful
tweet (i.e., And you agree with letting convicted
criminals run free). While the author of the sec-
ond counterhate tweet may have had good inten-
tions, the tweet elicited more hate and made the
discourse undesirable. This paper presents a fine-
grained characterization of replies to counterhate
tweets and opens the door to forecasting which
counterhate tweets may elicit more hate instead of
alleviating the spread of hate.

In summary, the main contributions of this paper
are:4 (a) a corpus with 2,621 (hateful tweet, coun-

4https://github.com/albanyan/counterhate_reply

terhate tweet, reply) triples annotated with fine-
grained characteristics (whether the reply agrees
with the counterhate tweet, supports the hateful
tweet, attacks the author of the counterhate tweet,
or adds additional counterhate); (b) linguistic analy-
sis of the counterhate tweets depending on our fine-
grained characterization of the replies they elicit;
(c) experimental results showing it is feasible to
anticipate the kind of replies a counterhate tweet
will elicit, and modest improvements using data
augmentation and blending related datasets; and
(d) qualitative analysis revealing when it is harder
to perform any of the four classification tasks.

2 Previous Work

Recently, considerable literature has grown around
identifying hateful content in user-generated con-
tent (Fortuna and Nunes, 2018). Existing re-
search has created a variety of datasets to detect
hate speech from several sources, including Twit-
ter (Waseem and Hovy, 2016; Davidson et al.,
2017), Reddit (Qian et al., 2019), Fox News (Gao
and Huang, 2017), Yahoo! (Nobata et al., 2016;
Djuric et al., 2015), and Gab (Mathew et al., 2021).
Other studies have worked on identifying the tar-
get of hate, including whether the hateful content
was directed toward a group, a person, or an ob-
ject (Basile et al., 2019; Zampieri et al., 2019a;
Ousidhoum et al., 2019). Another area of research
aims to explore the role of context in hate and coun-
terhate speech detection (Yu et al., 2022).

Previous efforts also detect and generate coun-
terhate content. For counterhate detection, Gar-
land et al. (2020) work with hateful and counter-
hate German tweets from two well-known groups.
Mathew et al. (2020) collect and analyze pairs of
hateful tweets and replies using the hate speech
template I hate <group>, and detect whether a re-
ply to a hateful tweet is a counterhate reply or not.
In addition to analyzing or detecting counterhate
replies, Albanyan and Blanco (2022) identify four
fine-grained aspects of the relationship between a
hateful tweet and a reply (e.g., whether the reply
counters the hateful tweet with a justification). For
counterhate generation, some studies have worked
on collecting datasets with the help of crowd work-
ers (Qian et al., 2019) or trained operators (Fanton
et al., 2021; Chung et al., 2019).

There are several attempts to predict whether
content will lead to additional hateful content.
Zhang et al. (2018) identify whether a reply will
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result in a personal attack. Liu et al. (2018) pre-
dict the number of hateful comments that an in-
stgram post would receive. On the other hand,
there are few efforts on investigating the impact
of counterhate content, as stated in a recent survey
by Alsagheer et al. (2022). Mathew et al. (2019)
analyze YouTube comments and found that coun-
terhate comments received more likes and inter-
actions than non-counterhate comments. Other
studies found that there is a positive association be-
tween counterhate efficiency and both its author’s
ethnicity (Munger, 2017) and how immediate the
response to the hateful content is posted (Schieb
and Preuss, 2018). Finally, Garland et al. (2022)
analyze hateful and counterhate German tweets and
find that organized counterhate tweets elicit more
counterhate replies and decrease the severity of the
hate speech. Unlike these previous studies, we con-
sider Twitter threads consisting of hateful tweets, a
counterhate argument, and all replies to the coun-
terhate argument. To our knowledge, we are the
first to analyze the replies with fine-grained charac-
teristics and tackle the problem of forecasting what
kind of replies a counterhate arguments will elicit.

3 Dataset Collection and Annotation

We start our study by collecting triples consisting
of hateful tweets, counterhate tweets, and replies to
counterhate tweets. Then, we annotate the triples
with our fine-grained characterization of the replies
to the counterhate tweets. Unlike previous works
(Section 2), our corpus enables us to (a) investi-
gate whether counterhate tweets are successful at
stopping the hate (Section 4), (b) analyze the lan-
guage people use in counterhate tweets depending
on the replies they elicit (Section 4), and (c) predict
the kind of replies a counterhate tweet will elicit
(Section 5).

Collecting Hateful Tweets, Counterhate Tweets,
and Replies We use three strategies to collect
a sufficient number of hateful tweets, counterhate
tweets, and replies. The first strategy is to start
with corpora consisting of (hateful tweet, coun-
terhate tweet) pairs that include the tweet identi-
fiers (Mathew et al., 2020; Albanyan and Blanco,
2022). Then, we use the Twitter API to collect all
replies to the counterhate tweets. This strategy re-
sulted in only 260 triples because some tweets are
no longer available and not all counterhate tweets
have replies. Note that other corpora not including
identifiers cannot be used.

