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Abstract

The rise of social media has enabled the
widespread propagation of fake news, text that
is published with an intent to spread misinfor-
mation and sway beliefs. Rapidly detecting
fake news, especially as new events arise, is
important to prevent misinformation.

While prior works have tackled this problem us-
ing supervised learning systems, automatedly
modeling the complexities of the social media
landscape that enables the spread of fake news
is challenging. On the contrary, having humans
fact check all news is not scalable. Thus, in this
paper, we propose to approach this problem in-
teractively, where humans can interact to help
an automated system learn a better social media
representation quality. On real world events,
our experiments show performance improve-
ments in detecting factuality of news sources,
even after few human interactions.

1 Introduction

Over the last decade, we have witnessed a rise in
the proliferation of “fake news” (Lazer et al., 2018),
news content which lacks the journalistic standards
ensuring its quality while maintaining its appear-
ance. Social media is flooded with inaccurate and
incomplete information (Vosoughi et al., 2018), and
combating this has attracted significant research in-
terest (Nguyen et al., 2020). However, this is still
a hard task, particularly on unseen topics. In this
paper, rather than annotating data to learn these top-
ics, we propose to use quick human interactions
to characterize social media, allowing us to learn a
better representation, and detect factuality better.

Instead of fact checking individual articles, some
works (Baly et al., 2020) focus on fact-checking
sources. While still requiring automated systems
due to the number of sources online, source fac-
tuality detection can be more scalable, as sources
often publish content of similar factuality. Follow-
ing this, we focus on capturing the factuality levels
of sources: high, mixed, low.
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One concept underlying methods that aim to
exploit social information for identifying the fac-
tuality of news sources is the social homophily
principle (McPherson et al., 2001), which cap-
tures the tendency of members of the same social
group to hold similar views and content prefer-
ences. This often leads to the formation of “echo
chambers” (Jamieson and Cappella, 2008; Quat-
trociocchi et al., 2016), tightly-knit “information
communities” that have little interaction with other
communities holding different views. Prior work
shows how similar news, particularly misinforma-
tion, tends to spread more in some of these tightly-
knit information communities (Bessi et al., 2016).
Thus, identifying them can provide the needed in-
formation for capturing the factuality of sources
(communities spreading mostly low factuality con-
tent in the past are likely to spread low factuality
content in the future). In this work, we first capture
social information in an information graph, model-
ing it via a R-GCN (Schlichtkrull et al., 2018).

Many approaches to detect news factuality are
often studied in unrealistic settings, as their suc-
cess hinges on test data being similar to or re-
lated to training data. However, a more realistic
setup would examine whether a system would be
able to generalize to emerging news events: These
events introduce different narratives, users, and
news sources, that are unseen and do not interact
with training content; i.e. test users don’t follow
train users and test graph nodes aren’t connected
to train nodes. In this paper, to simulate these set-
tings, we collected new data, consisting of the arti-
cles published around specific news events (Black
Lives Matter and Climate Change - see Sec 5.1),
their sources, and social context. We applied a re-
cent strong baseline system (Mehta et al., 2022),
trained over data sampled from past events, and it
resulted in significant degradation in performance
on the new events (~22% Acc, 19% Macro-F1).

Our main observation in this paper is that even
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Figure 1: Our framework overview: Adapting News Source Factuality Detection to Emerging News Events by Interactively
Characterizing the Social Media Context of News Articles and Their Sources. (Key: U = Users, A = Articles, S = Sources,
Green/H = High Factuality, Red/L = Low Factuality). From the learned graph model (b), we find pairs of inconsistent users by
clustering all user embeddings and looking for conflicting factuality labels (c) (L = low; H = high factuality). Here, the High
Factuality user doesn’t match the mostly Low Factuality cluster. We then build sub-graphs from these pairs of mismatched users
and their community to show human interactors (d), who create new edges based on content similarity. This is far simpler and
quicker than identifying factuality, as humans only need to identify which nodes are similar in content. Based on the interactions,
we create edges in the broad event graph (a) to do better news source factuality detection (either directly or with more training).

in these challenging settings, the social homophily
principle can be exploited to better detect source
factuality, if the system can identify relevant
information communities over users engaging
with the new content. This is since users that are
part of an information community that propagates
fake news, are likely to do so as well. As we later
show, automatically detecting the factuality of news
sources is difficult, particularly on emerging news
events. Instead, we suggest an interactive learn-
ing protocol, in which human judgements dynam-
ically help the model identify these communities.
As humans analyzing all emerging news content
is clearly infeasible, we propose a novel sampling
method for interactions, based on resolving incon-
sistencies in the model’s graph-based social repre-
sentation. Specifically, we identify pairs of users
that are clustered in the same community, but have
conflicting factuality predictions, as this indicates
inconsistency. We create small sub-graphs corre-
sponding to the social and content preferences of
these users and other members of the community,
and ask the humans to resolve the conflict: Based
on their profile descriptions, social relations and
articles endorsed, is it likely (given the principle
of social homophily) that these two users belong
to the same community? The human judgements
provide rich feedback for this question, by adding
edges to the graph, which connect users, articles,
and sources. These edges result in cleaner informa-
tion communities, which alleviate the difficulty of
the source classification task. Fig. 1 describes this.

In summary, we make the following contribu-
tions. (1) We are the first to formulate the task of
interactive news source factuality detection by
characterizing social context, and implement an in-
teraction tool for supporting this. (2) We suggest a

novel sampling approach for reducing the number
of human judgements needed by focusing on social
inconsistencies. (3) We focus on one of the most
challenging settings of news source factuality de-
tection in emerging news events, collect data, and
perform experiments showing how minimal, quick
interactions can lead to performance improvements
on unseen data. More generally, we propose an in-
teractive framework to learn stronger information
communities, and apply it to improve news source
factuality detection. In the future, it can also be
applied to other social media analysis tasks.

Sec. 3 describes our graph model, Sec. 4 our
novel protocol to incorporate interactions, Sec. 5
shows results, and Sec. 6 analyzes them.

2 Related Work

Detecting fake news on social media is a popular
research topic, studied in supervised learning (Has-
san et al., 2017; Pérez-Rosas et al., 2018; Volkova
and Jang, 2018; Ma et al., 2018; Shu et al., 2019a,b;
Kim et al., 2019), Graphs (Han et al., 2020; Li et al.,
2022), zero-shot (Wright et al., 2022), dialogue
(Gupta et al., 2022), cross-domain (Huang et al.,
2021; Zhu et al., 2022a,b; Mosallanezhad et al.,
2022), and low-resource (Lin et al., 2022) settings.

One of the most challenging yet most critical so-
cial context fake news detection settings is the early
detection of it, where test data has new users, arti-
cles, and sources, that do not interact with training
data. Recently, researchers have been working on
this task, especially at the article/tweet level. Liu
and Wu classify news propagation paths, Yuan et al.
model user credibility, while Konkobo et al. built a
semi-supervised classifier. In our work, we focus
on this challenging early detection setting, specifi-
cally to identify the factuality of news sources. We
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show how our interactive setup can be useful, even
in these settings. If combined with other early de-
tection methods, our framework may lead to further
gains, and we leave this for future work.

Using human interactions to improve models has
also been popular recently (Brantley et al., 2021),
in scenarios such as active learning (Blok et al.,
2021), or humans providing general system feed-
back (Tandon et al., 2022). Other works exploit hu-
man feedback for concept discovery (Pacheco et al.,
2022, 2023) by communicating human-level sym-
bolic knowledge (Pacheco and Goldwasser, 2021).
In contrast, our interactions enable stronger general
models, and generalization to new unseen scenar-
108.

Social homophily has been used to better many
NLP tasks, like sentiment analysis, entity linking,
and fake news. (West et al., 2014; Yang et al., 2016;
Mehta et al., 2022). Particularly, prior work shows
how misinformation (and similar news) spreads
more in tightly-knit communities, motivating our
idea that if we use humans to increase homophily
and build better information communities, we can
detect facutality better (Bessi et al., 2016; Halber-
stam and Knight, 2016; Cinelli et al., 2021).

3 Graph Model

Similar to Mehta et al., we view fake news source
detection as reasoning over relationships between
sources, articles, and users in an information graph.
We use their graph model', briefly explaining it in
this sec. Sec. 4 explains our interactive protocol.

