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Abstract

Named entity recognition (NER) is a fundamen-
tal task in natural language processing that aims
to identify and classify named entities in text.
However, span-based methods for NER typi-
cally assign entity types to text spans, resulting
in an imbalanced sample space and neglecting
the connections between non-entity and entity
spans. To address these issues, we propose a
novel approach for NER, named the Bound-
ary Offset Prediction Network (BOPN), which
predicts the boundary offsets between candi-
date spans and their nearest entity spans. By
leveraging the guiding semantics of boundary
offsets, BOPN establishes connections between
non-entity and entity spans, enabling non-entity
spans to function as additional positive sam-
ples for entity detection. Furthermore, our
method integrates entity type and span represen-
tations to generate type-aware boundary offsets
instead of using entity types as detection tar-
gets. We conduct experiments on eight widely-
used NER datasets, and the results demonstrate
that our proposed BOPN outperforms previous
state-of-the-art methods.

1 Introduction

Named entity recognition (NER) is a fundamental
task in natural language processing (NLP) that in-
volves identifying and categorizing named entities
in text, such as people, locations and organizations.
It has drawn much attention from the community
due to its relevance in various NLP applications,
such as entity linking (Le and Titov, 2018; Hou
et al., 2020) and relation extraction (Miwa and
Bansal, 2016; Li et al., 2021b).

Various paradigms have been proposed for NER,
including the sequence labeling (Huang et al., 2015;
Ju et al., 2018), hypergraph-based (Lu and Roth,
2015; Katiyar and Cardie, 2018; Wang and Lu,
2018), sequence-to-sequence (Gillick et al., 2016;
Yan et al., 2021) and span-based methods (Sohrab
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Figure 1: A sentence from GENIA dataset (Ohta et al.,
2002), containing 8 words and 3 entities. The candidate
spans cover the upper triangular region with a total of
36 samples of each matrix. There are 2 and 1 positive
samples for "protein" and "cell type" entity types, re-
spectively.

and Miwa, 2018; Shen et al., 2021; Chen et al.,
2021). Among these approaches, the span-based
method has become the most popular due to its
simplicity and effectiveness. It is straightforward
that typically embeds all possible text spans and
predicts their entity types, making it suitable for
various NER subtasks (Li et al., 2021a, 2022).

Despite significant progress made by span-based
methods in NER, there remain two critical issues
that require attention. Firstly, these methods often
suffer from highly imbalanced sample spaces, as
exemplified in Figure 1. Such imbalance can neg-
atively impact the trainability and performance of
deep neural networks (Johnson and Khoshgoftaar,
2019). Although some methods (Shen et al., 2021;
Wan et al., 2022) mitigate this issue by restricting
the maximum span length, such an approach can
also constrain the model’s predictive power. Sec-
ondly, current span-based methods primarily focus
on learning the distinction between non-entities
and entities, disregarding their relationships. While
a model can identify whether "HMG box" is an
entity, it may fail to recognize the connection be-
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Figure 2: Text spans annotated with boundary offset.
"1S" or "1E" represents a span has 1 offset from its
nearest entity at the start or end boundary, and so on.

tween "HMG" and "HMG box." To enhance the
model’s ability to recognize entities, it is crucial to
explicitly capture both boundary differences and
connections between non-entities and entities.

In this paper, we intend to model text spans by
utilizing boundary offset information as supervi-
sion, rather than predict their probability of belong-
ing to entities. As shown in Figure 2, there could
be two advantages for deep models when boundary
offsets are learnable: i) The natural quantitative re-
lationships between offset values enable the model
to capture boundary differences and connections
simultaneously. ii) Non-entity spans can have spe-
cific semantics that guide the positioning of entity
spans, leading to an improved sample space with
fewer negative samples.

Based on this observation, we propose the
Boundary Offset Prediction Network (BOPN) for
NER. BOPN focuses on predicting boundary off-
sets between candidate spans and their nearest enti-
ties, providing a new perspective on modeling text
spans. Specifically, our method follows the pipeline
of first learning span representations and then clas-
sifying them for offset prediction. BERT (Devlin
et al., 2019) and BiLSTM (Lample et al., 2016)
are used to embed texts, followed by a Conditional
Layer (Liu et al., 2021) for building span represen-
tations. Meanwhile, we also treat entity types as
inputs rather than classification targets, which are
fused with span representations to generate type-
aware boundary offsets in parallel. Finally, we
incorporate multiple 3D convolution layers to cap-
ture the natural quantitative relationships between
the offset values.