In the second strategy, we start collecting hate-
ful tweets from corpora that only provide hateful
tweets (Mathew et al., 2021; Chandra et al., 2021;
He et al., 2021; Vidgen et al., 2020) including tweet
identifiers. Then, we follow these steps:

1. Collect the replies to the hateful tweets. Let us
consider them candidate counterhate tweets.

2. Select actual counterhate tweets from the can-
didates using an existing counterhate classi-
fier (Albanyan and Blanco, 2022).

3. Collect the replies to the counterhate tweets to
construct (hateful tweets, counterhate tweet,
reply) triples.

This strategy resulted in 230 triples. Since the total
number of triples is relatively low (490 triples), we
designed a third strategy.

The third strategy is the same than the second
but with an alternative approach to collect the hate-
ful tweets. Instead of using existing corpora, we
use (a) the hate pattern I <hateful_verb> <tar-
get_group> defined by Silva et al. (2021) to select
candidate hate tweets and (b) HateXPlain (Mathew
et al., 2021) to select actual hate tweets. These
strategy resulted in 3,820 triples.

The total number of triples after combining the
three strategies is 4,310. We finalized the col-
lection process by validating the triples. The fi-
nal size of our corpus after the validation pro-
cess is 2,621 (hateful tweet, counterhate tweet, re-
ply) triples. The total number of hateful tweets
is 1,147, while the number of counterhate tweets
is 1,685. The number of counterhate tweets per
hateful tweet ranges between 1 and 20, while the
number of replies per counterhate tweet ranges be-
tween 1 and 88.

Annotation Guidelines Along with determin-
ing whether a reply agrees with the counterhate
tweet, we identify finer-grained characteristics of
the replies. Accordingly, we define three steps to
answer four questions in the annotation process.

The first step is determining whether the reply
agrees with the counterhate tweet. We consider
that a reply agrees if it does not oppose the coun-
terhate tweet either explicitly or implicitly. On
the other hand, we consider that a reply disagrees
if it opposes the counterhate tweet, including sar-
casm (e.g., you are missing something!) or casting
doubt (e.g., are you kidding?).

The second step provides fine-grained character-
istics when the reply disagrees with the counterhate
tweet. First, we ask whether the reply supports
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Hateful Tweet 1: I f**king hate <ethnicity>
people. [...] I hope you all f**king die.

Counterhate Tweet: not all <ethnicity> part
take in this. cant discriminate a whole race bc
some f**k up; do sick things. White’s abuse
animals too

Reply: but down in <country> they are horri-
ble f**king people

Agree? No Support? Yes
Attacks Author? No Addtl. Counterhate? n/a

Hateful Tweet 2: I admit it, I don’t like white
people

Counterhate Tweet: Appreciate the honesty.
You do realize that makes you racist, right?

Reply: thats not wt racism means. f**k off w
that bullshit.

Agree? No Support? No
Attacks Author? Yes Addtl. Counterhate? n/a

Hateful Tweet 3: If <country> had only shown
the true numbers and severity of this virus
then maybe some countries would have taken
it more seriously much earlier.

Counterhate Tweet: <country> has shown you
that 10 of 1000s people infected for about two
months. Few of countries take serious action.

Reply: <country> is doing a good job[...] truth-
ful Govt. that cares about citizens. A shining
beacon on a hill for the world to emulate.

Agree? Yes Support? n/a
Attacks Author? n/a Addtl. Counterhate? Yes

Table 1: Three annotation examples of hateful tweets,
counterhate tweets, and replies from our corpus. An-
notations include four binary questions: whether the
reply (a) Agrees with the counterhate tweet, (b) Sup-
ports the hate when it disagrees with the counterhate
tweet, (c) Attacks the Author of the counterhate tweet
when it disagrees with the counterhate tweet, and (d)
adds Additional Counterhate when it agrees with the
counterhate tweet.

the hateful tweet. We consider the reply to support
the hateful tweet if it includes a justification for the
hateful content (e.g., the news says the opposite!)
or introduces additional hateful content (e.g., first
example in Table 1). Second, we identify whether
the reply attacks the author of the counterhate
tweet. We include in the definition of attack any
mockery or insults towards the author of the coun-
terhate tweet (e.g., stupid never understand!).

Observed (%) Cohen’s κ

Agree? 91.1 0.82
Support? 89.1 0.77
Attacks Author? 92.3 0.79
Addtl. Counterhate? 91.7 0.81

Table 2: Inter-annotator agreements in our corpus. We
provide the observed agreements (percentage of times
annotators agreed) and Cohen’s κ. κ coefficients be-
tween 0.6 and 0.8 are considered substantial agreement,
and above 0.8 (nearly) perfect (Artstein and Poesio,
2008).