The model uses a heterogeneous graph to cap-
ture the interaction between social information and
news content, and a Relational Graph Convolu-
tional Network (R-GCN) to encode it. The R-GCN
allows us to create contextualized node represen-
tations for factuality prediction. For example, one
way sources are represented is by the articles they
publish (which in turn are also represented by their
relationships to other nodes).

Graph Creation: The graph (see: Fig.1a) con-
sists of 3 types of nodes, each with feature vectors
(details: App. A.3.1): (1) S, the news sources,
are our classification targets. (2) A, the arti-
cles published by these sources, (3) U, the Twit-
ter users. Sources are first connected to articles
they publish. Social context is added via Twitter
users that interact/connect to sources/ articles/other

"https://github.com/hockeybro12/FakeNews_
Inference_Operators

users. These users provide the means for fake (and
real) news spread on social media: (1) Following
Sources/Users: Users are connected to sources and
users they follow. (2) Propagating Articles: Arti-
cles are connected to users that tweet its title/link.

Graph Embedding: As in Mehta et al., we train
a R-GCN (Schlichtkrull et al., 2018) to learn graph
embeddings, which will be later used to determine
where human interaction may be beneficial. We op-
timize the Classification objective of News Source
Factuality Detection (categorical cross-entropy).
To predict labels, we pass the source node embed-
dings from R-GCN through the Softmax activa-
tion.

4 Interactive Protocol

We hypothesize that understanding content and the
context it is provided in is critical to detecting fake
news. Specifically, identifying information commu-
nities of users, sources, and articles based on their
content preferences can be helpful, as a community
that mostly shares fake news in the past, is likely
to share fake news in the future. Further, users that
join this community are likely to share beliefs of
the community, and thus also share fake news.
Unfortunately, understanding content on social
media and using it to identify information commu-
nities is challenging for Al agents. It becomes more
difficult as new events with new relationships arise,
as the agent does not have enough data to determine
what is fake news. This makes the early detection
of fake news difficult (see Sec. 5.3). On the other
hand, educated humans can more easily understand
relationships on social media, even in new events,
as they can better analyze social interactions. Thus,
humans can clear up model confusion by helping
the model identify the information communities or
make existing ones bigger. For example, after read-
ing a sample of tweets from users discussing a new
event, humans can quickly determine if the users
are offering the same perspectives, and should be
in the same community. This knowledge can help
the agent model these users and other content they
interact with better. As we later show experimen-
tally, human interactions like these enables us to
build strong information communities, which helps
the agent, particularly with the early detection of
news sources factuality on new news events.
Unlike automated agents, humans cannot ana-
lyze all content that pertains to a new event, as it is
too massive. Instead, due to the highly connected

293


https://github.com/hockeybro12/FakeNews_Inference_Operators
https://github.com/hockeybro12/FakeNews_Inference_Operators

structure of social media, small amounts of inter-
actions done in the right places can make signif-
icant impact, as the added information can flow
throughout the information graph. Thus, we first
discuss in Sec 4.1 how we determine what content
humans should interact with and what interactions
they should make (i.e. forming/strengthening infor-
mation communities). Then, in Sec 4.2, we explain
how we can incorporate those interactions back into
the model to achieve performance improvements.

4.1 Soliciting Human Interactions

Now, we discuss 3 different protocols to identify
the data on which humans should interact, and then
what they should do. In general, we want humans
to analyze a sub-graph of the broad information
graph characterizing the new event. Given this sub-
graph, we ask humans to help form information
communities by characterizing the content in the
graph based on similarity, i.e. identify if two users
are similar, two articles offer the same perspective,
etc. This is done by asking humans a series of
questions (details : App. B) which enables them to
connect nodes in the sub-graph based on content
preferences, via a graphical interface we developed.
An ex. is shown in App. Fig 2. We then replicate
these connections in the broad information graph.
Identifying the sub-graph that will benefit the
most from interactions is critical to getting the most
value out of each interaction. We build the sub-
graphs by first choosing a pair of users, as our end
goal is to build stronger user information communi-
ties. We explore three different protocols for doing
this in 4.1.1 and Sec 4.1.2. After finding these pairs
of users, we build the sub-graph to show humans
by including these users and their direct connec-
tions in the graph. This includes the articles they
propagate, other users that propagate those articles,
the sources that publish those articles, and up to 3
“influencers” (users with over 1000 followers) that
one of these users follows. For each node in the
sub-graph, we populate it with relevant informa-
tion to enable the human interactors to understand
content. For ex:, user/source nodes show user bio,
tweets, etc. Article nodes show article publish date,
headline, and first paragraph. Details: App B.

4.1.1 Baselines

We have two baselines for selecting pairs of users.
(1) Random, users at random. (2) Model Confu-
sion takes an active learning-like approach, and
chooses users based on a label confusion criterion,

calculated by propagating the softmax score of the
source prediction downwards to get user confu-
sion. Specifically, to get this score, we look at all
the sources the user directly interacts with (arti-
cles they propagate and sources they follow), and
then take the weighted average of those source’s
Softmax predicted label to be the user score (thus
approximating user confidence). For example, a
user interacting with 3 articles predicted with low
factuality score of 0.7 and 1 source with high fac-
tuality score 0.9 will have confidence 0.75.

4.1.2 Social vs. Factuality Mismatch Criterion

Now, we discuss our novel protocol to determine
the pairs of users, seen also in Alg 1. It is de-
signed around one of the key ideas in this paper,
homophily, the tendency of users with similar so-
cial preferences to have similar content preferences.
Our graph model learns to represent both, by creat-
ing node embeddings which capture users’ similari-
ties, and learning classifiers used for characterizing
content by identifying factuality. Intuitively, our
protocol is designed to identify users, that based on
the current model parameters, break the homophily
principle. These users are part of the same social
group while at the same time have different factu-
ality predictions, and thus likely different content
preferences. When this is true, the model may not
have clearly understood the content preferences of
these users, which a human can help clear up.

To identify these pairs of users, we first need
to compute factuality labels for each user. As the
model is trained for source classification, we de-
signed a heuristic to use source labels to compute
user labels: We assign users the label of the most
common predicted label of the sources/articles the
user is directly connected to. For ex:, a user follow-
ing 3 low factuality sources and tweeting 1 mixed
factuality article is assigned a low factuality label,
as it interacts with more low factuality content.

After computing user labels, we need to find
groups of similar users, which we do by k-means
clustering all users in the event graph using their
model embeddings (Alg 1: 3). Then, we assign
each cluster a factuality label based on the most
frequently occurring user factuality label in that
cluster (Alg 1: 5). Finally, we choose pairs of users
that are in the same cluster, but one has a different
label than the cluster label, as the model thinks they
are similar but predicts their factuality differently,
which indicates a sign of confusion (Alg 1: 7-9).
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Algorithm 1 Social vs. Factuality Mismatch

1: Imput: U (Users), Ug (Graph User Embeddings), F'
(User Factuality Scores), P (Empty List)

2: Output: P (Pairs of Users To Build Graphs)
3: 1.k = k-means(UE) K-means Cluster all Users based on
Graph User Embeddings

4: foralli =1,...,k do {for each cluster}

5: Cl = MaXo<u<n F, Assign Cluster the Label of the

most common user

6: forall j = 1,...,n do {for each user}

7: if F; # c; then {If user label # cluster label}

8: U = rand(U) where (F; # Fj) A (F €
Cl) Choose a random user in the cluster with a
different label

9: P.inSE:I‘t((U]'7 Uk)) Add User Pair to List

10: end if

11: end for

12: end for

13: return P (Pairs of Users)

4.2 Incorporating Human Interactions

Humans interact by making new connections on the
sub-graphs. We then utilize the interactions by con-
necting the appropriate nodes in the broader event
graph. Our goal is to show how human interactions
allow us to have a better model that performs well
with and without further interactions.

We focus on the challenging fully inductive set-
ting: where all test set nodes are not seen at train-
ing and are also not connected to training set nodes.
Further, we evaluate the important setting of early
detection of fake news, where test data comes from
unseen emerging events. As we show in Sec 5.3, in
these settings, existing models struggle.