We evaluate our method on eight widely-used
NER datasets, including five English NER datasets
and three Chinese NER datasets. The experimental
results demonstrate that our approach outperforms
the existing state-of-the-art methods. Furthermore,
a detailed examination reveals a significant im-

provement in recall scores when aggregating results
across offset labels, which is particularly beneficial
for recall-sensitive applications.

2 Problem Definition

Named Entity Recognition (NER) aims to iden-
tify of all entities within an input sentence X =
{xn}Nn=1, based on a pre-defined set of entity types
Y = {ym}Mm=1. Typically, an entity is specified by
token boundaries and a entity types.

Our proposed method focuses on predicting the
boundary offset between each candidate text span
and its nearest entity. Hence, we formulate each
text span as a quadruple: {xi, xj , fs, ym}, where
i and j denote the start and end boundary indices
of the span, fs represents the start or end boundary
offset from its nearest entity of type ym. Note that
an entity span is a special case with fs = 0.

Annotation Guidelines To facilitate understand-
ing, we present the essential boundary offset labels
as follow:

• Center Span: refers to an entity span with an
offset label of "0".

• *S or *E: denotes the annotation of the start
or end boundary offsets for non-entity spans.
"*" represents an offset value in the range of
[−S, · · · ,−1, 1, · · · , S], where S denotes the
maximum offset value.

• Out-of-Range: refers to the annotation of a
non-entity span with an absolute boundary
offset value from its nearest entity exceeding
the maximum offset value S.

The annotation procedure for boundary offsets
involves three steps. Initially, a 3-dimensional ma-
trix O ∈ RM×N×N is constructed according to
the input sentence X, where M denotes the num-
ber of entity types and N represents the length of
the sentence. Next, we annotate the center spans
with the offset label "0" based on the golden en-
tities present in X. Entities of different types are
assigned to their respective sub-matrices. Finally,
for non-entity spans, we compute the start and end
boundary offset values with respect to all center
spans. Their annotation is determined by the ab-
solute minimum offset value. If the absolute min-
imum offset value is less than S, we annotate the
corresponding *S or *E; otherwise, we label the
span as "Out-of-Range".
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Figure 3: An overview architecture of our method, which mainly consists of two components: a Span Encoder and a
Boundary Offset Predictor.

3 Methods

Figure 3 provides an overview of our method,
which encompasses two primary components: a
Span Encoder (Section 3.1) and a Boundary Offset
Predictor (Section 3.2). The Span Encoder is re-
sponsible for encoding entity types and sentences,
utilizing word representations to construct span
representations. Subsequently, the entity type and
span representations are inputted into the bound-
ary offset predictor, facilitating type-aware offset
classification.

3.1 Span Encoder

Drawing inspiration from the prompt-based meth-
ods (Qin and Eisner, 2021; Han et al., 2022), we
consider entity types as task-oriented inputs, indi-
cating the specific types of entities that the model
needs to predict within a given sentence.

To achieve this, we create a set of additional
type tokens, denoted as P = {pm}Mm=1, where pm
represents a learnable special token corresponding
to entity type ym. Next, we concatenate the soft
tokens P with the sentence X to form a single se-
quence, and employ BERT (Devlin et al., 2019)
to encode them simultaneously. The output of
BERT is then passed through a BiLSTM (Lample
et al., 2016) to generate final embedding features
H = {h1, h2, · · · , hM+N} ∈ R(M+N)×d, where
d is the hidden size. Finally, we split H to obtain
entity type representations HY ∈ RM×d and token
representations HX ∈ RN×d, respectively.

Span Representation Given the token represen-
tations HX = {h1, h2, · · · , hN}, the span repre-
sentation vij can be considered as a fusion of the
boundary representations (hi, hj). Following Li
et al. (2022), we adopt the Conditional Layer Nor-
malization (CLN) (Liu et al., 2021) mechanism to
build a high-quality span representation:

vij = CLN(hi, hj)

= γj ⊗ Norm(hi) + λj ,
(1)

where Norm(·) is the instance normalization func-
tion (Ulyanov et al., 2016), γj and λj are the condi-
tion parameters that are obtained by two differ-
ent feedforward networks: γj = FFN(hj) and
λj = FFN(hj).

