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Abstract

Open Information Extraction (OpenlE) is a fun-
damental yet challenging task in Natural Lan-
guage Processing, which involves extracting all
triples (subject, predicate, object) from a given
sentence. While labeling-based methods have
their merits, generation-based techniques offer
unique advantages, such as the ability to gener-
ate tokens not present in the original sentence.
However, these generation-based methods of-
ten require a significant amount of training data
to learn the task form of OpenlE and substantial
training time to overcome slow model conver-
gence due to the order penalty. In this paper,
we introduce a novel framework, OK-IE, that
ingeniously transforms the task form of Ope-
nlE into the pre-training task form of the TS
model, thereby reducing the need for extensive
training data. Furthermore, we introduce an
innovative concept of Anchor to control the
sequence of model outputs, effectively elimi-
nating the impact of order penalty on model
convergence and significantly reducing train-
ing time. Experimental results indicate that,
compared to previous SOTA methods, OK-IE
requires only 1/100 of the training data (900
instances) and 1/120 of the training time (3
minutes) to achieve comparable results.

1 Introduction

Open information extraction (Banko et al., 2007)
is the task of transforming unstructured text into
semi-structured text. Given an input sentence, an
open information extraction system can output a
set of corresponding sentence with elements in a
pre-defined structure (Etzioni et al., 2011). These
output can be used as an additional source of in-
formation to augment other tasks, such as building
semi-automated knowledge graph construction sys-
tems (Mausam, 2016), Question Answering (Khot
etal., 2017), Trigger Detection (Duki¢ et al., 2023)
and so on.

*Corresponding author.

Recently, neural-based OpenlE methods can be
broadly divided into two categories: labeling-based
methods (Kolluru et al., 2020a; Vasilkovsky et al.,
2022; Kotnis et al., 2022) and generation-based
methods (Kolluru et al., 2020b, 2022). Labeling-
based methods are known for their fast inference
speed but have a limitation in that they cannot label
tokens that are not present in the input sentence.
On the other hand, generation-based methods pos-
sess the capacity to produce supplementary tokens
in order to fulfill syntactic and comprehensive se-
mantic requirements, albeit necessitating extensive
training data and time investment to learn the task
format of OpenlE and converge towards desirable
outcomes.

GEN2OIE (Kolluru et al., 2022) has set a robust
baseline for generation-based methods by model-
ing the OpenlE task as a seq2seq problem using
two T5 (Raffel et al., 2022) models. The first TS
model is employed to extract all predicates from
the sentence, while the second T5 model takes a
sequence concatenated from the sentence and an
individual predicate as input, outputting the corre-
sponding unique triple. While the GENO2IE sets
a strong baseline, there are still areas for improve-
ment. We address these with our proposed OK-IE
framework, an Order Agnostic Knowledge Embed-
ded Information Extraction framework. Consid-
ering the simplicity of predicate extraction from
sentences, we retain the first stage of GEN2OIE
and focus on optimizing the second stage, which is
responsible for generating the complete triple.

Specifically, unlike GEN2OIE, OK-IE cleverly
transforms OpenlE into T5’s pre-training task, span
corruption. This allows the model to learn the task
with less data, eliminating the need for additional
training to adapt the language knowledge from span
corruption pre-training to the seq2seq. In addition,
the seq2seq presumes that only one sequence order
is correct. This order information is not explic-
itly provided to the model, which must learn it on
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Figure 1: The performance of both methods improves as
the volume of data increases. Compared to our OK-IE,
IMOIJIE needs to use about 83(50% vs 0.6%) to 89(80%
vs 0.9%) times more data to achieve approximately the
same results.

its own. This leads to an additional order penalty,
causing confusion for the model and requiring a
long time to converge. OK-IE addresses this is-
sue by introducing an Anchor method, explicitly
instructing the model on the sequence order for gen-
eration. The comprehensive workflow of OK-IE
are elaborated in the Appendix A.