We evaluate 3 interaction-based protocols. The
three protocols have the same starting point, a
graph-based factuality classification system trained
over an established dataset (Baly et al., 2020). The
protocols are designed to show how interactions
can enhance that initial system when making pre-
dictions on data from unseen emerging events, and
are organized in order of increasing effort required
and increasing performance. All involve perform-
ing interactions on up to two different data sets
(each corresponding to a different emerging event,
see Sec 5.1). Since some of the protocols we in-
troduce update the parameters of the model after
interaction, we collect data for two events to en-
sure that all protocols can be evaluated in the fully
inductive settings on the second event data (i.e.,
relying on interactions alone without training).

We hereby refer to the first event as F'1, and the
second as E2. Each event is further split into inter-
action and no interaction halves (ex: E1-1/E1-2),
for comparison and model training (see below).

(1) Fully Inductive: In the first protocol, hu-
mans interact on the interaction halves of E'1 and
E?2, and then the interactions are incorporated,
without any additional training. This is the most
challenging, but no extra effort is necessary for
performance improvements.

(2) Interactions Amplify Model Learning:
Here, our goal is to show how interactions can
help us learn a stronger model that performs well
without interactions. Thus, we interact on the inter-
action half of E'1 (half so we can evaluate how we
do on the same event without interactions), use it to
train the model, and evaluate it on £2 (future event,
fully inductive) without any additional interactions.

(3) Learning to Incorporate Interactions: In
this protocol, we show how training the model after
interactions allows the model to learn how to better
incorporate them. This enables it to do even better
when interactions are provided on future events.
To do this, as above, we interact on half of E'1
and train on it. Then, we evaluate E2 on both the
interaction and non-interaction half. Both halves of
E2 are connected, so although interactions are only
on half, information can propagate via the graph.

4.3 Simulating Human Interactions

Due to constraints involved with human interaction
time/cost, to evaluate our models we also designed
a heuristic to simulate humans: We hypothesize
that two users are similar if they have the same gold
factuality label. While our interaction approach pri-
oritizes content preferences for interactions, iden-
tifying this automatically is difficult, so this is an
approximation. Thus, doing human interactions at
the scale of simulated ones could perform better,
and we leave it for future work. To get user gold
factuality labels, we use the same heuristic as in
Sec 4.1 (assinging users the label of the source they
are most often connected to). Note that in this simu-
lated interaction setting, we are using the test set to
determine user labels, so this setup is not realistic.

S Experiments

5.1 Dataset and Collection

To evaluate our model’s ability to predict the factu-
ality of news medium, we used the Media Bias/Fact
Check dataset (Baly et al., 2018). We expand it by
scraping additional sources from Media Bias/Fact
Check?, for better coverage of recent events and
increasing the number of sources for evaluation.

Zhttps://mediabiasfactcheck.com
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Model Baly | Baly | E1-1 | El1-1
Acc. F1 Acc F1

Baly 7152 | 67.25 | - -

Mehta R-GCN 68.90 | 63.72 | - -

Mehta BEST 72.55 | 66.89 | - -

BL: Mehta R-GCN | 66.04 | 54.20 | 43.21 | 34.44

Table 1: Baseline results on Baly (Baly et al., 2020) and an
inductive future BLM event F/1-1 (not seen or connected to
the training graph). Baseline (BL) is the strong graph
classification model from (Mehta et al., 2022) (Mehta
R-GCN) that was competitive with the state of the art (Mehta
et al., 2022) - Mehta BEST). Even with this, performance
significantly worsens on E'1, showing that detecting fake
news on future events inductively is challenging. BL: Mehta
R-GCN was trained on a smaller (Baly et al., 2020) dataset,
as some sources were used for evaluation, which is why the
performance is slightly lower.

Identically to Baly et al., we labeled the sources on
a 3-point factuality scale: high, mixed, or low.

Our goal in this paper is to show how human in-
teractions can help news source factuality detection
on new events, where even strong models strug-
gle (Sec 5.3). To do this, we evaluated our model
on two broad events: Black Lives Matter (BLM)
and Climate Change (CLM). For each, we scraped
data from Twitter over 3 time periods (01/02/2019 -
06/01/19; 06/02/19 - 01/1/21; 02/02/21 - 05/06/22),
each of which additionally cover many different
sub-events. For each time period, we created a fully
inductive graph, consisting of at least 99 sources
and their metadata. None of these graphs are con-
nected to each other in any way and no nodes in any
of them are common with each other or the train-
ing set - making our test settings fully inductive,
and very challenging. To ensure this inductive set-
ting, when collecting data for future time periods,
we made sure not to include sources/users/articles
that we already used in previous time periods, even
if they propagated content in those future periods.
Combined with Baly et al., we used the first time
period for training, to teach the model how to iden-
tify fake news in general and as it pertains to an
event. We used the 2nd and 3rd time period as
F1 and E2 in the protocols discussed in Sec 4.2.
Details (statistics, etc.): A.2. We release our code
and data.?

5.2 Evaluation Method

For both BLM and CLM, we evaluate on the two
inductive sub-events (E'1, £2) collected in Sec 5.1.
The interaction half is referred to with a -1 and

Shttps://github.com/hockeybrol2/Fake_News_
Interactive_Detection

Model E2-1 Acc E2-1F1
Random Users 35.21 29.99
Confused Users | 36.61 32.72
User Clustering | 42.10 32.22

Table 2: Ablation study on our methods for choosing
interactions on E2-1. It is clear that finding users based on
clustering and then factuality mismatch is best.

the non-interaction with -2, for ex: E'1-1. For fair
comparison, each data split, i.e. F/1-1, is the same
across all evaluations. We report results on Accu-
racy, Macro F1 (the dataset is unbalanced), and the
total number of edges added by all interactions.

We evaluated 3 settings, the first 2 are simulated
using gold test set labels (see Sec 4.3), while the
last is done by humans: (1) Interaction Graphs
Only: Edges are added only between users in inter-
action graphs. (2) X% of Data: Edges are added
between X% of all possible users that have the
same label in the test set that we run interactions
on (not only users in interaction sub-graphs). X
is 100%, 75%, or 25%. (3) Human Interactions:
For BLM, we evaluate on two separate versions,
each featuring a different source set (and social
media data). This section shows results on the first
version, when one human interacts on 20 graphs
per data split (details in B.1, B.2). The appendix
shows the second version of BLM with 3 different
interactors, showing the same trends. For space,
these interaction results/details (including agree-
ment) are in B.2.3. This section also evaluates
Climate Change, with 2 interactors interacting on
10 sub-graphs per data split. (for detailed CLM
results, see App. C). The human interaction results
are also the most realistic evaluation setting, as they
don’t use any gold test set labels, like the simulated
interactions do.

5.3 Baselines

We trained our baseline model, from Sec. 3, for
Source Factuality Detection on Baly et al. and the
first event, where it achieved strong performance,
similar to SOTA (Mehta et al., 2022) (we use the
same data and methodology) and other baselines
(Baly et al., 2020) (SVM). However, when evalu-
ated inductively on a BLM event that was published
after dates the training data was collected from -
i.e. E1-1 - performance significantly worsened
(see Table 1). This validated our hypothesis that
strong models, even if trained on generic and event
specific data, do not translate well to future events.
Thus, we propose to use our interactive protocol.
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Model El-1 El-1 E1-2 E1-2 | E2-1 E2-1 #

Acc F1 Acc F1 Acc F1 Edges
BLM No Interactions 43.21 | 3444 | 3793 | 30.70 | 3521 | 27.65 |-
CLM No Interactions 40.16 | 32.77 | 39.65 | 31.86 | 34.88 | 30.93 |-
BLM Sim. Interactions on Sub-Graphs Only 44.54 | 36.45 | 3793 | 30.70 | 42.10 | 32.22 | 2,162
BLM Sim. Interactions on 100% of Datain E1-1 + E2-1 | 49.20 40.52 37.93 30.70 44.73 36.82 133,336
BLM Sim. Interactions on 75% of Data in E1-1 + E2-1 | 46.03 | 38.05 | 37.93 | 30.70 | 50.00 | 40.50 | 74,414
BLM Sim. Interactions on 25% of Data in E1-1 + E1-2 | 46.03 37.65 37.93 30.70 42.10 32.65 8,266
BLM Human Interactions in E1-1 + E2-1 4444 | 3596 | 3793 | 30.70 | 44.73 | 30.03 | 84
CLM Human Interactions in E1-1 + E2-1 46.72 | 4394 | 39.65 | 31.86 | 39.53 | 36.95 | 47

Table 3: Protocol 1: Interactions results on BLM and Climate Change (CLM) in the difficult, inductive, no training setting. E1
and E2 are the two separate, inductive graphs. E1-1 is the first half that receives interactions, and E1-2 is the second half that
doesn’t. E2-1 (first half E2) also receives interactions, but it’s dev set is not used to select the model. With a minimal number of
added edges, human interactions achieve performance improvements in these difficult, inductive settings, with no extra training
(compared to No Interactions). Ex: results improve on human BLM E2-1 (~9.5% Acc.) Sim. settings also show improvements.