While valid candidate spans are restricted to the
upper triangular region of the adjacent text span ma-
trix, a region embedding E = [eup, elow] ∈ R2×de

are adapted to distinguish the positions of text
spans. The final representation of each span is ob-
tained as: v̂ij = [vij , eup] if i ≤ j; v̂ij = [vij , elow]
if i > j.

3.2 Boundary Offset Predictor

As previously mentioned, we utilize the entity types
as inputs to guide the model in generating type-
aware boundary offsets, rather than categorizing
each text span into a particular entity type.

The biaffine classifier (Yu et al., 2020) is em-
ployed to fuse entity type representations and span
representations. Specifically, given an entity type
representation hm ∈ HY and span representation
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v̂ij ∈ V̂, a scoring vector cmij ∈ RL can be com-
puted as:

h
′
y = FFN(hy), v̂

′
ij = FFN(v̂ij), (2)

cmij = (h
′
m)TUv̂

′
ij +W (h

′
m ⊕ v

′
ij) + b, (3)

where L is the number of offset labels1; U ∈
RL×db×db , W ∈ RL×2db and b ∈ RL are learn-
able parameters, db is the biaffine hidden size.

3D Convolution Layer Furthermore, we utilize
multiple 3-dimensional convolution (3DConv) lay-
ers to capture the inherent quantitative relationships
between the boundary offsets of adjacent text spans.
As depicted in Figure 3(b), the 3D convolution ker-
nels traverse the complete score matrix C in three
directions, thereby aggregating offset predictions
for adjacent text spans across all entity types. The
computation in a single convolution layer can be
expressed as:

Q = σ(3DConv(C)), (4)

where Q ∈ RM×N×N×L, σ is the GELU activation
function (Hendrycks and Gimpel, 2016). We assign
different dilation rates to each convolution layer,
and then concatenate their outputs followed by a
linear to calculate final prediction scores:

Q̂ = Linear(Q1 ⊕ Q2 ⊕ Q3), (5)

To obtain the probability distribution of span
(i, j) over the offset labels, q̂mij ∈ Q̂ is fed into a
softmax layer:

ômij = softmax(q̂mij), (6)

3.3 Training and Inference
Learning Objective In our method, the learning
objective is to accurately assign a boundary offset
to each text span, which can be treated as a multi-
class classification problem and optimized using
cross-entropy loss:

L = − 1

MN2

M∑

m

N∑

i

N∑

j

oTmij log(ômij) (7)

where omij ∈ RD represents the ground-truth,
which is an one-hot vector encoded from the anno-
tated adjacent text span matrix O.

1Given a maximum offset S, L = 4S+2 when considering
both start and end boundary offset; L = 2S + 2 when only
considering start or end boundary offset.

Inference with Boundary offsets During the in-
ference process, decoding entities based on pre-
dicted boundary offsets is a straightforward pro-
cedure. The output of our method is a matrix of
size M × N × N , where each cell represents a
potential entity and contains information about its
boundaries and type. For example, a cell with coor-
dinates (m, i, j) and the prediction "-1E" indicates
an entity of type ym with a start boundary at xi
and an end boundary at xj+1. Conversely, if the
predicted value is "out-of-range," it implies that the
cell does not correspond to any entity.

However, blindly accepting all predicted bound-
ary offsets may result in sub-optimal outcomes as
it disregards the quantitative relationship between
boundary offsets. Therefore, we introduce two
heuristic rules to identify unreasonable predictions:
i) Predicted boundary offsets that do not align with
their nearest center span. ii) Predicted boundary
offsets that do not adhere to a sequential order with
neighboring spans.

4 Experimental Settings

4.1 Datasets

To evaluate our method, we conducted experiments
on five English NER datasets, including CoNLL
2003 (Sang and De Meulder, 2003), OntoNotes 52,
ACE 20043, ACE 20054 and GENIA (Ohta et al.,
2002); and three Chinese NER datasets, including
MSRA (Levow, 2006), Resume NER (Zhang and
Yang, 2018) and Weibo NER (Peng and Dredze,
2015). Note that ACE 2004, ACE 2005 and GENIA
are nested NER datasets, others are flat datasets.

For OntoNotes 5, we take the same train/dev/test
as used in CoNLL 2012 shared task (Pradhan et al.,
2012). For ACE 2004 and ACE 2005, we use the
same data split as Lu and Roth (2015). For GE-
NIA, we follow Katiyar and Cardie (2018) to split
train/test as 9:1. For other datasets, we employ the
same settings in previous works (Ma et al., 2020;
Yan et al., 2021; Zhu and Li, 2022).