The effectiveness of our proposed OK-IE frame-
work is exemplified particularly in low-resource
scenarios on the CaRB (Bhardwaj et al., 2019)
benchmark, as illustrated in Figure 1. Summariz-
ing, our key contributions are:

1) We introduce the OK-IE framework that har-
nesses the potential of PLMs for efficient OpenlE.
It uses minimal data and computational resources,
an important attribute in resource-limited scenar-
ios, while achieving results comparable to full-data
training.

2) We address the order challenge within the OK-
IE framework, allowing for faster training conver-
gence by eliminating the additional order penalty.

3) Our OK-IE framework not only achieves
SOTA performance in a low-resource scenario but
also presents a new perspective for OpenlE re-
search, potentially inspiring more efficient and ef-
fective approaches in this area.

2 Related Work

Predominant solutions to the OpenlE task fall into
two categories: labeling-based and generation-
based methods. This paper aims to address the
excessive requirements of training data and time
inherent in generation-based methods, and thus
we will primarily focus on discussing generation-
based techniques. Labeling-based methods, while

OpenlE System F1 F1%

IMOJIE 53.5 99.07
OpenlE6 527 976
Multi’?OIE 525 972
IGL-OIE 524 97.03
CIGL-OIE 540 100

DetIE 52.1 964
GEN20IE 51.1 94.6
OK-IE (Ours) 532 985

Table 1: Comparison of OpenlE systems with full data
(100%)

important, will be briefly overviewed for the sake
of context.

labeling-based methods aim to tag each token
in a sentence with one of four labels: subject,
predicate, object, or none. Representative work
includes OpenlE6 (Kolluru et al., 2020a), which
initially marks the first triple in a sentence, then
merges this marked triple with the original sen-
tence to form a new input for identifying the sec-
ond triple, iterating in this manner until termination.
DetlE (Vasilkovsky et al., 2022), on the other hand,
borrows ideas from object detection in computer
vision to identify all triples in a sentence in one go.
Nonetheless, these techniques encounter a shared
challenge: they lack the ability to label tokens ab-
sent in the original sentence. This shortcoming
hampers their ability to invariably yield triples that
satisfy grammatical coherency and semantic com-
pleteness.

Generation-based approaches present an alter-
native perspective in OpenlE, treating both the in-
put sentences and output triples as sequences. For
example, IMOJIE (Kolluru et al., 2020b), lever-
aging an LSTM model, sequentially generates
triples. It takes an input sentence and produces
the first triple, then concatenates this generated
triple with the original sentence to form a new se-
quence. The process continues iteratively until the
system reaches an end token. GEN2OIE (Kolluru
et al., 2022), a powerful baseline in our study, em-
ploys a dual T5 model setup. The first TS5 model
is responsible for generating all predicates from a
given sentence. Subsequently, the second T5 model
accepts the concatenation of the sentence and an
individual predicate as input, producing the corre-
sponding triple for that predicate. However, these
techniques generally require extensive training data
and time to yield satisfying results.
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Despite GEN2OIE’s utilization of the pre-
trained language model T5 as its backbone, a con-
siderable discrepancy exists between the seq2seq
task and TS5’s pre-training task, span corruption.
The model still necessitates an ample amount of
data to learn this new task format. Concurrently,
in the context of triples, both (subject, predicate,
object) and (predicate, object, subject) orders are
valid. However, due to the auto-regressive charac-
teristic inherent in sequence generation, training
presumes only one correct generation order. More-
over, this assumed order is implicit and not directly
conveyed to the model. Consequently, the model
might generate a correctly composed triple in an
order inconsistent with the provided ground truth,
resulting in an additional order penalty. This dis-
crepancy can lead to model confusion, slow con-
vergence, and thus, requires substantial training
time.

3 Method

In addressing the aforementioned issues, our pro-
posed framework, OK-IE, pivots around two core
aspects: the transformation of task format and the
control over generation order. To better control the
generation order, we introduce Anchors and merge
them with sentinels.