The third step provides fine-grained characteris-
tics when the reply agrees with the counterhate
tweet. Finally, when the reply agrees with the
counterhate tweet, we distinguish whether the re-
ply includes additional counterhate. Namely, we
identify whether the reply contains additional coun-
terhate by providing a new opinion or factual argu-
ment to support the counterhate tweet (e.g., he is
also known for his charitable work and donations).
Only agreeing with the counterhate tweet (e.g., you
are correct!) does not contain additional arguments.

Examples Table 1 shows examples from our cor-
pus. In the first example, the reply not only dis-
agrees with the counterhate tweet but also supports
the hateful tweet with new hate content against the
mentioned people. Note that replies can also show
disagreement without including any support for the
hateful tweet (e.g., do you have any evidence?!!).

In the second example, the reply attacks the au-
thor of the counterhate tweet without including
any justification or support for the hateful tweet.
This also indicates that the reply disagrees with the
counterhate tweet. Note that replies can disagree
with the counterhate tweet without attacking the
author (e.g., don’t be their lawyer).

Finally, the reply in the third example not only
agrees with the counterhate tweet, but also includes
additional counterhate (honest vs. successful gov-
ernment). Note that replies can agree with the coun-
terhate tweet without adding additional counterhate
(e.g., convincing response!).

Annotation Process and Inter-Annotator Agree-
ments We used the Label Studio annotation tool.5

The tool showed the hateful tweet, counterhate
tweet, and reply. It displayed the screenshots of the
tweets taken from the Twitter website to prevent

5https://github.com/heartexlabs/label-studio
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%Yes %No

Agree? 49 51
Support? 40 60
Attacks Author? 24 76
Addtl. Counterhate? 35 65

Table 3: Percentages for Yes and No labels per question.

readability issues when displaying the tweets (e.g.,
special characters). Additionally, annotators are
provided with instructions for each question (i.e.,
definitions and examples).

The 2,621 (hateful tweet, counterhate tweet, re-
ply) triples were independently annotated by two
graduate students active on social media platforms.
We are interested in how regular social media users
interpret hateful tweets, counterhate tweets, and
replies. Table 2 presents the inter-annotator agree-
ments. For all questions, the observed agreements
are almost 90%. Cohen’s k coefficients indicate
(a) substantial agreement in two questions: whether
the reply supports the hateful tweet and attacks the
author of the counterhate tweets, and (b) nearly per-
fect agreements in two questions: whether the reply
agrees with the counterhate tweet and includes ad-
ditional counterhate. k coefficients between 0.60
and 0.80 are considered substantial agreement, and
above 0.80 are considered nearly perfect (Artstein
and Poesio, 2008). We note that it is easier to deter-
mine whether a reply agrees and adds additional
counterhate tasks than supports and attacks the au-
thor tasks. This is due to the use of sarcasm and
nuanced language when the reply supports the hate-
ful tweet or attacks the author of the counterhate
tweet. After the two annotators finished all the an-
notations independently, they debated the points of
disagreement and decided on the final label.

4 Corpus Analysis

Label Distribution Table 3 presents the percent-
ages of yes and no labels per question. Around half
of the replies to the counterhate tweets do not agree
with the counterhate tweet (51%), and it is common
for them to support the hateful tweet when they do
not agree (40%). In addition, it is somewhat rare
for these replies to attack the author of the coun-
terhate tweet when they disagree (24%). On the
other hand, it is less likely for the replies to include
additional counterhate arguments when they agree
(35%). This shows that most replies that agree with
the counterhate tweet do not include any additional

arguments to support the counterhate tweet (e.g.,
you are correct).

Linguistic Insights We analyze the language
people use in the counterhate tweets that lead
to certain types of replies. We count the num-
ber of tokens, pronouns, and proper nouns using
spaCy (Neumann et al., 2019). We use the lexi-
cons of offensive words6 and lexicons by Moham-
mad and Turney (2013) to count offensive, posi-
tive, negative, and sadness words. Finally, we use
Profanity-check7 to calculate the profanity score
and TextBlob8 to calculate the subjectivity score.
All correlations between linguistic features are be-
low 0.30, except for a few that involve the number
of tokens (Appendix A, Figures 2–5). We check
the predictive power of the selected features using
t-test. We also report if a test passes the Bonferroni
correction (Table 4). The p-values reveal several
interesting insights:

• Counterhate tweets with more tokens or pro-
nouns elicit replies that do not attack the au-
thor of the counterhate tweet or include addi-
tional counterhate if they agree.

• Counterhate tweets with more question marks
lead to replies that (a) agree with the counter-
hate tweets and do not add additional counter-
hate, or (b) support the hateful tweet and do
not attack the author.

• We find that (a) positive words elicit replies
that do not attack the author or add additional
counterhate, (b) negative words elicit replies
that do not add additional counterhate, and (c)
offensive words elicit replies that agree with
the counterhate, or attack the author.

• Profanity in counterhate tweets elicits replies
that agree with the counterhate tweet or do
not support the hateful tweet.

