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Abstract

Prevalent supervised learning methods in natu-
ral language processing (NLP) are notoriously
data-hungry, which demand large amounts of
high-quality annotated data. In practice, acquir-
ing such data is a costly endeavor. Recently, the
superior performance of large language mod-
els (LLMs) has propelled the development of
dataset generation, where the training data are
solely synthesized from LLMs. However, such
an approach usually suffers from low-quality is-
sues and requires orders of magnitude more la-
beled data to achieve satisfactory performance.
To fully exploit the potential of LLMs and make
use of massive unlabeled data, we propose LL-
MAAA, which takes LLMs as annotators and
puts them into an active learning loop to deter-
mine what to annotate efficiently. To learn ro-
bustly with pseudo labels, we optimize both the
annotation and training processes: (1) we draw
k-NN samples from a small demonstration pool
as in-context examples, and (2) we adopt the
automatic reweighting technique to assign train-
ing samples with learnable weights. Compared
with previous approaches, LLMAAA features
both efficiency and reliability. We conduct
experiments and analysis on two classic NLP
tasks, named entity recognition and relation ex-
traction. With LLMAAA, task-specific models
trained from LLM-generated labels can outper-
form their teacher LLMs within only hundreds
of annotated examples, which is much more
cost-effective than other baselines1.

1 Introduction

Large language models (LLMs) have exhibited re-
markable few-shot performance in a wide range
of tasks, with only a few demonstrations and well-
designed prompts (Brown et al., 2020; Ding et al.,
2022; Liu et al., 2023). However, with rapid ad-

∗This work was done during an internship at Langboat
Technology.

1Our code and data are available at https://github.
com/ridiculouz/LLMAAA.
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(a) Human annotation as supervision.
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(b) Text generation as supervision.
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(c) LLMAAA: Active LLM annotation as supervision.

Figure 1: Comparing LLMAAA with other frameworks.
We actively acquire annotations from LLM for effi-
ciency, requiring little human effort.

vancements comes vast potential risks in adopt-
ing LLMs for widespread downstream produc-
tion applications. One of the main concerns is
about data privacy and security. Under the preva-
lent “Language-Model-as-a-Service” (LMaaS, Sun
et al., 2022) setting, users are required to feed their
own data, potentially including sensitive or private
information, to third-party LLM vendors to access
the service, which increases the risk of data leak-
age (Lyu et al., 2020; Yu et al., 2022; Li et al., 2023).
Besides, LLMs usually consume abundant tokens
by continuous requests to APIs, where the marginal
cost and latency become substantial in large-scale
or real-time applications, hindering LLMs’ practi-
cal deployment in cost-sensitive scenarios (Goyal
et al., 2020; Cao et al., 2023).

On the other hand, training task-specific mod-
els (TAMs) for NLP tasks necessitates extensive
amounts of labeled data. Due to the superior gener-
ative capacity of LLMs, some researchers attempt
to synthesize training data with text generation
(Meng et al., 2022; Ye et al., 2022), as depicted
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in Figure 1. However, the generated text usually
struggles with low-quality issues and may exhibit
domain shifts with test data (Gao et al., 2023). To
exploit the abundant unlabeled corpus, an alterna-
tive is to employ LLMs as annotators, which gener-
ate labels in a zero-shot or few-shot manner. While
this approach seems promising, it is important to
acknowledge that LLM-generated labels inevitably
contain noise, especially when applied to challeng-
ing tasks and domain-specific data (Agrawal et al.,
2022; Kazemi et al., 2023). Besides, larger models
come with heavier expenses, and it is also crucial
to reduce the annotation cost when the budget is
restricted.

To enhance the reliability (i.e. accuracy) of
TAMs’ performance as well as to ensure the data
efficiency in annotation cost, we propose LL-
MAAA, an innovative framework that integrates
active learning into the LLM annotation process,
i.e., making LLMs as Active Annotators. By ex-
ploring different active acquisition strategies, LL-
MAAA enables the LLM to annotate more informa-
tive instances that benefit model performance more.
To train TAMs reliably, we optimize both the an-
notation and training processes within LLMAAA
framework. Firstly, we employ prompt engineer-
ing techniques to enhance LLMs’ performance by
(1) selecting k-NN samples from a demonstration
pool as in-context examples, and (2) building fine-
level descriptions aligned with natural language for
unnatural labels (e.g., category labels in the RE
task). The valuable contextual information helps
improve the quality of LLM annotations substan-
tially. During training, we adopt the automatic
reweighting technique (Ren et al., 2018) to assign
learnable weights to the silver2 training samples.
This strategy allows the model to prioritize more
informative and representative samples while si-
multaneously reducing the impact of noisy annota-
tions.

We evaluate LLMAAA on two practical NLP
tasks: named entity recognition (NER) and relation
extraction (RE). Experiments show that: (1) with
small-scale gold data (~100 examples) serving for
demonstration and validation, the trained TAMs
can outperform their teacher LLMs within hun-
dreds of silver samples via LLMAAA; (2) our
approach is significantly more data efficient com-
pared to prevalent data generation methods, which

2We refer gold data to ground-truth/human-labeled sam-
ples, and silver data to LLM-labeled samples.

usually require large-scale synthetic training data
(size varying from 10k to 200k, Ye et al., 2022; Gao
et al., 2023). These results confirm the potential
of LLMAAA as a practical and cost-efficient solu-
tion to make LLMs as good annotators. The TAMs
created through our framework offer advantages in
terms of task-specific performance, data privacy,
and inference costs, which release the capacity of
LLMs for real-world productivity.

