@inproceedings{mehta-varma-2023-llm,
title = "{LLM}-{RM} at {S}em{E}val-2023 Task 2: Multilingual Complex {NER} Using {XLM}-{R}o{BERT}a",
author = "Mehta, Rahul and
Varma, Vasudeva",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2023.semeval-1.62/",
doi = "10.18653/v1/2023.semeval-1.62",
pages = "453--456",
abstract = "Named Entity Recognition(NER) is a task ofrecognizing entities at a token level in a sen-tence. This paper focuses on solving NER tasksin a multilingual setting for complex named en-tities. Our team, LLM-RM participated in therecently organized SemEval 2023 task, Task 2:MultiCoNER II,Multilingual Complex NamedEntity Recognition. We approach the problemby leveraging cross-lingual representation pro-vided by fine-tuning XLM-Roberta base modelon datasets of all of the 12 languages provided - Bangla, Chinese, English, Farsi, French,German, Hindi, Italian, Portuguese, Spanish,Swedish and Ukrainian."
}
Markdown (Informal)
[LLM-RM at SemEval-2023 Task 2: Multilingual Complex NER Using XLM-RoBERTa](https://preview.aclanthology.org/fix-sig-urls/2023.semeval-1.62/) (Mehta & Varma, SemEval 2023)
ACL