Model E1-2 E1-2 E2-1 E2-1 #

Acc F1 Acc F1 Edges
BLM No Interactions 37.93 30.70 35.21 27.65 -
BLM No Interactions Train 64.86 66.91 42.10 40.10 -
CLM No Interactions Train 49.29 44.84 44.77 42.35 -
BLM Sim. Interactions on Sub-Graphs Only 62.16 62.95 43.66 29.47 2,162
BLM Sim. Interactions on 100% of Datain E1-1 | 56.75 59.27 45.07 40.18 133,336
BLM Sim. Interactions on 75% of Datain E1-1 | 65.51 64.01 43.66 39.11 74,414
BLM Sim. Interactions on 25% of Data in E1-1 | 54.05 46.48 39.43 35.09 8,266
BLM Human Interactions in E1-1 67.56 71.56 45.07 35.18 84
CLM Human Interactions in E1-1 53.52 44.53 40.29 46.38 47

Table 4: Protocol 2: Interactions results on BLM + Climate Change (CLM) when we train on interactions, and then apply the
model to a new event with no interactions done. E1 and E2 are the two separate, inductive graphs. E1-1 is the interaction half of
the 1°¢ event and E1-2 is the 2"¢, non-interaction half. E2-1 (non-interaction half) is not connected to E1. Compared to the
model that was trained on E1-1 without interactions (No Interactions Train), human interactions lead to a more accurate model
for future events, by ~3% better Acc. for BLM and ~4% F1 for CLM (E2-1). Sim. settings also show improvements.

5.4 Interactions

We now evaluate our interaction protocols - what
portions of the graph to show users and how to in-
corporate interactions, using the method in Sec 5.2.

5.4.1 Soliciting Interactions

When comparing our methods for choosing what
sub-graphs to show on BLM, simulated interactions
performance shows a benefit (Table 2) of choos-
ing the users to build interaction graphs for based
on confused user clustering. This matches our in-
tuition as if the model predicts a users’ factuality
differently than other users similar to it, then the
model is confused and clearing that could improve
performance. Thus, we use this method of choosing
sub-graphs throughout the rest of our experiments.

5.4.2 Incorporating Interactions

Now, we evaluate our 3 protocols of incorporating
interactions discussed in Sec 4.2, in order of in-
creasing performance and model training required.

For space, additional human interaction results are
in App. B.2.3 and detailed CLM results in App. C.
Note that simulated interactions (4.3) use gold test
set labels and thus are only used to test our models.
First, Protocol 1, where we evaluate how the
model performs with interactions in the completely
inductive setting, so no training is necessary. In
Tab. 3, we ran interactions on only the interaction
half of each event (F'1-1 + E2-1) and the dev. data
(also from E'1-1), to choose the strongest model.
To ensure the dev. set being chosen from E1-1
does not bias us into a strong model, we also did
interactions on the interaction half of £2 and notice
stronger performance improvements. Note that £2
is a future event and is not connected to E'1 at all.
All settings improve performance. Moreover, on
BLM, human interactions improves performance
~9.3% Acc. on E2-1, comparable to simulated
interactions with significantly more data, showing
the large impact benefit of human interactions.
Next, in Protocol 2, we learn a better model for
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Model E1-2 | E1-2 E2-1 E2-1 E2-2 E2-2 | #

Acc F1 Acc F1 Acc F1 Edges
BLM No Interactions 3793 | 30.70 | 35.21 | 27.65 | 3030 | 24.84 |-
BLM No Interactions Train 64.86 | 6691 | 42.10 | 40.10 | 4545 | 4235 |-
CLM No Interactions Train 49.29 | 4484 | 4477 | 4235 | 4444 33.06 |-
BLM Sim. Interactions on Sub-Graphs Only 62.16 | 62.95 | 57.89 | 4853 | 4545 | 4349 | 2,162
BLM Sim. Interactions on 100% of Datain E1-1 + E1-2 | 56.75 | 59.27 | 57.89 | 61.90 | 36.36 | 35.53 | 133,336
BLM Sim. Interactions on 75% of Data in E1-1 + E1-2 | 65.51 | 64.01 | 63.15 | 61.84 | 4545 | 43.60 | 74,414
BLM Sim. Interactions on 25% of Datain E1-1 + E1-2 | 54.05 | 46.48 | 4473 | 31.38 | 51.51 | 45.31 8,266
BLM Human Interactions in E1-1 + E2-1 67.56 | 71.56 | 50.00 | 43.60 | 51.51 | 40.09 | 84
CLM Human Interactions in E1-1 + E2-1 53.52 | 4453 | 5348 | 43.07 | 46.80 | 38.73 | 47

Table 5: Protocol 3: Results on BLM + Climate Change (CLM) when we train on interactions and then do more in the inductive
setting. E1 and E2 are the two separate inductive graphs. E1-1 is the interaction half of E1 that is trained on. E1-2 is the
non-interaction half. E2 receives interactions on the interaction half (E2-1), but not the non-interaction half (E2-2). Human
interactions improve accuracy on both halves of E2 and F1 on E2-1, compared to no interactions train, and more than only
applying interactions without training for them as Tab.3, showing the benefit of training to learn to incorporate interactions.

news source factuality detection after doing inter-
actions, compared to not doing any. In Tab. 4, we
ran interactions on the interaction half of E'1, and
then trained on that data. On E2 with no interac-
tions done, we can see how this improves accuracy
compared to models trained without interactions.

Finally, for Protocol 3, we learn to better incor-
porate interactions into the model after we train for
it. Thus, we train similarly to Protocol 2, but now
we also run interactions on the interaction half of
E2. In Tab. 5, we see accuracy improves on both
halves of E'2 after we learn to incorporate interac-
tions on E'1, even though E2 is inductive. Further,
F1 improves on E1-1. This shows that training
with and then doing interactions helps performance
significantly on future events. We hypothesize that
this happens as training with interactions enables
the model to learn how to incorporate them bet-
ter, allowing the model to further take advantage
of them whenever provided. Further, human in-
teractions based on content preferences provide
clearer results compared to simulated ones (with-
out cheating and using test set labels), as the model
better learns the social media landscape, shown by
it achieving better accuracy on the BLM interacted
and non-interacted data (both halves of E2).

From these results, we see that our real-world ap-
plicable human interactions models result in perfor-
mance improvements in either Accuracy or Macro
F1, often times both. As a whole, all our mod-
els improve performance (any non-gain in one of
these metrics is offset by significant gains in the
other). We additionally hypothesize that perform-
ing more interactions (particularly human) will
achieve higher and more consistent results.

Model
No Inter.

Purity # Edge
36.2,37.8,33.3 | -
39.2,40.2,353 | 84
49.5,37.4,41.4 | 84
53.4,41.9,42.6 | 84

P1: Inductive Human

P2: Train Human

P3: Train + Inter. Human

Table 6: Purity clustering (sources, articles, users) for the
human interaction protocols on E2-1. As training increases
with each protocol (P), purity does too, showing that
interactions do help to learn better information communities.

6 Discussion

Now, we analyze our best BLM interaction model
for fake news source detection (for each protocol)
on F2-1 by answering these research questions:
(1) Do interactions help learn better communities?
(2) What pairs of nodes do humans connect?