3.1 Task Format Transformation

Seq2Seq are designed to model relationships
between two sequences. However, the TS model is
trained with a span-mask denoising objective. For
instance, when the input is ‘Thank you <id_0> me
to your party <id_1> week,” the expected output
is ‘<id_0> for inviting <id_1> last” Here,
<id_i> are referred to as sentinels, which serve
to locate the positions corrupted in the original
sentence. Notably, we discerned an opportunity
to ingeniously transform the OpenlE task to
match the span corruption objective. More
specifically, the input sentence and output triples
are concatenated into one sentence, treating each
subject, predicate, and object in the triple as a
corrupted span. For instance, under the Seq2Seq
task format, the input and output are: ‘Elon
Musk, who is the CEO of Tesla, also founded
SpaceX’, and ‘(Elon Musk; is the CEO of; Tesla)
(Elon Musk; founded; SpaceX)’, respectively.
After the task format transformation, the input
and output become: ‘Elon Musk, who is the
CEO of Tesla, also founded SpaceX. With

predicate founded, <id_0> <id_1> <id_2> . With
predicate is the CEO of, <id_3> <id_4> <id_5>’,
and ‘<id_O> Elon Musk <id_2> founded
<id_2> SpaceX <id_3> Elon Musk <id_4> is the
CEO of <id_5> Tesla’, respectively. The efficacy
of this seemingly simple yet innovative method is
demonstrated in subsequent experiments.

3.2 Controlling Generation Order

As evidenced by the aforementioned examples, it is
clear that sentinels such as ‘<id_i>" only denote the
locations of corrupted spans within sentences. Due
to the reusable nature of sentinels, it’s difficult to
assign specific meanings to each sentinel. Hence,
in the example given, we still implicitly assume
a particular order. To mitigate the impact of or-
der penalty, we introduce the concept of Anchors
which temporarily assign meanings to each sentinel
to help explicitly control the generation order.

An anchor refers to tokens surrounding the sen-
tinel, intended to express the sentinel’s temporary
meaning. More specifically, if we want the sentinel
‘<id_0>’ to generate only subjects and nothing else,
we can add anchors representing the need to gen-
erate a subject on either side of the sentinel. Each
anchor consists of two parts: an embedding from
a word table representing a clear meaning, and
a tunable embedding(Liu et al., 2021); the afore-
mentioned embeddings are concatenated to form a
cohesive semantic unit. For simplicity, we denote
the anchors for subjects, predicates, and objects as
S, P, and O, respectively. It’s worth noting that the
same anchor is used for each subject in all triples of
a sentence, ensuring that the tunable embeddings
can learn more general semantic representations.

By integrating anchors and sentinels, we can
explicitly control the model’s generation or-
der. For instance, in the original example,
<id_0> <id_1> <id_2> implies an order of sub-
ject, predicate, object. If we want to make this
order explicit, we can use ‘S<id_0>S P<id_1>P
O<id_2>0’. If we prefer the model to generate
in the order of predicate, object, subject, it would
be ‘P<id_0>P O<id_1>0 S<id_2>S’. Note that, in
practical applications, we can select an appropriate
order through practice, or we can control the model
to generate all orders and then use a majority vote
strategy to determine the final output. In Figure 2,
we illustrate how anchors are employed to control
token generation at each sentinel position.
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4 Experiments

4.1 Experimental Setup

OpenlE System F1 F1%
IMOJIE - -

OpenlE6 429 794
OK-IE 529 979

Table 2: Comparison of OpenlE systems with 0.9% data

OpenlE System F1 F1%
IMOJIE 369 68.5
OpenlE6 43.1 79.8
OK-IE 53.1 98.3

Table 3: Comparison of OpenlE systems with 5% data

OpenlE System F1 F1%
IMOJIE 39.5 732
OpenlE6 453 83.8
OK-IE 53.3 98.7

Table 4: Comparison of OpenlE systems with 20% data

To establish an objective and fair comparison
with other models, we opted for the benchmark
dataset, CaRB (Bhardwaj et al., 2019), used in pre-
vious studies, applying the same evaluation metric,
F1 score. For consistency, we utilized the previ-
ously established OpenlE system training dataset,
IMOIJIE (Kolluru et al., 2020b). Owing to space
limitations, further experimental details are pro-
vided in Appendix B.1.