We summarize our contributions as follows:

• We propose LLMAAA, a framework to employ
LLMs as annotators, featuring both efficiency
and reliability.

• LLMAAA is capable to train TAMs that outper-
form teacher LLMs within hundreds of annotated
samples, on classic NLP tasks like NER and RE.

• LLMAAA sheds light on the practical substi-
tution of LLMs, with a cost-effective, privacy-
ensured, yet well-performing solution.

2 Related Work

LLM and In-Context Learning Large language
models (LLMs), usually pretrained on large-scale
corpus to capture rich linguistic patterns and gener-
ate coherent text (Brown et al., 2020; Raffel et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023; Tou-
vron et al., 2023), have shown remarkable perfor-
mance in a wide range of NLP tasks (Min et al.,
2021; Zhao et al., 2023). With the proposal of
in-context learning (Brown et al., 2020), prompt
engineering has been extensively explored to steer
LLMs’ behavior for desired outcomes. These tech-
niques design specific prompts or instructions to
guide models’ outputs (Ding et al., 2022; Liu et al.,
2023), either in rule-based (Shin et al., 2020) or
learning-based (Lester et al., 2021) manners. Re-
cent trend focuses on the strong reasoning capabili-
ties of LLMs and enhances LLMs’ performance on
complex task with chain-of-thought (CoT) prompt-
ing (Wei et al., 2023a). In general, prompt engineer-
ing improves the controllability and performance
of LLMs in few-shot and zero-shot settings (Zhong
et al., 2021), and enables LLMs to solve spe-
cific tasks, e.g. information extraction (Wei et al.,
2023b; Wang et al., 2023).

Dataset Synthesis Supervised learning methods
in NLP are often limited by high-quality anno-
tated data. To address the bottleneck, researchers
have explored techniques to synthesize training
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Input:     Soccer - late goals give Japan win over Syria.
Output:  [{"span": "Japan", "type": "LOC"},
               {"span": "Syria", "type": "LOC"}]

Completion
You are a highly intelligent and accurate news domain 
named-entity recognition (NER) system. You take passage 
as input and your task is to recognize and extract specific 
types of named entities in that given passage and classify 
into a set of following predefined entity types:
[PER, LOC, ORG, MISC]
Your output format must be in json form of:
[{"span": span, "type": type}, ...]

Input:     …
Output:  …

Input:     Soccer - late goals give Japan win over Syria.
Output:

Prompt Engineering

LLM Annotator

Task-Specific Model

Large 
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labeled data
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Figure 2: LLMAAA puts the LLM annotator in an active learning iteration, which mainly consists of three novel
components: (1) an LLM annotator optimized with prompt engineering that generates pseudo labels, (2) an active
acquisition mechanism for efficient data selection, and (3) an automatic reweighting technique to ensure robust
learning with noisy labels. The annotation and training stages run iteratively and gradually produce labeled data for
task-specific models.

data with LLMs, either by annotation or by gen-
eration. Following the first line of research, Feng
et al. (2021); Chen et al. (2023) employ LLMs
as unsupervised annotators to generate dialogue
datasets. Recently, AnnoLLM (He et al., 2023)
makes LLMs’ performance on par with crowd-
source annotators by chain-of-thought prompting
and self-generated explanations. As a contempo-
rary work, Bansal and Sharma (2023) use LLMs for
annotation in the domain transfer setting. Under
the formulation of active learning, they propose
a new metric, conditional informativeness, that
works well with noisy labels. Among generation-
based methods, Wang et al. (2021) first use LLM
with few-shot prompts to generate training data.
Schick and Schütze (2021) attempt to generate la-
beled text counterparts and text pairs for seman-
tic textual similarity tasks. ZEROGEN (Ye et al.,
2022) and SUNGEN (Gao et al., 2023) further ex-
tend this practice to zero-shot learning by train-
ing small models with zero-shot LLM-generated
datasets. However, these approaches still suffer the
low-quality and domain-shift issues of the synthetic
data, and none of them consider the cost efficiency
of data generation via LLMs.

Labor Efficiency and Active Learning Active
learning is a technique proposed to minimize the
annotation cost during the labeling process (Set-
tles, 2009; Ren et al., 2021). A popular setting for
active learning is the pool-based paradigm, which
aims to select the most beneficial samples from
an unlabeled data pool based on criteria including
uncertainty (Lewis and Gale, 1994; Houlsby et al.,
2011; Gal et al., 2017), diversity (Huang et al.,
2010; Sener and Savarese, 2018), and hybrid ob-

jectives (Du et al., 2017; Yang et al., 2017; Ash
et al., 2020; Margatina et al., 2021). The selected
samples are annotated by human annotators and
then added into the labeled dataset iteratively.

3 LLM as Active Annotator

To exploit LLMs’ superior few-shot performance
and leverage abundant unlabeled data, we attempt
to take LLM as annotator and train task-specific
models for inference. An ideal process should be
both efficient and reliable: we want to learn TAMs
robustly with minimal LLM-generated labels.

Concretely, our solution is to make LLMs as
Active Annotator. As shown in Figure 2, LL-
MAAA comprises three key components: (1) an
LLM annotator that generates pseudo labels of
given data, (2) an active acquisition mechanism
for efficient data selection, and (3) an automatic
reweighting technique to ensure robust learning
with noisy labels. LLMAAA iterates the three
stages to gradually produce stronger TAMs.