4.2 Implementation Details

We use BioBERT-v1.1 (Lee et al., 2020) as the
contextual embedding in GENIA. For other En-
glish corpora, we BERT-large-cased (Devlin et al.,
2019) as the contextual embedding. For Chinese

2https://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2005T09
4https://catalog.ldc.upenn.edu/LDC2006T06
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Models CoNLL 2003 OntoNotes 5

P R F1 P R F1

Sequence Labeling Methods
BiLSTM-CRF (Miwa and Bansal, 2016) - - 91.03 86.04 86.53 86.28
BERT-Tagger (Devlin et al., 2019) - - 92.80 90.01 88.35 89.16

Span-based Methods
Biaffine (Yu et al., 2020)∗† 92.46 92.67 92.55 89.94 89.81 89.88
W2NER (Li et al., 2022) 92.71 93.44 93.07 90.03 90.97 90.50
Boundary Smooth (Zhu and Li, 2022)∗† 92.89 93.20 93.04 90.42 90.81 90.61
DiffusionNER (Shen et al., 2023a) 92.99 92.56 92.78 90.31 91.02 90.66

Others
Seq2Seq (Straková et al., 2019) - - 92.98 - - -
BartNER (Yan et al., 2021)† 92.57 93.53 93.05 89.65 90.87 90.26
PIQN (Shen et al., 2022) 93.29 92.46 92.87 91.43 90.73 90.96
PromptNER (Shen et al., 2023b) 92.48 92.33 92.41 - - -

BOPN (Ours) 93.22 93.15 93.19 90.93 91.40 91.16

Table 1: Results on English flat NER datasets CoNLL 2003 and OntoNotes 5. † means our re-implementation via
their code. ∗ denotes a fair comparison that their BERT encoder is consistent with our model.

Models MSRA Resume NER Weibo NER

P R F1 P R F1 P R F1

Sequence Labeling Methods
Lattice (Zhang and Yang, 2018) 93.57 92.79 93.18 94.81 94.11 94.46 53.04 62.25 58.79
Flat (Li et al., 2020) - - 96.09 - - 95.86 - - 68.55
SoftLexicon (Ma et al., 2020) 95.75 95.10 95.42 96.08 96.13 96.11 70.94 67.02 70.50
MECT (Wu et al., 2021) - - 96.24 - - 95.98 - - 70.43

Span-based Methods
W2NER (Li et al., 2022) 96.12 96.08 96.10 96.96 96.35 96.65 70.84 73.87 72.32
Boundary Smooth (Zhu and Li, 2022) 96.37 96.15 96.26 96.63 96.69 96.66 70.16 75.36 72.66
DiffusionNER (Shen et al., 2023a) 95.71 94.11 94.91 - - - - - -

BOPN (Ours) 96.44 96.34 96.39 96.73 96.83 96.78 71.79 73.90 72.92

Table 2: Results on Chinese flat NER datasets MSRA, Resume and Weibo.

corpora, we use the BERT pre-trained with whole
word masking (Cui et al., 2021).

The BiLSTM has one layer and 256 hidden size
with dropout rate of 0.5. The size of region em-
bedding de is 20. The maximum offset value S is
selected in {1, 2, 3}. For all datasets, we train our
models by using AdamW Optimizer (Loshchilov
and Hutter, 2017) with a linear warmup-decay
learning rate schedule. See Appendix A for more
details. Our source code can be obtained from
https://github.com/mhtang1995/BOPN.

4.3 Evaluation

We use strict evaluation metrics where a predicted
entity is considered correct only when both the
boundaries (after adding boundary offset) and type
are accurately matched. The precision, recall and
F1 scores are employed. We run our model for five
times and report averaged values.

5 Results and Analysis

5.1 Main Results

The performance of our proposed method and the
baselines on English flat NER datasets is presented
in Table 1. The experimental results demonstrate
that our approach surpasses the previous state-of-
the-art (SOTA) methods by +0.12% on the CoNLL
2003 dataset and +0.20% on the OntoNotes 5
dataset, achieving superior performance with F1

scores of 93.19% and 91.16%, respectively. For
Chinese flat NER datasets, we provide the results in
Table 2. Similarly, our proposed method achieves
SOTA performance in terms of F1 scores, surpass-
ing the previous best method by +0.13%, +0.12%,
and +0.26% in F1 scores on the MSRA, Resume
NER, and Weibo NER datasets, respectively.