(3) How can our model be used in the real world?
(4) Do interactions change embeddings? App. D.1

6.1 Learned Communities

We analyze how interactions help learn better info.
communities. We evaluate cluster-purity by K-
means clustering sources, articles, and users before
and after interactions are done. To compute pu-
rity, each cluster is assigned to the class which is
most frequent in it, and then the accuracy of this
is measured. Users are assigned gold labels based
on the most common label of all the nodes they are
directly connected to in the graph. Results in Tab. 6
show purity increases after interactions, showing
interactions help learn better communities.

6.2 Human Interaction Analysis/Examples

We analyze the interactions to determine what hu-
mans connected. We see humans make smart de-
cisions in matching content preferences. Further,
we show specific examples, demonstrating the ease,
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quickness, and lack of subjectivity of the interac-
tion process. These details/ex. are in App. D.2.

6.3 Real World Use Case

As shown in Sec. 5, our interactive protocols enable
rapidly (humans spent ~3 min/sub-graph) learning
better source factuality detection models for new
events, even in the most challenging settings when
there are no users, articles, or sources in common
with prior data. This happens as contrary to provid-
ing additional labels, which can be time consuming
and hard, interactions clear up content preferences,
creating better social homophily and performance.

Specifically, in a real-world use case, interact-
ing at training time learns a better model for the
new event setting (Protocol 2 results on E2-1). In
addition, this model would become even stronger
as more interactions are performed, even without
any further training, as seen in Protocol 3. Thus,
when new news events happen, humans can inter-
act on a few settings (our interaction sub-graphs)
and our setup enables the model to amplify this
knowledge to rapidly detect fake news sources on
a large scale.

7 Summary and Future Work

We proposed an initial protocol to interactively
build stronger information communities, applying
it on source factuality detection. We focused on the
early detection settings, where even strong models
can struggle. Our approach of finding sub-graphs
and then interacting on them via 3 protocols en-
ables minimal, quick human interactions to achieve
significant performance improvements. We hypoth-
esize that our interactive framework can generalize
to other social media analysis tasks like bias or
topic detection, and testing it is our future work.
Additionally, we aim to scale up our interaction
process, to include additional human interactions
and types of interactions.
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9 Ethics Statement

In this section, we first discuss some limitations of
our model (9.1), and then expand on that with a dis-
cussion on ethics as it relates to our data collection,

data usage, human interaction, and the deployment
of our models (9.2).

9.1 Limitations

This work tackles fake news source detection in
English on Twitter (our social media platform of
choice). Our methods may or may not apply to
other languages with different morphology, and
other social networking platforms. We leave the in-
vestigation of this to future work, but are optimistic
that especially with the benefit of interactivity, our
methods may generalize.

The nature of our interactive framework also re-
quires human interactors to interact, which could be
a potential limitation. Interactors must have some
general understanding of news content and be able
to identify if two entities (users, sources, or articles)
have similar content relationships. However, as in-
teractors are just looking for content/perspective
similarity, they need not be aware of the latest
events or be fake news detection specialists. Fur-
ther, human interactors don’t analyze user-specific
information or profile users themselves, they just
determine if users have similar content relation-
ships.

We used a single GeForce GTX 1080 NVIDIA
GPU to train our models, with 12 GB of memory.
As our models are largely textual based, they do
not require much GPU usage. However, scaling our
experiments to larger scale settings in real world
settings could require more compute, which may be
a potential limitation. Our hyper-parameter search,
mentioned in App A.3 was done manually.

9.2 Ethics

To the best of our knowledge no code of ethics
was violated throughout the experiments done in
this paper. We reported all hyper-parameters and
other technical details necessary to reproduce our
results, and release the code and dataset we col-
lected. We evaluated our model on two datasets
that we collected in this paper, and was collected
by prior work, but it is possible that results may
differ on other datasets. We believe our methodol-
ogy is solid and applies to any social media fake
news setting. Due to lack of space, we placed
some of the technical details and discussion to the
Appendix section. The results we reported sup-
ports our claims in this paper and we believe it is
reproducible. Any qualitative result we report is
an outcome from a machine learning model that
does not represent the authors’ personal views. For
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anything associated with the data we use, we do
not include account information and all results are
anonymous.

In our dataset release, we include sources, users,
and articles, with enough data to produce the results
described in the paper and the Appendix. Sources
are public information provided in (Baly et al.,
2020), and we map each to an ID. We release arti-
cle graph embeddings, which can be used to train
our models. As these embeddings are neural net-
work representations, they can’t be mapped back to
article text. However, we also release article URLs,
so that the articles can be downloaded, if they are
still publicly available. Additionally, we release
the Twitter data that we used, in complicance with
the Twitter API policies *. In our dataset release,
each user is referenced by their Twitter ID, and
their graph ID (the graph ID is meaningless on it’s
own). We release the mapping of the Twitter ID
to the graph ID. By us only releasing Twitter ID’s,
and not the actual Twitter text or user information,
in order to download the exact Twitter data that we
used, users must use the Twitter API to gather the
latest public information®. This ensures that we
respect user privacy, in accordance with the poli-
cies mentioned by the Twitter API, as only user
content that is still public can be downloaded and
we are not storing/releasing any data. We also pro-
vide the model representations for each user, article,
and source we used as our initial embedding in the
graph. As these are neural network model embed-
dings, they can’t be mapped back to the individual
text. Our data is meant for academic research pur-
poses and should not be used outside of academic
research contexts. All our data is in English.

In this paper, we did not use any of the Twitter
data for user surveillance purposes, and we encour-
age the community to do the same, to respect user
privacy. We also do not profile users, we only use
the user insights as an aggregate to classify news
sources. Further, we only use public Twitter pro-
files, which there are enough of for our framework
to work in real-time situations. When doing human
interactions, we show humans public Twitter infor-
mation, so that they can determine user similarity.
To do this, we use the Twitter API to determine the
Twitter data that is publicly available at the time
of interaction, show that to humans, and then dis-

“https://developer.twitter.com/en/
developer-terms/more-on-restricted-use-cases
5https://developer.twitter.com/en/docs/

twitter-api

card the Twitter information. Further, in our graph
model, we do not store any user-specific informa-
tion, we only store neural network model embed-
dings which are used for training and cannot be
mapped back to the original text or user. The same
is true for articles, so we we are actually discard-
ing all the text (Twitter, article, and source). Users
of our framework should also do the same - use
public knowledge for interactions and not store any
user/article specific data, rather use the appropriate
APIs to retrieve the data when needed.

Our framework in general is intended to be used
to defend against fake news. While our framework
could be used to build better methods of design-
ing fake news, our methodology of interactive fake
news detection could guard against that as well.
We caution that our models and methods be con-
sidered and used carefully. This is because in an
area like fake news detection, there are great conse-
quences of wrong model decisions, such as unfair
censorship and other social related issues. Further,
despite our efforts, it is possible our models are
biased, and this should also be taken into consider-
ation. Our protocol of building sub-graphs based
on model confusion that we used when showing
humans what to interact on, can be used to get in-
sights into the model to help prevent some of these
issues as well. However, this is definitely an area
of future work.

In the interactive setting we proposed, our ap-
proach relies on getting insights from human in-
teractors and using that to improve performance
in fake news detection. While that lead to perfor-
mance improvements in this work and we believe it
will hold in different settings, there could be issues,
such as biased humans. Running interactions at
large scale with multiple human experts per sub-
graph can help mitigate some of these issues. For
example, edges can be weighted in the graph based
on how many humans chose to add them. Thus,
extremely biased interactors decisions would be
given less weight, and maybe even not considered
by the model. We leave this for future work. How-
ever, despite this, there may still be some human
interactor bias that can leak into the final fake news
detection model, which is why perhaps important
decisions should not be made only by machine
learning models, but rather the models be used as a
tool.

As mentioned in the Appendix B.2.3, the human
interactors we used were Compute Science PhD
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students. The interactors were awarded research
credits for their work, as the hours they spent work-
ing on the task were considered as part of their
research credit hours. They were explained the
entire process before hand including what the inter-
actions would be used for, and agreed to perform
the interaction. The total interaction process took
under 3 hours, including the time spent explaining
the process.