3.1 Optimizing LLM as Better Annotator
In-context learning (i.e. PROMPTING) enables
LLM to conduct few-shot inference without fine-
tuning. Given a manually-designed prompt T (·, ·),
a demonstration set S = {xi, yi}ki=1 and the query
example xq, PROMPTING first builds a sentence
T (S,xq), conditioned on which LLM then gener-
ates a text sequence

yq = argmax
y

PLM (y|T (S,xq)).

Finally, yq is mapped to the label space Y .
Despite the decent abilities, previous studies

show that the design of task-specific prompts has
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a large impact on performance, varying between
near state-of-the-art and random guess (Gao et al.,
2021; Lu et al., 2022b). Finding the best prompts
for given tasks and given data points is intractable.
However, there are several principles turn out to be
effective, compared with plain instruction.

k-NN Example Retrieval To select good in-
context examples, Liu et al. (2022) propose a k-NN
retrieval strategy, which first embeds the demon-
stration pool Ddemo and query sample to vector
representations, and then retrieves the nearest k
neighbors of the query to form its exemplars. The
rationale behind this is that semantically similar
examples may help LLM answer the query better.
Following their practice, we use Sentence-BERT
(Reimers and Gurevych, 2019, 2020) to build the
representations.

Label Verbalizer In classification tasks, the sur-
face forms of labels may induce difficulties and
ambiguities. Taking relation classification for in-
stance, the label “per:parents” can indicate ei-
ther “subject is the parent of object” or “object
is the parent of subject”, depending on its defini-
tion. To address this problem, we utilize a label
verbalizer to transform the surface forms to natural
language descriptions with pre-defined templates
(Sainz et al., 2021; Lu et al., 2022a), serving as
fine-level guidance. The semantic templates we
use are shown in Table 7.

3.2 Active Data Acquisition

Active learning (AL) seeks to reduce labeling ef-
forts by strategically choosing which examples to
annotate. We consider the standard pool-based
setting, assuming that a large pool of unlabeled
data Dpool is available. AL loop starts with a seed
labeled set Dlabeled. At each iteration, we train
a model M on Dlabeled and then use acquisition
function f(·,M) to acquire a batch B consisting of
b examples from Dpool. We then query the LLM
annotator to label B. The labeled batch is then re-
moved from the pool Dpool and added to labeled
set Dlabeled, and will serve as training data for the
next iteration. The process is repeated for t times.

Active acquisition strategies generally maxi-
mize either uncertainty or diversity. On one hand,
uncertainty-based methods leverage model predic-
tions to select hard examples. On the other hand,
diversity-based methods exploit the heterogeneity
of sampled data. We will cover some common

strategies for thorough comparisons, and illustrate
with classification task for simplicity3.

Random We consider random selection as base-
line, which samples uniformly from Dpool. Typi-
cally pool data and test data share the same distri-
bution, thus the sampled batch is expected to be
i.i.d. with test data.

Maximum Entropy Entropy is one of the most
widely used estimations of uncertainty (Settles,
2009). Data for which the model M has the highest
entropy are sampled for annotation according to

argmax
x∈Dpool

−
∑

y∈Y
PM (y|x) logPM (y|x).

Least Confidence Culotta and McCallum (2005)
propose to sort examples with the probability as-
signed by M to predicted class ŷ, which samples

argmax
x∈Dpool

(1− PM (ŷ|x)) .

K-Means Diversity sampling intends to select
batches of data that is heterogeneous in the feature
space. Following Yuan et al. (2020), we apply k-
means clustering to the l2-normalized embeddings
of M4, and sample the nearest neighbors of the k
cluster centers.

3.3 Robust Learning with Noisy Labels

LLM annotators inevitably produce noisy labels,
especially with harder tasks and domain-specific
data. To stay robust against training label bias, we
adopt the automatic reweighting technique (Ren
et al., 2018) to assign different weights to training
examples adaptively.

We assume that a small-scale validation set Dval

with clean labels (e.g. human annotations) is avail-
able throughout learning, with |Dval| ≪ |Dpool|.
Concisely, automatic reweighting learns sample
weights w by a meta-learning objective that min-
imizes validation loss w.r.t. w, and uses online
approximation to eliminate the nested loop of opti-
mization. The training process of TAM is shown
in Algorithm 1.

4 Tasks

We instantiate LLMAAA with two tasks: named
entity recognition (NER) and relation extraction

3Adaptation to other settings (e.g. sequence tagging) will
be introduced in § 4.

4We use BERT family as M ’s encoder, and the embeddings
refer to BERT output.
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Algorithm 1: Automatic Reweighting

Input: Noisy data Dtrain, clean data Dval,
batch size n, m, initial parameter θ0,
step S

Output: Trained parameter θS
for s = 0, . . . , S − 1 do
Btrain ← SampleBatch(Dtrain, n)
Bval ← SampleBatch(Dval,m)
{ŷitrain}ni=1 ← Forward(Btrain, θs)
// build computation graph with

automatic differtiation
ϵ← 0; ltrain ←

∑n
i=1 ϵiL(yitrain, ŷitrain)

∇θs ← Backward(ltrain, θs)
θ̂s ← θs − α∇θs
{ŷival}mi=1 ← Forward(Bval, θ̂s)
lval ← 1

m

∑m
i=1 L(yival, ŷival)

∇ϵ← Backward(lval, ϵ)
// truncate weights to zero, and

normalize to one
w̃ ← max(−∇ϵ, 0);
w ← w̃∑

j w̃+δ(
∑

j w̃)

l̂train ←
∑n

i=1wiL(yitrain, ŷitrain)
∇θs ← Backward(l̂train, θs)
θs+1 ← OptimizerStep(θs,∇θs)

(RE). We opt for two simple yet effective models
as TAMs, and leave other choices for future study.