• Comparing hateful tweets and counterhate
tweets reveals that counterhate tweets with
(a) less offensive content lead to replies that
agree with the counterhate tweet or do not sup-
port the hateful tweet, (b) less sadness words
elicit replies that agree with the counterhate
or do not attack the author of the counterhate
tweet, and (c) less subjectivity lead to replies
that attack the author of the counterhate or do
not add additional counterhate.

6https://github.com/zacanger/profane-words
7https://github.com/vzhou842/profanity-check
8https://github.com/sloria/TextBlob
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Agree? Support? Attacks Author? Addtl. Counterhate?

p-value Bonf. p-value Bonf. p-value Bonf. p-value Bonf.

Number of . . .
tokens ↓↓↓ 3 ↑↑↑ 3
pronouns ↓↓↓ 3 ↑↑↑ 3
proper nouns ↑ 7 ↓ 7
question marks ↑ 7 ↑↑↑ 3 ↓↓↓ 3 ↑ 7
positive words ↓↓↓ 3 ↑↑↑ 3
negative words ↓ 7 ↓↓ 3
offensive words ↑ 7 ↑ 7

Profanity score ↑ 7 ↓ 7

With respect to the hateful tweet
offensive words ↑↑ 3 ↓↓ 7
sadness words ↑↑ 7 ↓↓ 7
subjectivity ↑↑ 7 ↓ 7

Table 4: Linguistic analysis of the counterhate tweets depending on our fine-grained characterization of the replies
they elicit. Number of arrows indicate the p-value (t-test; one: p < 0.05, two: p < 0.01, and three: p < 0.001). Arrow
direction indicates whether higher values correlate with yes (up) or no (down). We use a check mark to indicate
tests that pass the Bonferroni correction. Counterhate tweets without offensive words tend to elicit replies that agree
with the counterhate tweet and do not support the hate when they disagree.

5 Experiments and Results

We create a binary classifier for each task, namely,
whether the reply: (a) agrees with the counterhate
tweet, (b) supports the hateful tweet, (c) attacks
the author of the counterhate tweet, or (d) includes
additional counterhate arguments. We split the
dataset into 70:10:20 ratios for training, validation,
and testing. Each instance consists of a hateful
tweet, a counterhate tweet, and a reply.

Baselines The baseline models we use in our ex-
periments are the majority and random models. In
the majority model, the majority label is predicted
(no label for all tasks, Table 3). In the random
model, a random label of no or yes is predicted.

Neural Network Architecture and Training In
all experiments, we used the transformer-based
BERTweet model (Nguyen et al., 2020). BERTweet
is a BERT-based (Devlin et al., 2019) model but
was pre-trained using the RoBERTa training strat-
egy (Liu et al., 2019) on 850M English tweets. The
neural architecture consists of the base architecture
of BERTweet followed by a linear layer with 128
neurons and ReLU activation. Then, we added a
final linear layer with 2 neurons and a Softmax
activation to do the binary classification between
labels yes and no. We perform the experiments
using different textual inputs:

1. the hateful tweet alone,

2. the counterhate tweet alone,
3. the reply alone, and
4. combinations of (1–3) above.

We use the ’</s>’ special token to concatenate the
inputs. Then, we apply three strategies to enhance
the performance of neural models:

Data Augmentation We adapt Easy Data Augmen-
tation Marivate and Sefara (2020) called. Specif-
ically, we use Synonym Replacement (randomly
replacing a word), Random Insertion (inserting a
synonym of a random word), and Random Swap
(randomly swapping the positions of two words).

Concatenating Language Features Language fea-
tures have been shown to improve pre-trained mod-
els’ performance in text classification tasks (Lim
and Tayyar Madabushi, 2020). To this end, we
experiment with complementing embeddings with
manually defined language features. Inspired by
the analyses in Section 4, we calculate count-based
language features for the replies, such as the num-
ber of tokens, pronouns, nouns, verbs, negative and
positive words (using the lexicons by Mohammad
and Turney (2013)), question marks, proper nouns,
and first-person pronouns. Examples are shown in
Appendix C (Table 7). We then use the significance
test (t-test) to keep the significant features (p< 0.05).
The common significant features between the tasks
are the number of tokens, bad words, nouns and
verbs, and positive words. We concatenate these
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Agree? Support? Attacks Author? Addtl.
Counterhate?

No Yes Avg. No Yes Avg. No Yes Avg. No Yes Avg.