4.2 Results and Discussion

To visually demonstrate the performance of OK-IE,
we compared it with several recent OpenlE systems
under full training data scenarios, as shown in Ta-
ble ??. To facilitate a straightforward comparison
between different methods, we introduce the F1%
metric. This represents the F1 score of a given
method within a specific data scenario, expressed
as a percentage of the F1 score of the SOTA method
when trained with full data. This metric simplifies
performance comparisons in low-resource scenar-
10s. As can be seen, the F1 scores of all methods
are comparable. A significant advantage of OK-
IE, however, is its ability to substantially reduce
the required training resources. To investigate the
performance of OK-IE in low-resource situations,
we set three data sizes relative to the full data set:

Approach F1* F1
Baseline 29.9 31.2

+ Convert Form 45.3(+15.4) 49.8(+18.6)
+ Anchor 46.0(+0.7)  50.5(+0.7)
+ Order Control 52.1(+6.1) 52.9(+2.4)

Table 5: Results of ablation experiments on various
components of framework OK-IE.

0.9%, 5%, and 20%. We selected the most rep-
resentative models from both labeling-based and
generation-based methods, namely OpenlE6 and
IMOIJIE, for comparison. From Tables 2, 3, and 4,
it is evident that our OK-IE markedly outperforms
the other two methods across all three data sizes.
It’s worth noting that due to the minimal data avail-
ability at 0.9%, IMOJIE is incapable of generating
effective triples, hence its result is denoted by -.

4.3 Ablation Studies on System Components

In order to analyze the impact of individual com-
ponents of OK-IE on the results with a finer gran-
ularity, we carried out an ablation study based on
the baseline GEN2OIE in a scenario with only 900
data items. Simultaneously, to validate the influ-
ence of order control on model convergence speed,
we defined a new metric, F1*, which refers to the
F1 score obtained after just one epoch of training.
As can be seen from the Table 5, a noticeable en-
hancement in the optimal F1 is achieved following
the transformation of the task form, which indeed
confirms a decrease in training data requirement.
Upon introducing order control, there is a swift
increase in F1*, and the result after only one epoch
of training is very close to the optimal F1 score.
This confirms that model convergence speed has
indeed been accelerated, thus reducing the training
time. For details on the analysis of training data
and training time, please refer to the Appendix B.2.

5 Conclusion

In this paper, we have presented OK-IE, an efficient
framework for Open Information Extraction. By
effectively leveraging pre-trained language models
and addressing the challenges of generation order,
OK-IE overcomes the computational inefficiencies
of previous systems. Our empirical evaluations
demonstrate that OK-IE not only achieves compa-
rable results to existing systems, but does so with
significantly fewer resources. This underlines its
capability in resource-constrained environments.
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Our research stands as a testament to the possi-
bility of accomplishing efficient information ex-
traction with reduced data and minimal training
time, thereby presenting new pathways for future
research within the OpenlE landscape.

Limitations

Following an examination of the CARB test set and
the output generated by existing OpenlE systems,
we found that these systems struggle to effectively
manage cases that involve extensive sentences with
multiple triples.

While OK-IE has the ability to enhance com-
putational efficiency and the optimization of data
resources, it does not sufficiently address the afore-
mentioned issues. The generation-based strategy
is capable of creating long, meticulously refined
triple sequences, but there is still the possibility
that some triples may be omitted. Similarly, the
conventional labeling-based approach adopted in
OpenlE6 sets an upper threshold on the number
of triples that require labeling, hence capping its
performance. Accurately generating all triples in
extended sentences represents a promising avenue
for future research.

A potential pitfall for OK-IE, given its modest
data requirements, is the potential for bias in sce-
narios characterized by substantial differences in
data characteristics. However, this issue can be
tackled by the framework itself, as OK-IE exhibits
the ability to rapidly adapt to new scenarios and
ameliorate these biases with a minimal amount of
data.

It should be underscored that our current method
has been specifically evaluated within the confines
of English OpenlE. This presents a limitation, and
we intend to explore and validate the efficacy of our
approach across other languages in future work.

