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Abstract

Segmenting an address into meaningful com-
ponents, also known as address parsing, is
an essential step in many applications from
record linkage to geocoding and package de-
livery. Consequently, a lot of work has been
dedicated to develop accurate address parsing
techniques, with machine learning and neural
network methods leading the state-of-the-art
scoreboard. However, most of the work on ad-
dress parsing has been confined to academic
endeavours with little availability of free and
easy-to-use open-source solutions.

This paper presents Deepparse, a Python open-
source, extendable, fine-tunable address pars-
ing solution under LGPL-3.0 licence to parse
multinational addresses using state-of-the-art
deep learning algorithms and evaluated on over
60 countries. It can parse addresses written
in any language and use any address stan-
dard. The pre-trained model achieves average
99 % parsing accuracies on the countries used
for training with no pre-processing nor post-
processing needed. Moreover, the library sup-
ports fine-tuning with new data to generate a
custom address parser.

1 Introduction

Address Parsing is the task of decomposing an ad-
dress into its different components (Abid et al.,
2018). This task is essential to many applications,
such as geocoding and record linkage. Indeed, it
is quite useful to detect the different parts of an
address to find a particular location based on tex-
tual data to make an informed decision. Similarly,
comparing two addresses to decide whether two
or more database entries refer to the same entity
can prove to be quite difficult and prone to errors if
based on methods such as edit distance algorithms
given the various address writing standards.

There have been many efforts to solve the ad-
dress parsing problem. From rule-based techniques
(Xu et al., 2012) to probabilistic approaches and

neural network models (Abid et al., 2018), much
progress has been made in reaching accurate ad-
dresses segmentation. These previous works did
a remarkable job of finding solutions for the chal-
lenges related to the address parsing task. However,
most of these approaches either do not take into
account parsing addresses from different countries
or do so but at the cost of a considerable amount
of meta-data and substantial data pre-processing
pipelines (Mokhtari et al.; Li et al., 2014; Wang
et al., 2016; Sharma et al., 2018).

However, most of the work on address parsing
has been confined to academic endeavours with lit-
tle availability of free and easy-to-use open-source
solutions. In an effort to solve some of the lim-
itations of previous methods, as well as offer an
open-source address parsing solution, we have cre-
ated Deepparse1 (Yassine and Beauchemin, 2020)
an LGPL-3.0 licenced Python library. Our work
allows anyone with a basic knowledge of Python
or command line terminal to conveniently parse
addresses from multiple countries using state-of-
the-art deep learning models proposed by Yassine
et al. (2020, 2022). Deepparse’s goal is to parse
multinational addresses written in any language
or using any address writing format with an ex-
tendable and fine-tunable address parser. In addi-
tion, Deepparse proposes a functionality to easily
customize the aforementioned models to new data
along with an easy-to-use Docker FastAPI to parse
addresses.

This paper’s contributions are: First, we describe
an open-source Python library for multinational ad-
dress parsing. Second, we describe its implemen-
tation details and natural extensibility due to its
fine-tuning possibilities. Third, we benchmark it
against other open-source libraries.

1https://deepparse.org/
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2 Related work

Address parsing has been approached on the aca-
demic front using probabilistic machine learning
models such as Hidden Markov Models and Con-
ditional Random Fields (CRF) (Li et al., 2014;
Wang et al., 2016; Abid et al., 2018), as well as
deep learning models mainly based on the recur-
rent neural network (RNN) architecture (Sharma
et al., 2018; Mokhtari et al.; Abid et al., 2018).
Regarding openly available software, most of the
existing packages cater to US postal addresses. For
instance, pyaddress2 allows for the decomposition
of US addresses into eight different attributes with
a possibility to specify acceptable “street names”,
“cities” and “street suffixes” in order to improve
parsing accuracy. Similarly, address-parser3 iden-
tifies as “Yet another python address parser for
US postal addresses” and enables users to extract
multiple address components such as “house num-
bers”, “street names”, “cardinal directions” and
“zip codes”. These two packages are based on a
combination of predefined component lists and reg-
ular expressions. In contrast, usaddress4 uses a
probabilistic model that users can fine-tune using
their data. Another openly available avenue for ad-
dress parsing is Geocoding APIs, which can result
in highly precise parsed addresses based on reverse
geocoding. However, while being openly available,
Geocoding APIs are often not free and not always
convenient to use for a programming layperson.