Baselines
Majority 0.67 0.00 0.34 0.75 0.00 0.45 0.87 0.00 0.66 0.79 0.00 0.51
Random 0.52 0.48 0.50 0.51 0.44 0.48 0.58 0.30 0.51 0.54 0.39 0.49

BERTweet trained with . . .
reply 0.71 0.70 0.70 0.82 0.64 0.75 0.89 0.62 0.83 0.89 0.78 0.85
counterhate tweet 0.64 0.60 0.62 0.70 0.38 0.57 0.86 0.13 0.69 0.73 0.51 0.66
hateful tweet 0.61 0.59 0.60 0.72 0.30 0.55 0.86 0.00 0.66 0.76 0.42 0.64

reply + counterhate tweet 0.72 0.75 0.73 0.80 0.69 0.76 0.89 0.64 0.83 0.89 0.79 0.85
reply + hateful tweet 0.67 0.75 0.71 0.82 0.73 0.78 0.88 0.59 0.81 0.87 0.76 0.83

best pair + the other tweet 0.74 0.71 0.73 0.80 0.68 0.75 0.88 0.56 0.81 0.88 0.76 0.83

best input + EDA 0.75 0.74 0.75 0.84 0.74 0.80 0.89 0.64 0.83 0.89 0.77 0.85
best input + LF 0.74 0.74 0.74 0.84 0.67 0.78 0.90 0.64 0.84 0.88 0.77 0.84
best input + Blending 0.76 0.74 0.75 0.84 0.79 0.82 0.90 0.66 0.84 0.88 0.80 0.85

Table 5: Results obtained with several systems (F1-scores; Avg. refers to the weighted average). Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet:
either the counterhate tweet or hateful tweet. Best input: the textual input or combinations of inputs of (reply,
counterhate tweet, and hateful tweet) that leads to the best performance (underlined). EDA: easy data augmentation.
LF: language features. Tables 8–11 in Appendix D provide detailed results per label and subtask.

features with each other and with the input embed-
dings using the ’</s>’ special token.
Blending Complementary Corpora We finally
investigate pretraining with complementary tasks.
We adopt the method by Shnarch et al. (2018),
which integrates labeled data from related tasks
with various ratios in each training epoch. This is
done by blending the related task instances with our
dataset for training, and decrease the ratio in each
epoch to reach zero in the last one. The corpora
we blend with are: (a) a stance dataset (Moham-
mad et al., 2016) consisting of 4,163 tweets about
abortion, atheism, climate change, feminism, and
Hillary Clinton annotated with in favor, against,
or none; (b) an offensive dataset (Zampieri et al.,
2019b) containing over 14K tweets annotated with
offensive or not offensive, and (c) a hateful tweet-
reply dataset (Albanyan and Blanco, 2022), anno-
tated with whether the reply counters the hateful
tweet (5,652 pairs), counters the hate with justifica-
tion (1,145), attacks the author of the hateful tweet
(1,145), and includes additional hate (4,507).

5.1 Quantitative Results

Table 5 shows the results using the F1-score for
no and yes labels, and the weighted average. Ap-
pendix D (Tables 8–11) contains detailed results
showing the precision, recall, and F1-score. The

F1-scores for the majority baseline are 0.34, 0.45,
0.66, and 0.51.

The results using the neural models with differ-
ent inputs (the hateful tweet, the counterhate tweet,
the reply, or a combination of different tweets) re-
veal several insights:

• Using only the hateful tweet or counterhate
tweet as an input outperforms the baselines,
showing that certain hateful tweets or counter-
hate tweets elicit particular kinds of replies.

• Feeding to the network only the reply yields
the best results out of all single-tweet inputs.

• Combining the reply with the hateful tweet
outperforms the models in support the hateful
tweet task since, in this task, the reply is re-
lated to the hateful tweet. On the other hand,
including the counterhate tweets improves the
results in the other three tasks. We note that it
barely affects the attacks the author task. We
hypothesize this is because the attack can be
detected from the reply alone.

• Including a third input (either the counterhate
tweet or hateful tweet) to the best pairs (re-
ply+counterhate tweet or reply+hateful tweet)
worsens the results (0.73, 0.78, 0.83, and 0.85
vs. 0.73, 0.75, 0.81, and 0.83).

Additionally, the results show modest improve-
ments when applying the three strategies we work
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Agree? Support? Attacks Author? Additl. Counterhate?

Intricate text
Sarcasm and implicit meaning 18 20 15 18
Mentions many named entities 6 5 7 6
All 24 25 22 24

General knowledge 16 19 17 12
Short text, less than 5 tokens 20 12 21 14
Misspellings and abbreviations 11 9 11 12
Rhetorical question 8 14 9 9

Table 6: Error types made by the best performing model in each task (best input + blending, as shown in Table 5).
All the numbers are percentages.

with (Data Augmentation, Language Features, and
Blending Complementary Corpora). We find that:

• Data augmentation benefits the neural network
trained with the best input combination in two
tasks: agree with the counterhate tweet and
support the hateful tweet.

• Language features are barely beneficial.
• Blending complementary corpora always

yields higher results. More details about the
related datasets that lead to the best results in
all tasks can be found in Appendix D.

We also tried combining the strategies and found
out that doing so does not improve results.