The performance results on English nested NER
datasets are presented in Table 3. Remarkably,
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Models ACE 2004 ACE 2005 GENIA

P R F1 P R F1 P R F1

Sequence Labeling Methods
Layered (Ju et al., 2018) - - - 74.2 70.3 72.2 78.5 71.3 74.7
Pyramid (Wang et al., 2020) 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19

Span-based Methods
Biaffine (Yu et al., 2020) 87.3 86.0 86.7 85.2 85.6 85.4 78.2 78.2 78.2
Locate and Label (Shen et al., 2021) 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54
W2NER (Li et al., 2022) 87.33 87.71 87.52 85.03 88.62 86.79 83.10 79.76 81.39
Triaffine (Yuan et al., 2022) 87.13 87.68 87.60 86.70 86.94 86.82 80.42 82.06 81.23
Boundary Smooth (Zhu and Li, 2022) 88.43 87.53 87.98 86.25 88.07 87.15 - - -
DiffusionNER (Shen et al., 2023a) 88.11 88.66 88.39 86.15 87.72 86.93 82.10 80.97 81.53

Others
Seq2Seq (Straková et al., 2019) - - 84.33 - - 83.42 - - 78.20
BartNER (Yan et al., 2021) 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.30 78.93
PIQN (Shen et al., 2022) 88.48 87.81 88.14 86.27 88.60 87.42 83.24 80.35 81.77
PromptNER (Shen et al., 2023b) 87.58 88.76 88.16 86.07 88.38 87.21 - - -

BOPN (Ours) 89.13 89.40 89.26 89.56 91.23 90.39 82.14 82.16 82.14

Table 3: Results on English nested NER datasets ACE 2004, ACE 2004 and GENIA.

CoNLL
2003

Resume
NER

ACE
2004

BOPN (Ours) 93.19 96.78 89.26

- w/o Type Inp. 92.87 96.41 88.83
- w/o Region Emb. 92.71 96.22 88.71
- w/o BO 92.74 96.26 88.62
- w/o 3DConv 92.87 96.40 89.11

- MBO (S = 1) 93.11 96.75 89.14
- MBO (S = 2) 93.15 96.78 89.26
- MBO (S = 3) 93.19 96.71 89.22

- 3DConv (l = 1) 93.08 96.69 89.18
- 3DConv (l = 2) 93.19 96.75 89.26
- 3DConv (l = 3) 93.05 96.78 89.25

Table 4: Ablation Studies. MBO means the maximum
boundary offset value.

our proposed BOPN achieves substantial improve-
ments in performance on these datasets, with F1

scores increasing by +0.87%, +2.97%, and +0.37%
on ACE 2004, ACE 2005, and GENIA, respec-
tively. These results align with our expectations, as
the boundary features of nested entities are more
intricate compared to flat entities. We attribute this
improvement to two key factors: 1) Our method
predicts the boundary information of various en-
tity types in parallel, effectively avoiding nested
boundary conflicts between different types of enti-
ties. 2) By predicting boundary offsets, our method
expands the predictive range for each text span, al-
lowing for more granular and precise identification
of entity boundaries.

5.2 Ablation Studies

In order to assess the impact of each component
in our method, we conduct ablation studies on
the CoNLL 2003, ACE 2005, and Resume NER
datasets. The results of these studies are presented
in Table 4.

Maximum Boundary Offset We investigate the
impact of training the model with different maxi-
mum offset values S through our ablation studies.
The hyperparameter S determines the annotation
scope of non-entity spans with boundary offset.
Specifically, the extreme scenario of setting S to
0 corresponds to a condition "w/o BO" (without
Boundary Offset). The results indicate a significant
decline in performance when employing "w/o BO,"
confirming the usefulness of utilizing boundary off-
sets as supervision. However, we also observe that
the optimal S value varies across different datasets.
This could be attributed to the fact that a larger S
value provides more boundary knowledge but also
increases the label search space. Consequently, hy-
perparameter tuning for S becomes necessary to
achieve the best performance in practice.