The aforementioned approaches are limited to
parsing addresses from a single country and either
cannot handle a multinational scope of address pars-
ing or would need to be adjusted to do so. To tackle
this problem, Libpostal5, a C library for interna-
tional address parsing, has been proposed. This
library uses a CRF-based model trained with an
averaged Perceptron for scalability. The model
was trained on Libpostal dataset6 and achieved a
99.45 % full parse accuracy7 using an extensive
pre and post-processing pipeline. However, this
requires putting addresses through a heavy pre-
processing pipeline before feeding them to the pre-
diction model, and it does not seem possible to
develop a new address parser based on the docu-

2https://github.com/SwoopSearch/pyaddress
3https://github.com/CivicKnowledge/address_parser
4https://github.com/datamade/usaddress
5https://github.com/openvenues/libpostal
6https://github.com/openvenues/libpostal#training-data
7The accuracy was computed considering the entire se-

quence and was not focused on individual tokens.

mentation. A thorough search of the relevant litera-
ture yielded no open-source neural network-based
software for multinational address parsing.

3 Implementation

Deepparse is divided into three high-level compo-
nents: pre-processors, embeddings model, and tag-
ging model. The first component, the pre-processor,
is a series of simple handcrafted pre-processing
functions to be applied as a data cleaning proce-
dure before the embedding component, such as
lowercasing the address text and removing com-
mas. By default, Deepparse simply lowercase and
removes all commas in the address. The library
does not require a complex pre-processing pipeline,
but one can be defined and used more complex
one if needed since Deepparse is built so users can
handcraft and use a custom pre-processor during
this phase.

The last two components are illustrated in Fig-
ure 1. We can see that the embeddings model com-
ponent (black) encodes each token (i.e. word) of
the address into a recurrent dense representation.
At the end of the sentence, the component generates
a single dense representation for the overall address
generated from the individual address components.
Then, this address-dense representation is used as
input to the tagging model component (red), where
each address component is decoded and classified
into its appropriate tag. These two components
do not rely on named entity recognition to parse
addresses as opposed to the one proposed by Abid
et al. (2018).

Deepparse proposes two embeddings model ap-
proaches and four pre-trained tagging model archi-
tectures; all approaches can be used with CPU or
GPU setup. All pre-trained approaches have been
trained on our publicly available dataset8, based on
to the Libpostal dataset, and achieved parse accu-
racies higher than 99% on the 20 trained countries
without using pre or post-processing9.

The following sub-section will briefly discuss
how these two components work. For more de-
tails on the algorithms behind both components,
readers can refer to Yassine et al. (2020, 2022).
We will finish this section with a presentation on
Deepparse’s unique flexibility in developing a new

8https://github.com/GRAAL-Research/deepparse-
address-data

9The accuracy for each sequence is computed as the pro-
portion of the tags predicted correctly by the model. Predicting
all the tags correctly for a sequence yields perfect accuracy.
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address parser.

3.1 Embedding Model
Our objective was to build a single neural network
to parse addresses from multiple countries. Thus,
access to embeddings for different languages at
runtime was necessary. Since the use of alignment
vectors (Joulin et al., 2018; Conneau et al., 2017)
would have introduced the unnecessary overhead
of detecting of the source language to project word
embeddings from different languages in the same
space, Deepparse proposes the following two meth-
ods.

First, we use a fixed pre-trained monolingual
French fastText model. We chose French embed-
dings since this language shares Latin roots with
many languages in our test set. It is also due to
the large corpus on which these embeddings were
trained. We refer to this embeddings model tech-
nique as fastText.

Second, we use an encoding of words using
MultiBPEmb and merge the obtained embeddings
for each word into one word embedding using an
RNN. This method has been shown to give good
results in a multilingual setting (Heinzerling and
Strube, 2019). Our RNN network of choice is
a Bidirectional LSTM (Bi-LSTM) with a hidden
state dimension of 300. We build the word em-
beddings by running the concatenated forward and
backward hidden states corresponding to the last
time step for each word decomposition through
a fully connected layer of which the number of
neurons equals the dimension of the hidden states.
This approach produces 300-dimensional word em-
beddings. We refer to this embeddings model tech-
nique as BPEmb.