These and many other issues are things to con-
sider when using fake news detection models such
as the one proposed in this work.
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A Supplemental Material: Fake News
Source Detection

In this section, we provide implementation details
for our models for fake news source detection. The
original dataset we used has 859 sources: 452 high
factuality, 245 mixed, and 162 low, and was re-
leased publicly by (Baly et al., 2020)°. We then
extended it by scraping sources from the Media
Bias/Fact Check website’, to gain better coverage
of more recent events. The dataset does not include
any other raw data (articles, sources, etc.), so we
must scrape our own.

A.1 Data Collection

We will release the data and code for this paper
upon acceptance. Our data collection process is
identical to Mehta et al. as we use their code, but
we briefly describe the process here completion.
Further details are available in Mehta et al.
Following the process used in Mehta et al., we
tried to scrape news articles for each source in
the dataset using public libraries (Newspaper3K 8,
news-please ? (Hamborg et al., 2017), and Scrapy
10y, In cases where the webpage of the news source
was removed as often happens with fake news web-
sites, we used the Wayback Machine '! to down-
load the articles, if possible. As explained in Sec 3,
we attempted to get up to 300 articles for each
source. For the sources we got for the (Baly et al.,
2020) dataset, our statistics are the same as Mehta
et al. as we use their data, and thus the sources
have an average of 109 articles with a STD of 36.
To scrape Twitter data, we used the Twitter
API'2. In order to densely populate the graph, we
attempted to scrape up to 5000 followers for each
source that had a Twitter account ((72.5% of the
sources, the same number as (Baly et al., 2020;
Mehta et al., 2022)). Further, to find users that
propagate articles, we used the Twitter Search API
to search articles. From the returned Twitter results,
we use users that mention the article title or the ar-
ticle URL and post their tweet within 3 months of
the original article being published. For each user
found, we download their profile and add them to
our graph, making the appropriate Twitter User to

®https://github.com/ramybaly/News-Media-Reliability
"https://mediabiasfactcheck.com
8https://github.com/codelucas/newspaper
*https://github.com/fhamborg/news-please
"Ohttps://github.com/scrapy/scrapy
"https://archive.org/web/
Phttps://developer.twitter.com/en/docs
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Article connection as discussed in Sec 3. Finally,
we scraped the followers of each Twitter user in
the graph, and connected them to any user they
followed that was in the graph. This increases the
connectivity of the graph and allows us to better
capture the social media landscape. To maintain a
densely connected graph, we remove users that do
not connect to any other node in the graph.

To get the data for the YouTube embeddings for
the sources, we used the ones released publicly
by (Baly et al., 2020), who were able to scrape
YouTube channels for 49% of sources.

A.2 Event Collection

To collect the data for each event (E'1 from June
2,2019 - Jan 1, 2021 and E2 from Feb 2, 2021 -
May 6, 2022), we filtered by date and downloaded
Tweets mentioning certain hashtags and a URL
with one of the sources in the dataset. The hash-
tags/search terms we used to collect data for the
Black Lives Matter event were: Black Lives Matter,
BLM, blacklivesmatter, Floyd, George Floyd.

We then filtered the data to find the top high,
mixed, and low factuality sources that were men-
tioned on Twitter for each of these events and time
periods. We kept sources that had at least 10 ar-
ticles with Twitter users propagating them. We
ended up with at least 33 sources for each factu-
ality level in each event data split. Other sources
that were in the training set of Baly et al. were
used to train the initial Graph Embedding. Detailed
statistics for the training set and the sources used
in one of our Black Lives Matter splits are shown
in Table 8.

A.3 Experimental Settings
A.3.1 Initial Embeddings

We used the same initial graph node embedding
representations as Mehta et al., which we briefly
explain here. The Twitter embedding we used for
each source and each Twitter user was a 773 dimen-
sional vector consisting of the SBERT (Reimers
and Gurevych, 2019) (RoBERTa (Liu et al., 2019)
Base NLI model) representation of their bio (up
to the first 512 tokens) concatenated with a vari-
ety of numerical features, as follows: (1) a binary
number representing whether the source is verified,
(2) the number of users a source follows and the
number that follow it, (3) the number of tweets the
user posts, and (4) the number of favorites/likes the
users’ tweets have received. The YouTube embed-

ding we used consisted of the following numeri-
cal features: the average of the number of views,
the number of dislikes, and the number of com-
ments for each video the source posted on YouTube.
For articles, we used the same SBERT RoBERTa
model to generate an embedding based on the ar-
ticle text, which ends up being a 768 dimensional
vector. In all cases where we encoded text for em-
bedding representations, we use SBERT (Reimers
and Gurevych, 2019) RoBERTa (Liu et al., 2019)
model because it provides semantically meaningful
sentence representations for the text.

A.3.2 Models and Training

We used the publicly released code of Mehta et al.,
which was built using PyTorch (Paszke et al., 2019)
and DGL (Deep Graph Library) (Wang et al., 2019)
in Python. The R-GCN used consists of 5 layers,
128 hidden units, a learning rate of 0.001, and a
batch size of 128 for Node Classification. The
initial source and article embeddings have hidden
dimension 768, while the user one has dimension
773. To do 3-way source classification, the final
fully connected layer has size 3.

We trained our models using a 12GB TITAN
XP GPU card. To learn the initial model which
was used to determine where to perform interac-
tions, it took approximately 2 hours. Training after
interactions takes approximately 30 minutes total.
Inductive settings do not have any training, and
take minutes to run as we only have to compute
embeddings for nodes that we are attempting to
classify.

We used the development set to evaluate
model performance, and choose the best hyper-
parameters.

B Supplemental Material: Interaction
Graphs

In this section, we provide details about the interac-
tion graphs we showed users in B.1. Then, in B.2,
we discuss the interaction process (B.2.1), the de-
tails behind the interactions used in the main paper
(B.2.2), and finally new interactions on the second
Black Lives Matter Split (B.2.3).

B.1 Interaction Graph Details

The sub-graphs were constructed by first picking
pairs of users, and then adding context around them,
as discussed in Sec 4.1. The context consists of the
article each user propagated, the sources that pub-
lished it, other users that propagated the same arti-
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Model T1-1 T1-1 T1-2 T1-2 T2-1 T2-1 #

Acc F1 Acc F1 Acc F1 Edges
No Interactions 41.79 37.10 41.93 35.95 37.50 33.54 -
No Interactions Train 85.71 85.16 68.42 63.00 40.40 30.75 -
Protocol 1: Human Interactions in T1-1 43.28 37.39 45.16 42.34 - - 65
Protocol 2: Human Interactions in T1-1 71.68 72.50 52.63 41.82 41.41 34.79 65

Table 7: Additional interaction results across the two of our protocols. With minimal interactions, we still see performance
improvements in the fully inductive setting in Protocol 1 using all the interactions done by the three humans. We also see how
the interactions allow us to learn a better model in Protocol 2, as seen by the improvements on 7'2-1, despite no interactions
performed there (interactions were only on 7'1-1).

Dataset Low Mixed | High
Training Event | 57 81 153
T1 56 33 33
T2 33 33 33

Table 8: Number of sources in our datasets for the
training event (added to the training set to train the
initial model), T1 (first event) and T2 (second event).
The results on these data sets are shown in Table 7.

cles, and finally some additional celebrities (users
with more than 1000 followers) that are followed
by one of the users in the graph. All articles added
to the graph have to be about the same event, and
they are found by searching hashtags related to the
event (in our case Black Lives Matter or Climate
Change, hashtags below) in a four week span on
Twitter. An example of an interaction graph that is
shown to humans is in Fig. 2

Each node in the interaction graphs also contains
metadata to provide more information to the human
interactors. As seen in Fig 3, article nodes consist
of the headline, article text, article entities, and the
date the article was published. As seen in Fig 4
source and user nodes contain Twitter information
such as: username, following count, number of
followers, whether they are verified, how many
tweets they make, what is their model predicted
label, their biography, the tweet they made about
the article, and other tweets they made about the
same event.