In addition, we analyze the learning curves of
our model with different maximum offset values.
Figure 4 demonstrates that a larger S can accelerate
the training process of the model. We think the
reason may be that a larger S not only leads to an
increase of positive samples but also results in a
decrease of negative samples, thereby ultimately
enhancing the trainability of the model.
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Label P R F1 Support

-2S 81.51 82.02 81.76 5029
-1S 81.62 82.97 82.29 5292
1S 79.55 81.47 80.50 3281
2S 76.27 79.55 77.88 1438

-2E 78.64 77.19 77.90 1464
-1E 79.79 80.58 80.18 3254
1E 82.26 82.20 82.23 5393
2E 82.37 80.75 81.57 5113

0 81.92 81.95 81.93 5495

ALL 79.21 84.22 81.64 5495
- w/ rules 81.85 82.56 82.20 5495

Table 5: Performance of each boundary offset label on
GENIA, where the maximum offset value is 2. The
reported results is one out of five experiments.

3D Convolution Layer "w/o 3DConv" indicates
the 3D convolution layers are removed. As seen,
the results show a decline in performance across
all datasets, indicating the importance of 3D convo-
lution layers in capturing the interactions between
boundary offsets of adjacent text spans.

Type Inputs "w/o Type Inputs" refers to a setting
where the entity types encoded with the sentence
are replaced, in which the randomly initialized en-
tity type embeddings are fed into the biaffine clas-
sifier. The results obtained in this setting show a
slight decline in performance.

Region Embedding The results demonstrate a
slight drop in performance across all datasets with-
out region embeddings. This suggests that integrat-
ing sample distribution features can be a reasonable
approach for enhancing text span representations.

As the CLN layer and biaffine classifier serve as
fundamental components in our approach for span
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Figure 5: A comparison of F1-scores on entities of
different lengths in GENIA dataset. Entity supports are
in the parentheses.

representation and classification, they cannot be
evaluated independently. Nonetheless, our ablation
studies demonstrate the effectiveness of learning
boundary offset information and the usefulness of
each composition in our model.

5.3 Detailed Analysis

Performance on Different Offset Labels We in-
vestigate the performance of each boundary offset
label, and the results are presented in Table 5. No-
tably, the offset label "0" has complete entity sup-
port and achieves an F1 score of 82.04%. Further-
more, we observed a positive correlation between
the quantity of entity support and the performance
of boundary offset labels.

When a text span is not predicted as "out-of-
range", its assigned label can be utilized to deter-
mine the position of its nearest entity. By aggre-
gating all predictions of offset labels, we observe
a sharp decrease in precision score, along with a
significant increase in recall score, when compared
to only considering the center span (with an offset
label of "0"). This finding suggests that different
offset labels provide distinct information that as-
sists the model in recognizing additional entities.
Nevertheless, this approach can introduce noisy
predictions due to the model’s inadequate perfor-
mance on certain labels. Despite this limitation, it
may have practical applicability in recall-sensitive
applications.

As discussed in Section 3.3, we devise two
heuristic rules to remove improbable predictions.
Our findings reveal that this approach enhances the
precision score, with only a minor reduction in the
recall score, leading to an overall improvement in
the F1 score.
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Figure 6: Effect of varying percentage of training sam-
ples on GENIA. We train all models for 50 epochs and
report their best performance.

Performance on Entities with Varying Lengths
We explore the model performance on entities of
different lengths in GENIA. As shown in Figure 5,
we compare the F1 scores of models which are
training with different S. The model achieves
higher F1 scores across all columns when S = 2,
with a more pronounced performance improvement
for longer entities. The results highlight the use-
fulness of learning boundary offsets between non-
entity and entity spans, which helps the model learn
boundary features more effectively.

Size of Training Data As the boundary offset
labels contain more informative knowledge, we
hypothesize that our proposed BOPN would per-
form better with limited training data. As shown
in Figure 6, our model achieves impressive results,
exhibiting only a 5.46% decrease in performance
when trained with a mere 12.5% of the available
training data. In contrast, when boundary informa-
tion is not utilized during training, the model’s per-
formance declines rapidly as the amount of training
data decreases, thus creating significant obstacles
to effective training.