3.2 Tagging Model
Our downstream tagging model is a Seq2Seq
model. Using Seq2Seq architecture as tagging
model is effective for data with sequential pattern
(Huang et al., 2019; Omelianchuk et al., 2021; Jin
and Yu, 2021; Raman et al., 2022) such as ad-
dress. The architecture consists of a one-layer
unidirectional LSTM encoder and a one-layer uni-
directional LSTM decoder followed by a fully-
connected linear layer with a softmax activation.
Both the encoder’s and decoder’s hidden states
are of dimension 1024. The embedded address
sequence is fed to the encoder that produces hid-
den states, the last of which is used as a context
vector to initialize the decoder’s hidden states. The

decoder is then given a “Beginning Of Sequence”
(BOS) token as input, and at each time step, the
prediction from the last step is used as input. To
better adapt the model to the task at hand and to
facilitate the convergence process, we only require
the decoder to produce a sequence with the same
length as the input address. This approach differs
from the traditional Seq2Seq architecture in which
the decoder makes predictions until it predicts the
ends-of-sequence token. The decoder’s outputs are
forwarded to the linear layer, of which the number
of neurons equals the tag space dimensionality. The
softmax activation function computes probabilities
over the linear layer’s outputs to predict the most
likely token at each time step.

Deepparse proposes four pre-trained tagging
model architectures: one using each embedding
model approach, namely fastText and BPEmb,
and one using each embedding model approach
with an added attention mechanisms. Attention
mechanisms are neural network components that
can produce a distribution describing the inter-
dependence between a model’s inputs and out-
puts (general attention) or amongst model inputs
themselves (self-attention). These mechanisms are
common in natural language processing encoder-
decoder architectures such as neural machine trans-
lation models (Bahdanau et al., 2015) since they
have been shown to improve models’ performance
and help address some of the issues RNNs suffer
from when dealing with long sequences. Also, Yas-
sine et al. (2022) has shown that the attention mech-
anism has significantly increased performance for
incomplete addresses. Incomplete addresses do not
include all the components defined by a country-
written standard—for example, an address missing
its postal code. They are cumbersome and cause
problems for many industries, such as delivery
services and insurance companies (Nagabhushan,
2009).

Choosing a Model The difference between all
four models is their capabilities to generate bet-
ter results on unseen address patterns and unseen
language. For example, as shown in Yassine et al.
(2020), BPEmb embeddings models generate better
parsing on address from India, even if the language
and address pattern was unseen during training
compared to FastText embeddings model. How-
ever, this increase in generalization performance
comes at the cost of longer inference time (will be
discussed in section 4). As shown in Yassine et al.
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Figure 1: Illustration of our architecture using one of the two embedding model component (black) approach.
Each word in the address is encoded using an embedding model, in this case, MultiBPEmb (the BPE segmentation
algorithm replaces the numbers in the address with zeros). The embeddings are fed to a BiLSTM (rounded rectangle
with two circles). The last hidden state for each word is run through a fully connected layer (rounded rectangle with
one circle). The resulting embeddings are given as input to the tagging model components (red). The “S” in the
fully connected layer following the Seq2Seq decoder stands for the Softmax function.

(2022), models using the attention mechanism also
demonstrate the same improved generalization per-
formance compared to their respective embeddings
approaches but with the same cost of inference per-
formance. Thus, one must trade off generalization
performance over inference performance.

3.3 Developing a New Parser

One of the unique particularities of Deepparse is
the ability to develop a new parser for one’s specific
needs. Namely, one can fine-tune one of our pre-
trained models for their specific needs using our
public dataset or theirs. Doing so can improve
Deepparse’s performance on new data or unseen
countries, giving Deepparse great flexibility. As
shown in Figure 2, developing (i.e. fine-tuning) a
new parser using our pre-trained public models is
relatively easy and can be done with a few Python
lines of code.

Moreover, as shown in Figure 3, one can also
use Deepparse to retrain our pre-trained models on
new prediction tags easily, and it is not restricted
to the ones we have used during training, making
it flexible for new addresses pattern.

Finally, as shown in Figure 4 it is also possible to
easily reconfigure the tagging model architecture to
either create a smaller architecture, thus potentially
reducing memory usage and inference time, or in-
crease it to improve performance on more complex
address data. Also, one can do all of the above at
the same time.

4 Practical results

In this section, since Libpostal and Deeparse are
comparable in terms of accuracy, both are almost
perfect; we benchmark Deepparse memory us-
age and inference time with 183,000 addresses of
the Deepparse dataset. Our parsing experiment
processes 183,000 addresses using different batch
sizes (20, . . . , 29) and assesses memory usage and
inference time performance for Libpostal and Deep-
parse. Since Deepparse can batch address, we as-
sess the inference time as the average processing
time per address (i.e. Total time to process all addresses

183,000 =
time per address). Libpostal does not offer batch-
ing functionality. The experiment used a GPU and
a CPU to assess the accelerator’s gain. Thus, we
also assess GPU memory usage in our experiment
that uses such devices.