4.1 Named Entity Recognition
Formulation NER aims to extract entities {ei}
from text x, where ei can be expressed as a con-
tinuous span of sequences with predefined type.
We consider the flat scenario (i.e. no overlapping
entities), in which NER can be reformulated as a
sequence tagging problem with BIO label.

To smoothly adapt uncertainty-based active func-
tions from classification task to sequence tagging,
we provide three pooling options: average, sum,
and max. In practice, we adopt average and sum
operations for better empirical performance.

Model Following Devlin et al. (2019), we lever-
age BERT to convert tokens into vectorized fea-
tures, and use a linear classifier with activation to
predict the {class}-BIO label for each token.

4.2 Relation Extraction
Formulation Given subject entity esubj and ob-
ject entity eobj in a sentence, RE classifies their
relation into a predefined setR∪ {NA}.

Model We use the same model architecture as
Baldini Soares et al. (2019), which first encloses
entity spans with special tokens [E] and [\E], then
encodes the sentence with BERT. The concatenated
embedding of subject and object is fed into a linear
classifier with activation for final prediction.

5 Experiments and Analysis

5.1 Setup
Dataset We experiment with three different NLP
datasets: Chinese OntoNotes 4.0 (Weischedel et al.,
2011) and English CoNLL03 (Tjong Kim Sang
and De Meulder, 2003) for NER, and Re-TACRED
(Stoica et al., 2021) for RE. For Re-TACRED, we
select a subset describing personal relationships
and balance the NA relation instances to the orig-
inal portion. Details of dataset statistics are de-
scribed in Appendix A. We report the precision,
recall, and micro F1 for both tasks.

Baselines We compare LLMAAA with the fol-
lowing baselines: (1) PROMPTING. The prompt-
based direct inference on test data, using the same
engineering techniques as LLMAAA’s teacher
LLMs. (2) SUPERVISED. The TAMs are trained
on clean-labeled data Dval used in LLMAAA’s
demonstration/validation. (3) ZEROGEN (Ye et al.,
2022). Zero-shot data synthesis method via text
generation. (4) FEWGEN. A data synthesis method
that enhances ZEROGEN with in-context examples
uniformly sampled from the demonstration pool.

Implementation We use ChatGPT5 as LLM an-
notator for main experiments, and adopt BERT
(Devlin et al., 2019; Cui et al., 2021) as TAM’s en-
coder. We also explore with other LLM annotators,
GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI,
2023), in § 6. We randomly sample 100 exam-
ples from the original validation sets as gold data,
reusing the same set for demonstration Ddemo and
validation Dval. We use the original training sets
as Dpool and randomly initialize seed labeled set
Dlabeled with a size of 50 and acquire 50 samples
per batch for 9 iterations, which generates 500 sil-
ver annotated samples in total. We generate 500
and 5,000 samples via ZEROGEN and FEWGEN for
comparison. TAMs under all settings are trained
three times with different random seeds, and we
report the mean and standard deviation in the re-
sults. The training process and hyperparameters
are detailed in Appendix B.

5https://openai.com/blog/chatgpt
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Method #Data Chinese OntoNotes 4.0 English CoNLL03 Re-TacRED-subset Avg.
F1P R F1 P R F1 P R F1

PROMPTING 100 / - 67.72 74.02 70.73 79.18 83.59 81.33 64.21 86.68 73.77 75.28
SUPERVISED 100 / - 70.541.33 75.661.14 73.000.84 77.160.31 78.520.52 77.940.10 62.362.35 91.881.90 74.282.05 75.07

ZEROGEN
- / 500 62.101.70 71.870.68 66.621.05 71.142.64 71.102.08 71.070.36 61.607.21 78.255.37 68.573.14 68.75
- / 5000 62.000.92 72.842.50 66.970.61 74.233.32 71.781.97 72.992.61 51.460.82 94.280.65 66.570.66 68.84

FEWGEN
100 / 500 71.784.34 71.061.66 71.351.80 73.062.31 69.872.23 71.432.21 69.212.49 77.8411.21 73.126.46 71.97
100 / 5000 68.050.81 75.170.48 71.430.52 75.932.67 72.931.80 74.402.20 68.073.08 92.245.23 78.200.99 74.68

LLMAAA-random 100 / 500 68.852.36 71.632.02 70.212.00 77.692.11 80.751.49 79.171.32 63.239.60 97.752.63 76.416.48 75.26
LLMAAA-confidence 100 / 500 72.662.42 75.491.67 74.000.44 82.910.83 82.780.63 82.840.31 71.494.76 93.285.18 80.792.63 79.21

Table 1: Evaluation results for LLMAAA and other baselines across three different datasets, using ChatGPT as
LLM backbone. We report the mean and standard deviation of three separate runs for each method. Since we set the
temperature to 0 in PROMPTING, its results are deterministic and we only run evaluation once. We also denote the
amount of data (gold/silver) that TAM used for training.

Relation Generated Data

per:parents
Marysubj’s father is Adamobj.