When do the best models make errors? While
our best models in each task produce strong results
(best input + blending, Table 5), we manually ana-
lyzed the wrong predictions made by each model.
Table 6 shows the error types we found. We started
the analysis by randomly selecting 100 samples
from the model produced in the agree task. We
considered all the wrong predictions for the other
three tasks since they were less than 100 samples.
They were 59 samples in the support task, 46 in the
attacks the author task, and 43 in the additional
counterhate task. The error types are:

• Intricate text (24%, 25%, 22%, and 24%),
which involves using sarcasm and implicit
meaning, or mentioning many individuals or
entities (e.g., Reply: don’t block me I need
you so bad. Agree? Gold: No, Predicted: Yes).

• General knowledge (16%, 19%, 17%, and
12%), which requires world knowledge and
commonsense to understand the meaning of
the tweet (e.g., Reply: it’s on sky news mate!.
Supports? Gold: Yes, Predicted: No).

• Short text (20%, 12%, 21%, and 14%), tweets
with less than 5 tokens (e.g., Reply: chill out.
Attack the Author? Gold: No, Predicted: Yes).

• Misspellings and abbreviations (11%, 9%,
11%, and 12%), (e.g., Reply: @auscoups Why
r they trending these things. Addit. counter-
hate? Gold: Yes, Predicted: No).

• Rhetorical question (8%, 14%, 9%, and 9%),
where a question in a tweet is asked to deliver
a point (e.g., Reply: you think this is funny?.
Agree? Gold: Yes, Predicted: No).

6 Conclusions

Countering hateful content is an effective way to
fight hate speech (Gagliardone et al., 2015). Addi-
tionally, countering hate speech—unlike blocking—
does not interfere with free speech. However well-
intentioned, however, counterhate arguments may
worsen the situation by eliciting additional hate.

In this work, we analyze the discourse follow-
ing a counterhate tweet. Specifically, we analyze
all replies to counterhate tweets and reveal fine-
grained characteristics beyond whether the reply
agrees with the counterhate argument. Namely, we
determine whether the reply (a) not only disagrees
with the counterhate tweet but also supports the
hateful tweet or attacks the author of the counter-
hate arguments, or (b) not only agrees with the
counterhate tweet but also adds additional counter-
hate arguments. To our knowledge, this work is the
first to analyze the language of counterhate tweets
based on the replies they elicit.

The work presented here is empirical and ex-
plores genuine counterhate arguments and the
replies they elicit. We believe that it is critical
to analyze genuine social media discourse and how
hate spreads (and does not spread). We avoid mak-
ing any causal claims; instead, we draw insights
from genuine social media discourse around hate-
ful content. Our future work includes generating
counterhate arguments (a) customized to specific
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hateful content and (b) following the characteristics
we found to be more effective at stopping hatred.
We hypothesize that doing so will be more effective
than generic or even expert-driven counterhate.

Limitations

In the data collection process (Section 3), we col-
lect (hateful tweet, counterhate tweet, and reply)
triples from existing hateful tweet-reply and hate-
ful tweet corpora (the first and second strategies).
However, this ends with fewer triples since some
tweets are no longer available and not all coun-
terhate tweets have replies. In addition, we use
hate speech and counterhate classifiers to discard
non-hateful and non-counterhate tweets. This step
might (a) discard actual hateful or counterhate
tweets that are detected wrongly and (b) keep hate-
ful or counterhate tweets that should be discarded.
Another limitation is that we only consider the
tweet text. However, some tweets contain text ac-
companied by images or sometimes images only.
Including the tweets’ images in the analysis may
add more insights.
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A Inter-Feature Correlations

Figures 2–5 show the inter-feature correlations for
the the linguistic features used in the linguistic anal-
ysis (Section 4, Table 4). Most correlation coeffi-
cients are less than 0.30 in all four tasks (whether
the reply agrees with the counterhate tweet, sup-
ports the hateful tweet, attacks the author of the
counterhate tweet, or includes additional counter-
hate). This shows that our analysis captures various
kinds of counterhate tweets.

B Implementation Details

We used the transformer-based BERTweet model.
The neural architecture consists of the base archi-
tecture of BERTweet followed by a linear layer
with 128 neurons and a ReLU activation. Then,
we added a final linear layer with 2 neurons and
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Figure 2: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps
show the correlations with counterhate tweet for the replies that agree and do not agree with the counterhate tweet
respectively.

Figure 3: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that support and do not support the hateful tweet respectively.
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Figure 4: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that attack and do not attack the author of the counterhate
tweet respectively.

Figure 5: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps
show the correlations with counterhate tweet for the replies that include and do not include additional counterhate
respectively.
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a Softmax activation. We prepared the dataset by
removing URLs, symbols, additional spaces and
then, normalized all text to lowercase. We used the
pre-processed data as input to the BERTweet model
architecture provided by HuggingFace (Wolf et al.,
2020) with its own tokenizer. We used the AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 1e-5, a batch size of 16, and a
sparse categorical cross-entropy loss function. The
number of tokens per input was 128 with automatic
padding enabled for shorter inputs using the <pad>
token. Models were fine-tuned for 6 epochs and
the final fine-tuned model is loaded after the epoch
in which it achieved the lowest validation loss.