Ethics Statement

Our proposed OK-IE system has the potential to
contribute to the construction of comprehensive
knowledge databases. Furthermore, given the strin-
gent context window size constraints associated
with applications like ChatGPT, the use of triples
extracted by OK-IE could effectively alleviate text
length in input. Significantly, one of the notable
advantages of our OK-IE system is its ability to
achieve commendable performance with minimal
resource requirements, enhancing its accessibility

and practicality for a wide range of users and appli-
cations.

However, it should be noted that there are cir-
cumstances under which OK-IE may output erro-
neous triples, leading to serious inaccuracies in the
knowledge databases or incorrect triple inputs to
applications like ChatGPT. These errors could, in
turn, result in significant misconceptions, as flawed
knowledge produced upstream could greatly dam-
age downstream applications, potentially leading
to misdirection in human activities.

Therefore, we strongly urge users of our sys-
tem to implement rigorous human oversight and
checks on extracted knowledge, while fully eval-
uating the potential harm that could be caused by
inaccuracies. Our primary ethical responsibility
lies in minimizing any potential for misuse of the
system or misinterpretation of the output, to ensure
that it serves the purpose of advancing knowledge
rather than misleading users.
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A Overview of OK-IE

A.1 Workflow

The extraction process employed by OK-IE is both
intuitive and flexible. Initially, an input sentence is
introduced, and a T5 model is employed to extract
all predicates within the sentence. Subsequently,
as illustrated in Section 3, the sentence and its
extracted predicates are combined, with expected
triple positions replaced by sentinel <id_i> place-
holders. This combination is then fed into a second
T5 model, which generates the appropriate span for
each sentinel-marked position, filling in the respec-
tive subject, predicate, or object. It is important
to note that the order in which OK-IE extracts the
final results is entirely dependent on the training
set.

To manage the generation order, we rely on an-
chors. For example, if the extraction is intended
to proceed in a predicate, object, subject order, the
combination of anchor and sentinel would result in
P<id_0>P O<id_1>0 S<id_2>S.

Two key aspects should be noted. Firstly, the op-
timal extraction order can be determined through
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After the battle , Battra rested
in the Arctic Ocean , whereas
Mothra retired to Infant
Island , accompanied by the
two Cosmos.

OpenlE

Task

Prefix

[] Prefix Embedding
[TO] [S]E [P]E [O]E

[T1]
[T2] [S]E [OJE [PIE

[] sentence Embedding

|:| In-context Embedding
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Figure 2: Workflow of OK-IE. In the figure, '’E’ denotes the sentinel, while [S], [P], and [O] represent anchors
for subject, predicate, and object respectively. Blue, yellow, and purple lines illustrate three distinct generation
sequences: SPO, PSO, and SOP. By integrating anchors and sentinels, control over token generation at each position
is achieved, thereby governing the generation order of individual triples.

trial and error in practical scenarios, or by generat-
ing results under all extraction orders and utilizing
a majority vote strategy to determine the final ex-
traction results. Secondly, for a given sentence, the
order of the triples to be extracted can vary. If we
wish to extract the triple for the first predicate in a
subject, predicate, object order, and the triple for
the second predicate in a predicate, object, subject
order, it can conveniently be incorporated in the
same generation process: ... S<id_0>S P<id_1>P
O<id_2>0 ... P<id_3>P O<id_4>0 S<id_5>S.
This flexible generation method opens up a myriad
of possibilities.

A.2 Difference

Several distinct differences exist between OK-IE
and GEN2OIE:

Firstly, GEN2OIE approaches the OpenlE prob-
lem using a seq2seq task format, while OK-IE em-
ploys a span corruption task format. This difference
in task format leads to a substantial variation in the
amount of training data required during the training
process.

Secondly, the order of the triples extracted by
GEN2OIE is determined by the training data and
can only follow one specific order, i.e., the order
of the triples in the training data. Conversely, OK-
IE, through the introduction of the Anchor, can
flexibly determine the extraction order of the triples
in accordance with the actual scenario, allowing
for the coexistence of multiple extraction orders.