Tomsubj’s mother, Maryobj, lives in New York.

Michelle Obamasubj’s parents are Fraser C. Robinson III and Marian Shields Robinsonobj.

per:children
Mikesubj’s son is named Jackobj.

Lilysubj’s children are Alex and Bellaobj.

Sarahsubj has a daughter named Emilyobj.

Table 2: A case study of generated data with ZEROGEN on Re-TACRED. We leverage ChatGPT as the text generator,
and the full prompts we use can be found in Appendix B.3.

We follow consistent principles in prompt de-
sign. Empirically, we find that in-context examples
bring marginal benefit to RE, while label verbalizer
is a technique specifically designed for the classi-
fication task. Therefore, We apply k-NN example
retrieval to NER and label verbalizer to RE sepa-
rately. We set k to 5 for all experiments, including
FEWGEN. Refer to Appendix B.3 for full prompts.

5.2 Overall Results

Table 1 denotes our main experiment results. LL-
MAAA with least confidence as acquisition func-
tion outperforms all comparative baselines across
all datasets, with 74.00%, 82.84% and 80.79%
F1 scores on Chinese OntoNotes 4.0, English
CoNLL03 and Re-TACRED-subset, respectively.

Comparing with PROMPTING (i.e. the LLM an-
notator), LLMAAA shows steady improvement
(4% in average score) with TAMs of much fewer
parameters and lower inference latency, indicating
that LLMAAA provides a decent substitute for
LLMs in real-world deployments. LLMAAA also
surpasses SUPERVISED, where TAMs are trained
on clean-labeled but smaller-scale data. This sug-
gests that LLMAAA is capable of deriving rich
knowledge beyond the limited demonstration/vali-

dation set on unlabeled data, which benefits gener-
alization.

We also notice that generation-based methods,
i.e. ZEROGEN and FEWGEN, fail to establish on-
par results, even with 10× more data in zero-shot
setting. We argue that the text-generation abilities
of LLMs are exaggerated in complex scenarios. To
demystify the illusion, we devise a case study on
Re-TACRED, as is shown in Table 2. ZEROGEN

tends to generate simple templated sentences that
deviate from the news domain, i.e. the original
corpus of Re-TACRED. These results may induce
low-quality and domain-shift issues that hamper
TAMs’ performance. FEWGEN’s performance im-
proves with in-context examples, however, it still
lags far behind LLMAAA. In contrast, exploit-
ing the unlabeled data effectively alleviates these
problems with much higher efficiency, where only
hundreds of annotated samples are sufficient for
satisfactory performance.

5.3 Ablations
5.3.1 Effects of Prompt Engineering
Though ChatGPT can well follow human instruc-
tions in general, it still struggles with difficult tasks
and domain-specific data. We compare the infer-
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Figure 3: LLMAAA’s performance with different active acquisition strategies, shown by F1 scores. The dashed
lines denote PROMPTING’s results. For each method, we report the mean and standard deviation of three runs
initialized with different random seeds.
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Figure 4: Results for analyzing the effects of automatic reweighting. We remove the online-approximated sample
weights and train TAMs with standard loss objectives for ablation. The dashed lines denote PROMPTING’s
performance. For each method, we report the mean and standard deviation of F1 scores within three different runs.

OntoNotes CoNLL Re-TacRED

Base Instruction 49.62 55.74 70.94
+k-NN Examples 70.73 81.33 -
+Label Verbalizer - - 73.77

Table 3: Comparison results between plain instructions
and optimized prompts in F1 scores.

ence performance of plain instructions with opti-
mized prompts in Table 3. Without k-NN example
retrieval module (i.e. in zero-shot manners), the
LLM annotator is unable to extract entities well in
NER task, shown by a drastic drop in F1 scores
(21% on OntoNotes and 25% on CoNLL). This re-
sult highlights the need for demonstrations, where

LLMs’ zero-shot performance is unsatisfactory. In
addition, the label verbalizer can help align unnatu-
ral labels with natural language descriptions, which
improves the performance in RE (from 70.94%
to 73.77% in F1). These findings emphasize that
prompt engineering is crucial for building strong
annotators, and incorporating similar and aligned
contexts contributes to better inference.

5.3.2 Accelerating with Active Learning
Figure 3 shows LLMAAA performance with dif-
ferent active learning strategies across all datasets.

Uncertainty-based methods, i.e. maximal en-
tropy and least confidence, perform significantly
better than the random baseline, with faster con-
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Backbone Method P R F1

GPT-3
PROMPTING 41.82 22.77 29.49
LLMAAA-confidence 57.26 56.09 56.63

ChatGPT
PROMPTING 67.72 74.02 70.73
LLMAAA-confidence 72.66 75.49 74.00

GPT-4
PROMPTING 68.70 79.42 73.68
LLMAAA-confidence 73.47 76.42 74.90

Table 4: Results on Chinese OntoNotes 4.0 for PROMPT-
ING and LLMAAA with different LLMs. LLMAAA
uses least confidence as the acquisition function, and
annotates 500 samples for TAM training.

vergence and higher F1 scores at the end of itera-
tions. It is worth noting that (1) uncertainty-based
methods are able to achieve on-par performance
with random selection with only 30%~40% train-
ing data, (2) they surpass PROMPTING consistently
within 500 LLM-annotated training samples. In
summary, uncertainty-based active learning strate-
gies enable LLMAAA to be more efficient and
more capable.