C Language Features

Table 7 presents examples of applying the language
feature strategy on the replies (Section 5). We
experiment with concatenating language features
presented in the table with input embeddings. The
selected language features are number of tokens,
pronouns, nouns and verbs, negative and positive
words, question marks, proper nouns, and first-
person pronouns.

D Detailed Results

Tables 8–11 show the detailed results presented in
Table 5. We provide Precision, Recall and F1-score
(a) using different tweet combinations and (b) ap-
plying the three strategies to enhance the results.
In addition, we show the results of each related
dataset used in the Blending with Complementary
Tasks strategy. The related datasets that lead to
the best results in each task are:

• stance dataset to determine whether the reply
agrees with counterhate tweet;

• hateful tweet-reply pair dataset regarding if
a reply includes additional hate, to determine
whether the reply supports the hateful tweet
task;

• hateful tweet-reply pair dataset regarding if
a reply attacks the author of the hateful tweet,
to determine whether the reply attacks the
author of the counterhate tweet; and

• hateful tweet-reply pair dataset regarding if
a reply counters the hate with justification, to
determine whether the reply adds additional
counterhate.
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Language Features

tokens pron. N-and-V pos. neg. QM PR FP-pron.

the least you can do is watch what u say, but ur too
ignorant.

14 3 4 0 1 0 0 0

Also why poor Becky? She’s with a great leading
man. I get hating Franco but why the RoHo hate?

19 2 5 0 2 2 3 1

b**ch you lame as f**k hope you got that sh*t if
you love gays

14 3 9 2 2 0 1 0

Right??? Like this dude is insane 6 0 1 0 1 3 0 0

Also, I never had the thought to bully someone
because I found them weird, that’s so toxic wth???

18 5 6 1 3 3 0 2

Who is this one? Are you dumb? 7 2 0 0 1 2 0 0

If there overprotective dosent mean they hate u you
know??

10 3 5 0 1 2 0 0

Oh so we are doing that huh , Well Imo killing irl
people is cool sounds dumb doesn’t it ?

20 3 4 1 2 1 1 1

Table 7: Examples of the calculated language features for the replies. We explore pretraining with the language
features as shown in Table 5. pron.: Pronouns. N-and-V: Nouns and Verbs. pos.: Positive words. neg.: Negative
words. QM: Question Marks. PR: Proper Nouns. FP-pron.: First Person Pronouns.

No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.50 1.00 0.67 0.00 0.00 0.00 0.25 0.50 0.34
Random 0.51 0.54 0.52 0.50 0.47 0.48 0.50 0.50 0.50

BERTweet trained with . . .
reply 0.70 0.72 0.71 0.72 0.69 0.70 0.70 0.70 0.70
counterhate tweet 0.61 0.67 0.64 0.63 0.57 0.60 0.62 0.62 0.62
hateful tweet 0.60 0.62 0.61 0.58 0.59 0.59 0.60 0.60 0.60

reply + counterhate tweet 0.77 0.68 0.72 0.71 0.79 0.75 0.74 0.73 0.73
reply + hateful tweet 0.81 0.57 0.67 0.66 0.86 0.75 0.73 0.71 0.71

best pair + the other tweet 0.71 0.78 0.74 0.75 0.68 0.71 0.73 0.73 0.73

best input + EDA 0.75 0.74 0.75 0.74 0.75 0.74 0.74 0.74 0.74
best input + LF 0.75 0.73 0.74 0.73 0.75 0.74 0.74 0.74 0.74
best input + Blending with . . .
stance 0.73 0.78 0.76 0.77 0.71 0.74 0.74 0.75 0.75
offensive 0.65 0.83 0.76 0.87 0.49 0.62 0.76 0.71 0.69
counterhate 0.72 0.70 0.71 0.70 0.72 0.71 0.71 0.71 0.71
justification 0.71 0.78 0.74 0.75 0.68 0.71 0.73 0.73 0.73
attack 0.73 0.81 0.76 0.78 0.69 0.73 0.75 0.75 0.75
additional hate 0.69 0.71 0.70 0.70 0.68 0.69 0.70 0.70 0.70

Table 8: Detailed results (P, R, and F) predicting whether the reply agrees with the counterhate tweet. Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet: either
counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet, and
hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language features.
This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.60 1.00 0.75 0.00 0.00 0.00 0.36 0.60 0.45
Random 0.58 0.45 0.51 0.39 0.51 0.44 0.50 0.48 0.48