Next, GEN2OIE can only extract a single triple

corresponding to a predicate each time, whereas
OK-IE can extract either one or all triples corre-
sponding to the predicates, depending on how the
anchor and sentinel are set. This contributes to the
differences in model computation efficiency.

Lastly, to extract triples using a generation-based
method, GEN2OIE introduces additional delim-
iters to denote the boundaries of the subject, predi-
cate, and object. In contrast, OK-IE utilizes native
sentinels, effectively sidestepping this unnecessary
issue.

B Experiments

B.1 Experimental Setup Details

In this study, we employed the PyTorch 1.11
(Paszke et al., 2019) framework to conduct our ex-
periments. Specifically, we utilized the base series
of the TS model from the Hugging Face’s trans-
formers (Wolf et al., 2020) library, without incorpo-
rating any additional parameters, except for word
embeddings. The cross-entropy loss function and
Adam (Kingma and Ba, 2017) optimizer were uti-
lized for training. All models were trained for a
consistent duration of 7 epochs.

With regards to hyperparameter selection, we
investigated batch sizes of (2, 4, 8, 16, 32) and ulti-
mately chose a batch size of 4 to optimize memory
usage while having no significant impact on the re-
sults. For the learning rate, we experimented with
values of (5e-5, 2e-5, le-5, 5e-6) and selected Se-5
as the optimal value. All other parameters were
kept at their default values and we did not use any
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form of hyperparameter search algorithm. In order
to mitigate the influence of random variance, we
conducted three separate random samplings under
each limited training data scenario and reported the
mean values as final results.

As previously mentioned, OK-IE can specify any
order for generating extraction results by designing
anchors. During the training process, we utilized
all possible orders of triples to train the model. As
a side note, if GEN2OIE were to adopt this strat-
egy, it would result in significant model confusion.
In the evaluation phase, to avoid the influence of
additional factors, we did not use the strategy of
generating extraction results in all possible orders
and then using a majority vote to obtain the final
output. Instead, we explicitly set a unique extrac-
tion order, i.e., S<id_0>S P<id_1>P O<id_2>0.

B.2 Training Data and Time Analysis

Evidently, conducting a direct analysis of the quan-
tity of training data and training time required by
two models to achieve identical performance lev-
els is a complex undertaking. On one hand, the
correlation between training data and time is non-
negligible; in most cases, a reduction in data vol-
ume correlates with decreased training time. On
the other hand, achieving parity in evaluation re-
sults between the two models can be challenging.
Thus, the previously mentioned ratios of 1/100
for training data and 1/120 for training time were
derived directly from comparing the resources re-
quired by OK-IE to achieve comparable results
with GEN2OIE on the full dataset, but with only
900 instances. While we could theoretically start
from 900 and gradually reduce the amount of train-
ing data to see how performance fluctuates, the
potential findings from such an approach would
likely be marginal.

In order to accurately quantify the model’s de-
mands for training data and time, we set up various
scenarios with limited training data and selected
some representative models to compare their stand-
out results within these contexts. Regarding train-
ing time, in order to impartially offset the impact of
training data volume and focus on the influence of
methodological improvements, we kept the train-
ing data fixed. We gauged the model’s convergence
speed by evaluating the F1 score (F1*) after a sin-
gle epoch of training. In other words, a larger F1*
suggests quicker model convergence, indicating
that the methodological improvements have effec-

Model Task Format F1

flan-t5-base seq2seq 0.0021
flan-t5-large seq2seq 0.244
flan-t5-x1 seq2seq 0.2852
t5-base seq2seq -

t5-large seq2seq -

t5-x1 seq2seq 0.0016
t5-base span corruption  0.0007
t5-large span corruption 0.0019
t5-x1 span corruption  0.0023

Table 6: Zero Shot Performance

tively reduced the required training time for the
model.

C Zero Shot Performance

We employed the GEN2OIE model to generate
predicates in the first phase, following which we
conducted zero-shot inference on t5 models across
three size attributes: base, large, and XL, as well
as on the flan-t5 model. The outcomes of these
experiments are reported in Table 6. Due to the
incapability of flan-t5 to generate in the form of
span corruption, we only report the results under
the seq2seq task paradigm.
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