Though k-means clustering encourages diversity
in feature space, it only outperforms random sam-
pling on OntoNotes, while yielding similar results
on CoNLL03 and Re-TacRED. This suggests that it
may require more training data for finetuned BERT
to learn informative representations, and such a
diversity-based method may fail in low-resource
environments, e.g. at early iterations of the loop.

5.3.3 Reweighting Helps Robust Training

Figure 4 depicts the learning trials with and without
the automatic reweighting technique. We observe
that reweighting training samples consistently help
improve performance across all datasets and meth-
ods. This finding proves that the training process
of TAMs is more noise-tolerant with automatic
reweighting, even with only a small-scale clean-
labeled set (100 samples) serving for validation.

In particular, the performance gain from auto-
matic reweighting is more prominent on Onto-
Notes and Re-TACRED, and diminishes on Co-
NLL03. We argue that automatic reweighting plays
a crucial role when the LLM annotators are rela-
tively poor (as in OntoNotes and Re-TACRED).
In such scenarios, the online approximation of the
validation set serves as an effective estimation of
unbiased data distribution, and helps prevent TAMs
from overfitting noisy labels.

6 Analysis

6.1 LLMAAA with Different Annotators

To guarantee the universal effectiveness of LL-
MAAA, we further investigate the performance
with other LLM annotators, i.e. GPT-3 (Brown
et al., 2020) and GPT-4 (OpenAI, 2023). Due to
budgetary considerations, we opt to restrict our ex-
periments to OntoNotes. The precision, recall and
F1 score are shown in Table 4. The results indicate
that LLMAAA benefits from better annotators with
continuous improvements, and more importantly,
TAMs trained by LLMAAA outperform the LLM
annotators consistently. The student outperforms
the weak teacher by a large margin (27% in F1 for
GPT-3). As the teacher grows stronger, this gap
narrows down. This trend meets our expectations:
since student TAMs are trained with a fixed budget
of data (500 samples), enhancing the capabilities
of teacher LLMs will gradually approach the per-
formance ceiling of the students. More annotation
budget and more powerful TAMs can help extend
this limit, while we leave the exploration for future
research.

6.2 Why Can Students Outperform Teachers?

An interesting observation across our experiments
is that student TAMs trained with generated labels
can outperform teacher LLMs, i.e. LLMAAA >
PROMPTING, even without sample reweighting, as
shown by Figure 4. Such results partially align with
previous findings in knowledge distillation (Wang,
2021; Song et al., 2021) and pseudo-label-based
learning (Lee, 2013; Sanyal et al., 2022; Min et al.,
2023), which share similar yet slightly different
settings with LLMAAA.

We attempt to further explain the phenomenon
in a simplified setting, where we consider a binary
classification task that predicts y for x ∼ D(x),
where D(x) is discrete as in language space. For
simplicity, we let y = 1 denote the correct label
and y = 0 otherwise. We first make the natural
assumption that the teacher’s performance is above
chance, i.e. the accuracy p > 0.5. Querying teacher
for target sample xt will generate pseudo label
yt ∼ Bernoulli(p). If the student is a universal
function approximator S(x; θ) that outputs a scalar
as probability that ŷ = 1, then minimizing the
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cross-entropy loss

min
θ

Ext∼D(x),yt∼B(p)[−yt log(S(xt; θ))

−(1− yt) log(1− S(xt; θ))]

will reach optimal with S(x; θ) = p. Usually we
predict with heuristics that ŷ = 1 if S(x; θ) > 0.5.
With the previous assumption, we have ŷ = 1,
which means that S always predicts correctly. This
toy case nonetheless explains that an ordinary
teacher can raise better students. Though teacher
LLMs are deterministic for specific x when the
temperature is set to 0, their predictions are yet
statistically random in D(x), where the same con-
clusion holds.

We shall point out that the above discussion con-
siders a much-relaxed setting, where we attempt
to account for an intuitive understanding on why
students outperform teachers in the hard label dis-
tillation problem. We leave the rigorous theoretical
analysis for future work.

7 Conclusion

In this work, we propose LLMAAA, a framework
that uses LLMs as active annotators to address the
challenges of data scarcity in NLP tasks. With ac-
tive learning strategies, LLMAAA allows LLMs to
label more informative samples that promote TAMs
performance efficiently. We also optimize for reli-
ability within the framework, which uses prompt
engineering techniques and automatic reweighting
to improve annotation quality and to reduce the im-
pact of noisy labels, respectively. Experiments on
NER and RE tasks demonstrate the effectiveness of
LLMAAA. The evaluation results highlight the ef-
ficiency and reliability of LLMAAA. Trained with
just hundreds of LLM-annotated samples, TAMs
are able to outperform their teacher LLMs sub-
stantially. Besides, LLMAAA is also much more
efficient compared to prevalent data generation
methods, which usually require orders of mag-
nitude more synthetic training data. These find-
ings reveal that LLMAAA offers a cost-effective,
privacy-ensured, yet well-performing solution to
apply LLMs in practical scenarios.