Our experiment was conducted on Linux OS
22.04, with the latest Python version (i.e. 3.11),
Python memory_profiler 0.61.0, Torch 2.0 and
CUDA 11.7 (done March 21, 2023). Our GPU
device is an RTX 2080.

Table 1 and Table 2 present our experiment re-
sults using respectively a GPU device or not (i.e.
CPU) with or without using batch processing. In
both tables, we can see that Libpostal achieved
better inference time performance. However, Deep-
parse still achieved interesting performance, partic-
ularly with batching that reduced by one order of
magnitude the average processing time of execu-
tion.
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a d d r e s s _ p a r s e r = A d d r e s s P a r s e r ( mode l_ type =" f a s t t e x t " )
a d d r e s s _ p a r s e r . r e t r a i n ( d a t a s e t , t r a i n _ r a t i o = 0 . 8 , epochs =5)

Figure 2: Code example to fine-tune our "FastText" pre-trained model on a new dataset for 5 epochs using a
80-20 % train-evaluation dataset ratio.

a d d r e s s _ p a r s e r = A d d r e s s P a r s e r ( mode l_ type =" f a s t t e x t " )
n e w _ t a g _ d i c t i o n a r y = { "ATag" : 0 , " AnotherTag " : 1 , "EOS" : 2}
a d d r e s s _ p a r s e r . r e t r a i n ( d a t a s e t , p r e d i c t i o n _ t a g s = t a g _ d i c t i o n a r y )

Figure 3: Code example to retrained our "FastText" pre-trained model on a new dataset with new tags.

GPU
Memory usage

(GB)

RAM
usage
(GB)

Mean time
of execution

(not batched) (s)

Mean time
of execution
(batched) (s)

fastText ∼1 ∼8 ∼0.0023 ∼0.0004
fastTextAttention ∼1.1 ∼8 ∼0.0043 ∼0.0007
BPEmb ∼1 ∼1 ∼0.0055 ∼0.0015
BPEmbAttention ∼1.1 ∼1 ∼0.0081 ∼0.0019

Libpostal 0 ∼2.3 ∼0.00004 ∼N/A

Table 1: GPU and RAM usage and average processing
time to parse 183,000 addresses using a GPU device
with or without batching.

RAM
usage
(GB)

Mean time
of execution

(not batched) (s)

Mean time
of execution
(batched) (s)

fastText ∼8 ∼0.0128 ∼0.0026
fastTextAttention ∼8 ∼0.0230 ∼0.0057
BPEmb ∼1 ∼0.0179 ∼0.0044
BPEmbAttention ∼1 ∼0.0286 ∼0.0075

Libpostal ∼1 ∼0.00004 ∼N/A

Table 2: RAM usage and average processing time to
parse 183,000 addresses using only CPU with or without
batching.

5 Future Development and Maintaining
the Library

As our development roadmap, we plan to improve
the documentation by adding a training guide on
how one can develop its address parser. Also, we
plan to offer new deep learning architecture that
leverages more recent progress, such as a Trans-
former based architecture and to support more
words embedding models, such as contextualized
embeddings like ELMO embeddings (Peters et al.,
2018). Moreover, we plan to offer a minimalist
application to address parsing for coding layper-
sons. Finally, we aim at improving inference time
performance by using recent integration of quan-
tization technique (Cheng et al., 2018; Wu et al.,
2020) in PyTorch, namely, “performing computa-
tions and storing tensors at lower bitwidths than
floating point precision” (PyTorch, 2023). The li-

brary is maintained mainly by the library authors,
and three to four releases are published yearly to
improve and maintain the solution.

6 Conclusion

In conclusion, we have described Deepparse, an ex-
tendable and fine-tunable state-of-the-art library for
parsing multinational street addresses. It is an open-
source library, has over 99.9% test coverage and
integrates easily with existing natural language pro-
cessing pipelines. Deepparse offers great flexibility
to users who can develop their address parser us-
ing our easy-to-use fine-tuning interface. Although
slower than the Libpostal alternative implemented
in low-level language C, Deepparse successfully
parses more than 99% of address components.
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