6 Related Work

In recent years, various paradigms for named en-
tity recognition (NER) have been proposed, among
which span-based methods have become one of
the most mainstream approaches, treating NER as
a text span classification problem. With the de-
velopment of pre-trained language models, some
works (Sohrab and Miwa, 2018; Luan et al., 2019;
Wadden et al., 2019) obtain span representations
by connecting boundary representations or aggre-
gating token representations and feeding them into

a linear classifier for type prediction. Alternatively,
Yu et al. (2020) utilizes a biaffine classifier to fuse
start and end boundary representations directly for
span classification. To further enhance span repre-
sentation, several other methods(Wan et al., 2022;
Yuan et al., 2022) propose fusing representations
of token, boundary, and related entity spans.

Meanwhile, some methods try to improve span-
based methods by adding boundary supervision.
Specifically, Zheng et al. (2019) and Tan et al.
(2020) additionally detect entity boundaries with
multi-task learning, while Shen et al. (2021) per-
form boundary regression after span prediction.
Li et al. (2022) design two word-word relations
for span classification. Compared with previous
methods, our proposed method utilizes continuous
boundary offset values to model text spans, which
can capture both the boundary differences and con-
nections between non-entity and entity spans.

In addition to span-based methods, there are
three widely-used NER methods. The traditional
sequence labeling methods (Huang et al., 2015;
Lample et al., 2016) assign each token a tag with
a pre-designed tagging scheme (e.g., BIO). To ad-
dress nested entities, some works (Ju et al., 2018;
Wang et al., 2020; Rojas et al., 2022) add struggles
or design special tagging schemes. Hypergraph-
based methods (Lu and Roth, 2015; Katiyar and
Cardie, 2018; Wang and Lu, 2018) represent the
input sentence as a hypergraph for detecting nested
entities, which must be carefully designed to avoid
spurious structures. Sequence-to-sequence meth-
ods reformulate NER as a sequence generation
problem. For example, Gillick et al. (2016) first ap-
ply the Seq2Seq model for NER, inputting the sen-
tence and outputting start positions, entity lengths,
and types. Straková et al. (2019) use the Seq2Seq
model and enhanced BILOU scheme to address
nested NER. Yan et al. (2021) treats NER as an en-
tity span sequence generation problem with pointer
network based on BART (Lewis et al., 2019).

7 Conclusion

In this paper, we introduce a novel approach for
named entity recognition (NER) called the Bound-
ary Offset Prediction Network (BOPN). BOPN pre-
dicts the boundary offsets between candidate spans
and their nearest entities, leveraging entity types
as inputs. By incorporating entity types, BOPN
enables parallel prediction of type-aware boundary
offsets, enhancing the model’s ability to capture
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fine-grained entity boundaries. To capture the in-
teractions between boundary offsets, we employ
multiple 3D convolution layers, which refine the
offset predictions and capture the inherent quanti-
tative relationships between adjacent text spans.

The experimental results demonstrate that our
proposed method achieves state-of-the-art perfor-
mance on eight widely-used datasets, including
five English NER datasets and three Chinese NER
datasets. Moreover, further analysis reveals a sig-
nificant improvement in recall scores by utilizing
boundary offset as supervision, showcasing the util-
ity of our approach for recall-sensitive applications
in NER.

Limitations

The proposed BOPN approach has certain limita-
tions that should be acknowledged. Firstly, while
BOPN treats boundary offsets as classification tar-
gets, it does not explicitly model the order rela-
tionship between offset values. Although the 3D
convolution layers are employed to implicitly cap-
ture interactions between boundary offsets, they do
not provide a strong constraint on the ordering of
offset labels.

Additionally, the method uses boundary offsets
to convert some non-entity spans into positive sam-
ples, which leads to higher recall scores but poten-
tially lower precision scores. To optimize predic-
tion results, heuristic rules are applied to filter out
unreasonable samples. However, these rules are
based on observations and may not be comprehen-
sive enough to handle all cases effectively.

Therefore, there is still a need to explore more
effective ways to integrate and optimize the offset
predictions in order to address these limitations
and enhance the overall performance of the BOPN
approach.
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A Appendix

A.1 Datasets
We evaluate our method on eight datasets, in-
cluding CoNLL 2003, OntoNotes 5, ACE 2004,
ACE 2005, and GENIA for English NER datasets;
MSRA, Resume NER and Weibo NER for Chi-
nese NER datasets. Table 6 presents the detailed
statistics of datasets.