Limitations

Although LLMAAA demonstrates success in trans-
ferring and exceeding LLMs’ capabilities with
cheaper TAMs, it does come with certain limita-
tions. The main difference between the setting

in LLMAAA and previous zero-shot generation-
based methods, e.g. ZEROGEN and SUNGEN,
is that we use an unlabeled data pool Dpool and
oracle-annotated data Ddemo/Dval, to provide ex-
tra knowledge. However, we shall point out that
unlabeled text is readily available in many real-
world scenarios, thus it is practical to make the
pool-based assumption. Additionally, in complex
tasks where zero-shot inference fails (like NER
in our experiments), it is costly yet necessary to
incorporate demonstrations for LLMs. In LL-
MAAA, we strive for minimizing human efforts
by restricting the oracle-annotated data to a small
scale (100 samples), and exploiting the same data
for demonstration and validation. Another bottle-
neck is the model capacities of teacher LLMs and
student TAMs. On one hand, a weak teacher is
unable to teach excellent students that are ready
to be used for applications (e.g. GPT-3). On the
other hand, TAMs are bounded depending on their
architectures. When the teacher surpasses the ceil-
ing, it will be theoretically impossible for students
to outperform teachers. Despite these cases, we
are optimistic that LLMAAA is effective in most
situations.

We adopt the proprietary GPT family as annota-
tors in experiments, which are provided by OpenAI
in a black-box manner. Though powerful, this prac-
tice may raise several concerns, e.g. the potential
exposure to test data. Nevertheless, we believe that
given the comprehensive analysis in § 6.1, it does
not affect the effectiveness of our method.

Ethics Statement

This work utilizes publicly available benchmark
datasets, and we respect and adhere to their licenses
and agreements. Our proposed method involves
the use of LLMs for data annotation, as discussed
in GPT3Mix (Yoo et al., 2021). This paradigm
still poses several challenges, such as the poten-
tial biases or toxic content in the generated data.
Therefore, it is crucial to exercise caution when
employing our method to invoke LLMs for generat-
ing data and when utilizing TAMs trained on such
generated data. Applying our work to downstream
tasks such as NER and RE may result in issues such
as mis-extraction and false information, and may
fail in some cases. When employing our method,
it is essential to consider using debiasing (Schick
et al., 2021) or manual checking to mitigate these
concerns.
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A Dataset Statistics

In this section, we describe the statistics and pre-
processing of each dataset in detail.

OntoNotes 4.0 (Weischedel et al., 2011) is a
large corpus comprising various genres of text
(news, web text, etc.) in three languages (English,
Chinese, and Arabic) with structural information
and shallow semantics, and has been widely used
for NER. We use the Chinese text data and take
the same data split as Che et al. (2013), which uses
four most common entity types, i.e. PER (person),
LOC (location), ORG (organization) and GPE (geo-
political entities). We truncate token length within
512 (i.e. split long input to multiple chunks) to
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Training Validation Testing

per:age 421 256 208
per:nationality 295 222 115
per:parents 182 69 106
per:children 275 114 55
per:siblings 211 33 66
per:spouse 271 189 73
no_relation 2,482 1,324 934

Total 4,137 2,207 1,557

Table 5: Statistics of relation types in each split of Re-
TACRED-subset. We replace the label "per:origin"
with "per:nationality" for clarity.

fit in BERT input limit. The processed data con-
tains 15,724/4,301/4,346 samples for training/vali-
dation/testing, respectively.

The English CoNLL 2003 shared task (Tjong
Kim Sang and De Meulder, 2003) is a NER
dataset that contains four entity types: PER (per-
son), LOC (location), ORG (organization), and
MISC (miscellaneous entities), which consists of
14,041/3,250/3,453 sentences for training/valida-
tion/testing.

Re-TACRED (Stoica et al., 2021) is a revised
version of TACRED (Zhang et al., 2017), a large-
scale crowdsource-annotated RE dataset. It orig-
inally has 40 relation types. Including all these
types will lead to much longer prompts, which may
exceed the API length limit and receive responses
with higher latency. Therefore, we opt to select a
subset of relations that describe personal relation-
ships for study. We keep all these relation instances
in training/validation/testing sets, and balance the
NA relation instances to the original portion. The
statistics for each relation type is shown in Table 5.

For all three datasets, we randomly sample 100
examples from the original validation sets and
reuse the same data for demonstration Ddemo and
validation Dval. We use the full training sets as
the initial Dpool, from which we randomly sample
active learning’s seed labeled sets Dlabeled with a
size of 50.

B Implementations

B.1 LLM Inference APIs

We access OpenAI APIs by Azure service. The
API we use for each model is depicted in Table
6. Since ChatGPT and GPT-4 will continue to be
updated, they may generate different responses as
time changes, even when the temperature is 0.

Model API

GPT-3 text-curie-001
ChatGPT gpt-35-turbo
GPT-4 gpt-4

Table 6: Azure OpenAI service API that we use.

B.2 Training Task-Specific Models
For all experiments that train TAMs for inference
(i.e. LLMAAA, ZEROGEN, FEWGEN and SUPER-
VISED), we repeat each with three random seeds,
resulting in different parameter initialization and
random data sampling. We report the mean and
standard deviation in our results.

We use bert-base-cased (Devlin et al., 2019)
as TAMs’ encoders with a learning rate of 5e-5 for
English data (CoNLL03 and Re-TACRED), and
chinese-bert-base-wwm (Cui et al., 2021) with a
learning rate of 2e-5 for Chinese data (OntoNotes
4.0). The learning rate of other parameters (i.e.
linear classifiers) is set to 1e-4. We optimize the
models via AdamW (Loshchilov and Hutter, 2019),
with ϵ = 1e-6, under a linear warmup schedule for
the first 6% steps. We train all TAMs with a batch
size of 8 for 40 epochs and take the checkpoint
with the highest validation performance for final
prediction.