Once the graphs are built, we show them to hu-
mans and ask a series of questions to guide the
interaction process. Each question asks the user
to create an edge in the interaction graph based
if there is a positive relationship between the two
nodes. A Positive relationships mean the nodes
have similar content preferences. If a positive rela-
tionship doesn’t exist, or there is not enough data to
clearly determine a positive relationship, humans
are asked to not make any edge connections. Thus,

humans are asked to ignore potentially subjective
cases. Humans identifying positive relationships
has multiple benefits for fake news detection: (1)
Simplicity: It is far simpler than identifying factu-
ality, so it can be used to detect fake news quickly.
The simplicity of the interaction process is due to
the fact that interactors only have to read a small
amount of content (a few user tweets/profile infor-
mation + up to two article headlines/summaries),
compared to reading multiple articles and gaining
real world knowledge. On average, human inter-
actors spent 3 minutes per interaction graph, and
made an average of 8 connections in this time. (2)
Effectiveness: Interactions improve social media
representation quality and thus social homophily,
and that’s what leads to performance improvements.
Here are the questions we asked human interactors
for each sub-graph shown:

1. Are there any users that are similar to each
other? Please connect them.

2. Are there any articles that are similar to each
other? Please connect them.

3. Are any users likely to propagate any of the ar-
ticles? Please connect them to the appropriate
article.

4. Are any users likely to interact with another
user? Please connect those pairs of users.

5. Are any users likely to interact with any
sources? Please connect those users of the
respective source.

B.2 Human Interactor Details

In this sub-section, we first discuss the interaction
process, including the graphical interface we built
for this task (B.2.1). Then, we discuss the two
rounds of human interaction protocols we did for
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Black Lives Matter. Climate change details fol-
low in Sec C. The first split of Black Lives Matter,
Sec B.2.2 was presented in the main paper, and the
second split B.2.3 appears in this section.

B.2.1 Interaction Process

The human interactors use a graphical interface
that displays the interaction graphs. We hosted
the interface on a website built for this interaction
process. Humans must answer the questions dis-
cussed above (Sec B.1) by connecting nodes to
create edges, which are then saved on our server
and can be incorporated into the broad event graph
as new edges, when evaluating the overall perfor-
mance. The examples of the graphs human inter-
actors see when interacting, and the metadata they
are provided with, can be seen in Fig 2, Fig 3, and
Fig 4. Examples of connections made are in 6.2.

B.2.2 Initial Interactor Details

We now describe the initial interaction session we
discussed in the main Paper on Black Lives Matter
and used for all the BLM Human results presented
there. The interactor used for this session was an
Asian-American PhD student in Computer Science
and Natural Language Processing. They were ex-
plained of the entire process before hand including
what the interactions would be used for, and agreed
to perform the interaction. They interacted on 20
graphs per data split (E1-1, dev, and E2-1), which
took under an hour for each split.

B.2.3 Additional Interactor Details

To expand our human interactor sessions, we also
ran additional interaction sessions on the Black
Lives Matter dataset (and Climate Change in Sec C.
For variety, we used a different source split in this
setting, that we will also release. For this reason,
these additional results are not comparable to the
ones in the main paper, and we refer to the new
events as 1'1, T'1-1, T2, etc. instead of E'1, F'1-
1, E2, etc. The data collection was the same as
before.

For these additional interactions, we used three
interactors of Asian descent, all fluent in the En-
glish language and all Computer Science PhD stu-
dents. The interactors were awarded research cred-
its for their work, as the hours that they spent work-
ing on the task were considered as part of their
research credit hours. They were explained of the
entire process before hand including what the inter-
actions would be used for, and agreed to perform

the interaction. Each interactor interacted on 10
graphs for 7'1-1, and spent less than one hour. A
majority of the time was spent becoming familiar
the interaction process, and once complete the in-
teractions went more rapidly. As a test, we had one
interactor do interactions on 10 more graphs, and
they were able to do 10 graphs in less than 30 min-
utes, showing how this process can be done rapidly.
Moreover, interactors spent an average of 3 mins.
per interaction sub-graph, once familiar with the
process. Across the three interactors, we had 65
unique edge connections made for 7'1-1. We had
31 edges that were repeated across the interactors,
showing a reasonable level of interactor agreement
given the the task.

Results for this additional interaction process is
in Tab. 7, and they are consistent with the results
for the Protocols in the main paper for the single
interactor. For Protocol 1, we see improvements
in the inductive setting on both the interaction and
non-interaction half of 7'1. Thus, interactions help
performance even when there is no additional train-
ing. Protocol 2 also leads to improvements and
shows how interactions (done on 7'1-1) allow us
to learn a better model for when no interactions
are done (dev. set performance was 43.45% Accu-
racy). This further shows how interactions can help
to build a stronger model, especially on emerging
news events. In addition, it is likely that more in-
teractions would lead to more improvements, and
we leave this for future work.

C Supplemental Material: Climate
Change

In this section, we expand upon the Climate Change
(CLM) dataset results discussed first in Sec 5. We
first discuss what search terms we used to collect
the data for Climate Change in Sec C.1. Then, in
Sec C.2, we explain the interaction process that
was used for Climate Change, and the agreement
statistics associated with it. Finally, in Sec C.3,
we present detailed results for Climate Change,
including simulated interactions. All results and
conclusions are comparable with the Black Lives
Matter results, showing that our approach general-
izes across events.

C.1 Data Collection

We used the same Data Collection process for Cli-
mate Change as Black Lives Matter, discussed in
Sec 5.1 and Sec A.1. This means we have the same
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Model El-1 | E1-1 | E1-2 | E1-2 | E2-1 | E2-1 | E2-2 | E2-2 | #

Acc F1 Acc F1 Acc F1 Acc F1 Edges
CLM No Interactions 40.16 | 32.77 | 39.65 | 31.86 | 34.88 | 3093 | - - -
CLM Sim. Interactions on 100% of Data | 46.72 | 41.59 | 39.65 | 31.86 | 44.18 | 41.57 | - - 12,602
in E1-1 + E2-1
CLM Human Interactions in E1-1 + E2-1 | 46.72 | 43.94 | 39.65 | 31.86 | 39.53 | 36.95 | - - 47
CLM No Interactions Train - - 4929 | 44.84 | 4477 | 42.35 | - - -
CLM Sim. Interactions on 100% of Data | - - 56.33 | 50.02 | 44.18 | 43.10 | - - 12,602
in E1-1
CLM Human Interactions in E1-1 - - 53.52 | 44.53 | 40.29 | 46.38 | - - 47
CLM No Interactions Train - - 49.29 | 44.84 | 4477 | 42.35 | 44.44 | 33.06 | -
CLM Sim. Interactions on 100% of Data | - - 56.33 | 50.02 | 41.86 | 36.42 | 34.04 | 24.93 | 12,602
inEl-1+E1-2
CLM Human Interactions in E1-1 + E1-2 | - - 53.52 | 44.53 | 53.48 | 43.07 | 46.80 | 38.73 | 47

Table 9: Climate Change Results: Key: E1 and E2 are the two inductive graphs. E1-1/E2-1 is the first half, and E1-2/E2-2 are
the second half. # Edges shows the number of edges added by interactions to E1-1. Protocol 1: The top third refers to Protocol
1, where interactions result in performance improvements in the difficult, inductive, no training setting. In particular, we see
improvements of 6.56% Acc. and 11.17% F1 on E21-1. We do not evaluate on £2-2, as no interactions are done on that split, so
performance does not change. Protocol 2: The middle third refers to Protocol 2, where interactions result in performance
improvements when we train on the interactions, and then apply the model to a new event with no interactions done. We do not
evaluate on F'1-1, as it is the training set), and £2-2, as no interactions are done and performance does not change. Protocol 3:
The last third refers to Protocol 3, where interactions result in performance improvements when we train on the interactions and
then do more interactions in the inductive setting (£2-1). We also see improvements in £2-2. We don’t evaluate on E'1-1 as it is
the training set.

Dataset Low Mixed High
El-1 30 43 49
El1-2 28 41 47
E2-1 11 15 17
E2-2 13 16 18

Table 10: Number of sources in our dataset for climate
change.

3 time periods for Climate Change as Black Lives
Matter (BLM). The only difference between BLM
and Climate Change are the search terms we used
to search Twitter to collect the data. For Climate
Change, we used the following search terms: frack-
ing, global warming, climate change, #savethep-
lanet, #savethetrees, #climatechangeisreal, #wa-
terpollution, and #climatestrike. Statistics for the
number of sources in each data split and their high,
mixed, and low factuality distribution are shown in
Table 10.