BERTweet trained with . . .
reply 0.74 0.91 0.82 0.79 0.53 0.64 0.76 0.65 0.74
counterhate tweet 0.63 0.80 0.70 0.51 0.30 0.38 0.58 0.60 0.57
hateful tweet 0.62 0.86 0.72 0.51 0.21 0.30 0.57 0.60 0.55

reply + counterhate tweet 0.78 0.83 0.80 0.72 0.66 0.69 0.76 0.76 0.76
reply + hateful tweet 0.81 0.83 0.82 0.74 0.72 0.73 0.78 0.78 0.78

best pair + the other tweet 0.77 0.83 0.80 0.71 0.64 0.68 0.75 0.75 0.75

best input + EDA 0.82 0.86 0.84 0.77 0.72 0.74 0.80 0.80 0.80
best input + LF 0.75 0.96 0.84 0.89 0.54 0.67 0.81 0.79 0.78
best input + Blending with . . .
stance 0.84 0.73 0.78 0.66 0.80 0.72 0.77 0.76 0.77
offensive 0.78 0.72 0.75 0.63 0.70 0.66 0.72 0.71 0.71
counterhate 0.82 0.80 0.81 0.71 0.73 0.72 0.77 0.77 0.77
justification 0.83 0.83 0.83 0.75 0.75 0.75 0.80 0.80 0.80
attack 0.86 0.78 0.82 0.72 0.81 0.76 0.80 0.79 0.79
additional hate 0.89 0.79 0.84 0.73 0.86 0.79 0.83 0.82 0.82

Table 9: Detailed results (P, R, and F) predicting whether the reply contains support to the hateful tweet. Best pair:
the pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet:
either counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet,
and hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language
features. This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.76 1.00 0.87 0.00 0.00 0.00 0.58 0.76 0.66
Random 0.74 0.47 0.58 0.22 0.47 0.30 0.62 0.47 0.51

BERTweet trained with . . .
reply 0.88 0.90 0.89 0.66 0.59 0.62 0.82 0.83 0.83
counterhate tweet 0.77 0.97 0.86 0.45 0.08 0.13 0.70 0.76 0.69
hateful tweet 0.76 1.00 0.86 0.00 0.00 0.00 0.58 0.76 0.66

reply + counterhate tweet 0.88 0.91 0.89 0.67 0.61 0.64 0.83 0.84 0.83
reply + hateful tweet 0.87 0.90 0.88 0.64 0.55 0.59 0.81 0.82 0.81

best pair + the other tweet 0.85 0.91 0.88 0.64 0.50 0.56 0.80 0.81 0.81

best input + EDA 0.89 0.89 0.89 0.64 0.64 0.64 0.83 0.83 0.83
best input + LF 0.88 0.92 0.90 0.69 0.59 0.64 0.83 0.84 0.84
best input + Blending with . . .
stance 0.85 0.97 0.91 0.81 0.47 0.59 0.84 0.85 0.83
offensive 0.87 0.86 0.87 0.57 0.59 0.58 0.80 0.80 0.80
counterhate 0.91 0.85 0.88 0.61 0.73 0.67 0.84 0.83 0.83
justification 0.88 0.92 0.90 0.70 0.61 0.65 0.84 0.84 0.84
attack 0.89 0.92 0.90 0.71 0.62 0.67 0.85 0.85 0.85
additional hate 0.87 0.93 0.90 0.70 0.55 0.61 0.83 0.84 0.83

Table 10: Detailed results (P, R, and F) predicting whether the reply attacks the author of the counterhate tweet.
Best pair: the pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other
tweet: either counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate
tweet, and hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language
features. This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.65 1.00 0.79 0.00 0.00 0.00 0.42 0.65 0.51
Random 0.63 0.47 0.54 0.33 0.48 0.39 0.52 0.47 0.49

BERTweet trained with . . .
reply 0.88 0.90 0.89 0.80 0.76 0.78 0.85 0.85 0.85
counterhate tweet 0.74 0.73 0.73 0.51 0.51 0.51 0.66 0.66 0.66
hateful tweet 0.70 0.82 0.76 0.52 0.36 0.42 0.64 0.66 0.64

reply + counterhate tweet 0.88 0.90 0.89 0.81 0.77 0.79 0.85 0.86 0.85
reply + hateful tweet 0.88 0.86 0.87 0.75 0.77 0.76 0.83 0.83 0.83

best pair + the other tweet 0.86 0.90 0.88 0.80 0.73 0.76 0.84 0.84 0.84

best input + EDA 0.85 0.94 0.89 0.85 0.70 0.77 0.85 0.85 0.85
best input + LF 0.87 0.89 0.88 0.78 0.75 0.77 0.84 0.84 0.84
best input + Blending with . . .
stance 0.91 0.85 0.88 0.75 0.84 0.79 0.85 0.85 0.85
offensive 0.89 0.83 0.86 0.71 0.82 0.76 0.83 0.82 0.82
counterhate 0.90 0.83 0.86 0.72 0.84 0.77 0.84 0.83 0.83
justification 0.91 0.85 0.88 0.76 0.85 0.80 0.86 0.85 0.85
attack 0.88 0.84 0.86 0.72 0.78 0.75 0.82 0.82 0.82
additional hate 0.89 0.81 0.84 0.69 0.80 0.74 0.82 0.81 0.81

Table 11: Detailed results (P, R, and F) predicting whether the reply contains additional counterhate. Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet: either
counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet, and
hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language features.
This table complements Table 5 .
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