B.3 Prompts
The full prompts we use for annotation are shown
in Table 7. In Re-TACRED, we provide prompts
both with and without verbalized labels. To add
demonstration, we insert each sample’s text into
input and label to output. The target sample is
added to the last input, and the last output is left
blank for prediction.

We also show the prompts for generation in Ta-
ble 8. We use them similarly to annotation. In the
zero-shot setting, to help models generate desired
outputs, we use a default example to inform LLMs
about the output format.

C Annotation Examples

We show two annotation examples of correct/par-
tially wrong annotations from the CoNLL 2003
NER dataset in Listing 1. The first example is
exactly correct, and the second example contains
hallucinations that do not exist in ground truth:
"April", "March", and "Thursday".
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Task Prompting

CoNLL 03

Description

You are a highly intelligent and accurate news domain named-entity recognition (NER)
system. You take passage as input and your task is to recognize and extract specific types of
named entities in that given passage and classify into a set of following predefined entity
types: [person (PER), location (LOC), organization (ORG), miscellaneous entity (MISC)]
Your output format must be in json form of: [“span”: span, “type”: type, ...]

Instruction The span must be exactly the same as the original text, including white spaces.

Format Input: “Input: {}”
Output: “Output: {}”

OntoNotes 4.0
Description

你是一名通用领域的命名实体识别（NER）标注者，给定一段输入文本和 NER类
型，你需要以 json格式返回 NER的 span和类型。
类型：[人物（PER），组织机构（ORG），地缘政治实体（GPE），地理位置
（LOC）]
输出格式：["span": span, "type": type, ...]

Format Input: “输入：{}”
Output: “输出：{}”

Re-TACRED
(Original)

Description
Given a sentence, and two entities within the sentence, classify the relationship between the
two entities based on the provided sentence. If no relation of interest exists, strictly return
“no_relation”. All possible relationships are listed below:

Instruction

- per:age
- per:parents
- per:spouse
- per:siblings
- per:children
- per:nationality
- no_relation

Format

Input: “Sentence: {}”
Output: “Relationship: {}”
Struct: “e1: {}

e2: {}”

Re-TACRED
(Verbalized)

Description
Given a sentence, and two entities within the sentence, classify the relationship between the
two entities based on the provided sentence. If no relation of interest exists, strictly return
“no_relation”. All possible relationships and explanations are listed below:

Instruction

- per:age : the age of {e1} is {e2}
- per:parents : {e1}’s parent is {e2}
- per:spouse : {e1}’s spouse is {e2}
- per:siblings : {e1} is the sibling of {e2}
- per:children : {e1}’s children is {e2}
- per:nationality: {e1}’s nationality is {e2}
- no_relation : {e1} has no known relations to {e2}

Format

Input: “Sentence: {}”
Output: “Relationship: {}”
Struct: “e1: {}

e2: {}”

Table 7: Annotator’s prompts for each task.

{
"text ":" Celtic ’s Jackie McNamara , who did well with last season ’s successful

under -21 team , earns a call -up to the senior squad .",
"labels ":[{" span ":" Celtic","type ":"ORG"},{" span ":" Jackie McNamara","type ":"PER

"}]
},
{

"text ":" Finland ’s trade surplus rose to 3.83 billion markka in April from 3.43
billion in March , the National Customs Board ( NCB ) said in a statement on
Thursday .",

"labels ":[{" span ":"NCB","type ":"ORG"},{" span ":" Finland","type ":"LOC"},{" span ":"
National Customs Board","type ":" ORG"},{" span ":" April","type ":" MISC "},{" span
":" March","type ":" MISC "},{" span ":" Thursday","type ":" MISC "}]

}

Listing 1: Annotation examples.
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Task Prompting

CoNLL 03

Description

You are an intelligent text data generator. Generate {} high-quality and diverse sentences in
news domain containing entities for the following types:
[person (PER), location (LOC), organization (ORG), miscellaneous entity (MISC)]
Write one sample per line. No other output.

Format Example: “Example: {}”
Output: “Output: {}”

Default
Example {“text”: text, “entities”: [{“name”: name, “type”: type}]}

OntoNotes 4.0

Description

你是一名新闻领域的文本生成助手。生成{}个流畅、通顺、多样的中文句子，并包
含下面这些类型的命名实体（entity）：
[人名（PER），组织机构名（ORG），地缘政治实体（GPE），地理位置
（LOC）]
每行输出一个样本，不要有任何额外的输出。

Format Example: “示例： {}”
Output: “输出： {}”

Default
Example {“text”: text, “entities”: [{“name”: name, “type”: type}]}

Re-TACRED

Description

You are an intelligent text data generator. Generate {} high-quality and diverse sentences in
news domain containing relational triplet for the following relation types:
- per:age : the age of SUBJ is OBJ
- per:parents : SUBJ’s parent is OBJ
- per:spouse : SUBJ’s spouse is OBJ
- per:siblings : SUBJ is the sibling of OBJ
- per:children : SUBJ’s children is OBJ
- per:nationality: SUBJ’s nationality is OBJ
- no_relation : SUBJ has no known relations to OBJ
Write one sample per line in json format. Subject and object must appear in the sentence. No
other output.

Format Example: “Example: {}”
Output: “Output: {}”

Default
Example {“text”: text, “subject”: subject, “object”: object, “relation”: relation}

Table 8: Generator’s prompts for each task.
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