C.2 Human Interaction Process

For the human interactions done on Climate
Change, we used two male human interactors. Both
are Computer Science P.h.D. students in Natural
Language Processing of Asian descent. The inter-
actions were done on 8 sub-graphs for each time
period (E'1-1, £2-1, and the development set), for
a total of 24 sub-graphs interacted on. As with

Black Lives Matter, interactors spent an average of
about 3 minutes on each interaction sub-graph.

C.3 Climate Change Results

In-depth results for climate change are presented
in Table 9. In the main paper, due to lack of space,
we presented only baseline and human interaction
results, which we expand upon here also showing
simulated results. We can see that results improve
and are consistent with Black Lives Matter Results
for Protocols 1, 2, and 3. Protocol 1 (top third of the
table) shows significant Accuracy and F1 improve-
ments in the fully inductive setting, showing the
power of minimal human interactions in the right
places to improve the model without any training.
Protocol 2 (middle third of the table) shows how
interactions result in performance improvements
when we train on interactions and then apply them
in the fully inductive setting with no additional
interactions done. Finally, protocol 3 shows im-
provements when we train on the interactions and
then do more interactions in the inductive setting.

The results in this section, combined with the
earlier results on Black Lives Matter, show that our
approach can generalize across multiple datasets,
topics, and events.
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Model Embedding Change %
P1: Inductive Human 75.39
P2: Train Human 64.23
P3: Train + Inter. Human 51.41

Table 11: Change of node embeddings after interactions
compared to the no interaction model on E2-1. Interactions
affect model representations (lower # = more change).

D Discussion Continued

D.1 Model Representations

Now, in order to measure the impact of interactions
on our graph-based model, we evaluate how much
model node embeddings change after they are in-
corporated. To do this, we compute the difference
in the cosine similarity of the embedding of each
user node before and after interactions are done,
and average the results. The results in Tab. 11 show
that even a small amount of interactions can make
a significant change in model representations. This
shows why minimal amounts of interactions can
lead to a strong performance increase.

D.2 Discussion: Interaction Examples

In this section, we continue our discussion from
Sec 6.2 and provide more examples of nodes
that humans connected during the interaction pro-
cess. We first show the connections humans make
(Sec. D.2.1), and then discuss what trends we can
learn from these connections about our approach
(Sec. D.2.2). The connections reveal interesting in-
sights on how humans are connecting nodes based
on content preferences. Further, it shows that de-
spite all the content being focused on one event,
there are lots of different relevant perspectives iden-
tified by the model as realistic points of confusion.

D.2.1 Interactions Made

We first show examples of pairs of users/articles
that were connected by human interactors, describ-
ing what they were about. This analysis was done
by the authors based on the human interactions.

1. A user with hashtags about taking back the
United States by burning and destroying it,
and also White Supremacy related hashtags,
was connected to an article saying the cur-
rent President (Biden) was clueless and didn’t
know what they were doing.

2. Two users with random and unrelated hash-
tags in their bio and extremely similar tweet
language were connected as they were identi-
fied to likely both be bots.

3. A user that was a sports fan was connected to
a source that reported sports media, but in this
case had posted an article about how certain
races have been negatively impacted from the
coronavirus despite being athletic.

4. An article discussing how the Minnesota
Vikings Honored George Floyd’s family at
their season opener was connected to a source
that reported football sports articles that
seemed factual.

5. An atheist, socialist, songwriter, and musician
student Twitter user was connected to a Bernie
Sanders supporter that wanted student loan
forgiveness.

6. An influencer who was the mayor of a major
city was connected to a seemingly politically
aligned news reporter for the same city.

Next, we show snippets (to preserve anonymity)
of user bios and articles that were connected, to
show how simple the process is. We also provide
our explanations of why these users/articles were
connected. All of these examples are related to the
Climate Change event and the text shown is snip-
pets of the actual text that was shown to humans:

1. Bio 1: “what makes you optimistic...sharing
optimism of optimistic leaders” Tweet 1: “a
majority of young people are #optimistic that
it’s still possible to prevent the worst effects
of #climatechange”

Bio 2: “Christian...#Goodnews seeker, ther’s
plenty of it!”

Explanation: These users were connected by
interactors likely because the second user likes
good news, and the first user is an optimist
specifically sharing good news about climate
change!

2. Article 1: “...San Diego May Get Climate
Update After All..”

Article 2: “Fish prices spike as ...face total
depletion”

Explanation: These articles were connected
by interactors likely because they both are
showing the effects of climate change. It is
changing cities, and changing fish prices.

3. Tweet 1: “Climate Change...Biggest Hoax in
Human History”
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Tweet 2: “Trump is Hurting Climate Change
by letting China take the lead...”

Explanation: These users were not connected
(and so weren’t the corresponding articles),
and specifically marked different. This is
likely because the first user doesn’t believe
in climate change, while the second is dis-
appointed that President Trump isn’t taking
more action about it.

4. Article 1: “Climate Change...Biggest Hoax
in Human History”

Article 2: “California bans sale on new gas-
powered cars in 2035”

Explanation: These articles were not con-
nected, and specifically marked different.
This is likely because the first doesn’t believe
in climate change, while the second one does,
or at least enough to report on the ban of the
sale of gas cars to protect the environment.

D.2.2 Interactions Task Details and Trends

While humans can be subjective and make mis-
takes, we specifically designed our interaction task
to be simple to try and eliminate as much of this
as possible. Humans were asked to determine user
similarity based on how users are discussing certain
events, not in depth questions like if a text is factual
or not. Determining this high level of user similar-
ity is fairly simple, especially for educated humans,
whom we envision performing the interactions.

From these examples above, we can see that our
goal to reduce the subjectivity and increase sim-
plicity of our interaction task holds true, at least
in our experiments. This is why the entire inter-
action process can be be done rapidly (humans
spent 3 mins per interaction graph, leading to the
creation of 8 edges) and with high human inter-
actor agreement. From the examples shown, it is
clear that users/articles were connected based on
content match, which was fairly simple for our ed-
ucated human interactors to tell. However, this is
hard for models, particularly on emerging news
events, which is why our interaction setup leads to
large performance improvements, even without any
training. Also, we note that in most cases, the text
defining the user/article similarity was not very sub-
jective, and it is easy to determine the user/article
perspective.

It is also possible, but unlikely, that two
users/articles making similar statements don’t have

at least some similarity on an issue, and thus
shouldn’t be in the same information community.
However, on a large scale over a lot of interac-
tions, the text we show humans is likely to capture
user/article perspectives and thus content similarity
trends. Thus, even if there are a few rare cases
in which users are connected but their statements
aren’t representative of the community they belong
to, it isn’t likely to make a significant difference in
our learned representation and thus source factual-
ity detection performance.
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Article Placeholder Random Headline 2

Source paZder XuserZ p_user_3 sour ez\user1 mp_user_4

Figure 2: Example of an interaction graph that has been anonymized. The two red nodes are the pairs of users
that were identified in Sec 4.1, shown by the Twitter usernames. The two orange nodes are the article nodes, and
shown by their headlines without determiners. Blue nodes are other users that propagate the same articles (could be
celebrities - users with over 1000 followers, and purple nodes are sources)

Article Placeholder Random Headline 2

Headline Sample Headline

Article Text: Random sample article text

Article Entities: Random Entity

Article Published Date: 06 09 2020 00 00 00 SyFees sour¢e_2 ternp_user_1 mp_user_4

Figure 3: Example of an interaction graph where we can see metadata about an article, by clicking on the article
node. This would be filled in during real human interactions, to allow humans to analyze the article and the context
around it, but is currently anonymized.
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Article Placeholder Random Headline 2

Source paéer XUserQ p_user_3 sour ez\te\puser‘l mp_user_4

Username: temp_user_1
Following Count: 264
Followers: 333
Verified: False

Tweet Count: 13540

Predicted Label: high

Bio: placeholder bio

Relevant Tweet : Tweet About article
Other Tweets: Other tweets abouot user

Figure 4: Example of an interaction graph where we can see metadata about a user, by clicking on the user node.
This would be filled in (with data from Twitter) during real human interactions, to allow humans to analyze the user
and the context around it, but is currently anonymized. Source nodes with Twitter profiles would appear with the
same metadata.
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