A.2 Implementation Details
We use BioBERT-v1.1 (Lee et al., 2020) as the con-
textual embedding in GENIA. For other English
corpora, we BERT-large-cased (Devlin et al., 2019)
as the contextual embedding. For Chinese corpora,
we use the BERT pre-trained with whole word
masking (Cui et al., 2021). Our model is imple-
mented with PyTorch and trained with a NVIDIA
RTX3090 GPU. We use a grid search to find the
best hyperparameters which are tuned on the devel-
opment set. The range of hyperparameters we used
for eight datasets are listed in Table 7.

A.3 Baselines
We compare BOPN with the following baselines:

• BiLSTM-CRF (Miwa and Bansal, 2016) is a
model for sequence labeling tasks that com-
bines BiLSTM with CRF layers.

• BERT-Tagger (Devlin et al., 2019) that uti-
lizes the pre-trained language model BERT
as a feature extractor and incorporates a tag
classifier for fine-tuning.

• Lattice (Zhang and Yang, 2018) proposed a
lattice-structured LSTM model for Chinese
NER.

• Layered (Ju et al., 2018) dynamically stacks
flat NER layers to solve nested NER task.

• Flat (Li et al., 2020) proposes a flat-lattice
transformer for Chinese NER, which converts
the lattice structure into a flat structure con-
sisting of spans.

• Pyramid (Wang et al., 2020) designs pyra-
mid layer and inverse pyramid layer to decode
nested entities.

• SoftLexicon (Ma et al., 2020) proposes a Chi-
nese NER method in which lexicon informa-
tion is introduced by simply adjusting the char-
acter representation layer.

• MECT (Wu et al., 2021) uses multi-metadata
embedding in a two-stream transformer to in-
tegrate Chinese character features with the
radical-level embedding.

• Biaffine (Yu et al., 2020) classifies text spans
by a biaffine classifier between boundary rep-
resentations.

• Locate and Label (Shen et al., 2021) pro-
posed a two-stage identifier of locating entities
with boundary regression first and classifying
them later.

• W2NER (Li et al., 2022) models NER as
word-word relation classification, including
the next-neighboring-word and the tail-head-
word relations.

• Triaffine (Yuan et al., 2022) proposed a tri-
affine mechanism to fuse information of inside
tokens, boundaries, labels for NER.

• Boundary Smooth (Zhu and Li, 2022) pro-
posed boundary smoothing as a regularization
technique for span-based neural NER models.

• DiffusionNER (Shen et al., 2023a) formu-
lates NER as a boundary-denoising diffusion
process, which samples noisy spans from a
Gaussian distribution.

• Seq2Seq (Straková et al., 2019) converts the
labels of nested entities into a sequence and
then uses a seq2seq model to decode entities.

• BartNER (Yan et al., 2021) formulates NER
as an entity span sequence generation prob-
lem based on the pre-training Seq2Seq model
BART (Lewis et al., 2019).

• PIQN (Shen et al., 2022) sets up global and
learnable instance queries to extract entities
from a sentence in a parallel manner.

• PromptNER (Shen et al., 2023b) unifies en-
tity locating and entity typing in prompt learn-
ing for NER, which predicts all entities by
filling position slots and type slots.
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CoNLL 2003 OntoNotes 5 ACE 2004 ACE 2005 GENIA MSRA Resume Weibo

Types 4 18 7 7 5 3 8 4
#Train.S 17291 59924 6200 7194 16692 46471 3819 1350
#Dev.S - 8528 745 969 - - 463 270
#Test.S 3453 8262 812 1047 1854 4376 477 270
Avg.Len.S 14.38 18.11 22.61 18.97 25.41 45.54 31.17 54.57
#Train.E 29441 128738 22204 9389 50509 74703 13438 1855
#Dev.E - 20354 2514 1112 - - 1497 379
#Test.E 5648 12586 3035 1118 5506 6181 1630 409
Avg.Len.E 1.45 1.83 2.50 2.28 1.97 3.24 5.88 2.60

Table 6: Dataset Statistics. “#” denotes the amount. “S.” and “E.” denote sentence and entity mentions, respectively.

Parameter Value

Epoch [50, 80]
Batch size [8, 16]
Learning rate (BERT) [5e-6, 3e-5]
Learning rate (Other) 1e-3
LSTM hidden size d 256
LSTM dropout 0.5
Region embedding size de 20
Biaffine hidden size db 150
Biaffine dropout 0.2
Maximum offset value S [1, 3]
Adam epsilon 1e-8
Warm factor 0.1

Table 7: Hyper-parameter settings.
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