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Abstract

In the burgeoning field of natural language
processing, Neural Topic Models (NTMs) and
Large Language Models (LLMs) have emerged
as areas of significant research interest. De-
spite this, NTMs primarily utilize contextual
embeddings from LLMs, which are not optimal
for clustering or capable for topic generation.
Our study addresses this gap by introducing a
novel framework named Diffusion-Enhanced
Topic Modeling using Encoder-Decoder-based
LLMs (DeTiME). DeTiME leverages Encoder-
Decoder-based LLMs to produce highly clus-
terable embeddings that could generate topics
that exhibit both superior clusterability and en-
hanced semantic coherence compared to exist-
ing methods. Additionally, by exploiting the
power of diffusion, our framework also pro-
vides the capability to generate content relevant
to the identified topics. This dual functionality
allows users to efficiently produce highly clus-
tered topics and related content simultaneously.
DeTiME’s potential extends to generating clus-
tered embeddings as well. Notably, our pro-
posed framework proves to be efficient to train
and exhibits high adaptability, demonstrating
its potential for a wide array of applications.

1 Introduction

Topic modeling methods, such as (Blei et al.,
2003), are unsupervised approaches for discov-
ering latent structures in documents and achiev-
ing great performance (Blei et al., 2009). These
methods take a list of documents as input, gen-
erate a defined number of topics, and can further
produce keywords and related documents for each
topic. In recent years, topic modeling methods have
been widely used in various fields such as finance
(Aziz et al., 2019), healthcare (Bhattacharya et al.,
2017), education (Zhao et al., 2021a,b), marketing
(Reisenbichler, 2019), and social science (Roberts
et al., 2013). With the development of Variational
Autoencoder (VAE) (Kingma and Welling, 2013),

the Neural Topic Model (Miao et al., 2018; Dieng
et al., 2020) has attracted attention due to its better
flexibility and scalability. The topic is generated
through the reconstruction of the bag-of-word rep-
resentations of the document (Miao et al., 2018).

The progress of large language model
(LLM) (Vaswani et al., 2017; Radford et al.,
2019) brings significant advancements in the
NLP community. Sentence embedding is the
process of converting sentences into numerical
vectors in a high-dimensional space. LLM-based
sentence embedding has been applied to topic
modeling by using it to reconstruct bag of word
representation of documents (Bianchi et al.,
2021a), to cluster document directly (Grootendorst,
2022) or both (Han et al., 2023). Sentence
embedding-based models have been shown to
achieve high performance regarding coherence
and diversity (Zhang et al., 2022). Embeddings
with higher clusterability are likely to perform
well in classification tasks. However, sentence
embeddings are in general not perform well
in clustering. The best performed sentence
embedding has an average v-measure (Rosenberg
and Hirschberg, 2007) below 0.44 even if it uses
kmeans and set the cluster equal to the number
of different labels (Muennighoff et al., 2022).
This means that their clusterability can be even
lower when the latent dimension increases. Lastly,
language modeling is a powerful generative
tool (Brown et al., 2020). While topic modeling
has been utilized for generation (Wang et al.,
2019), its integration with Large Language Models
(LLMs) for generation remains less explored.

In this study, we introduce DeTiME, an innova-
tive topic modeling framework that exploits the ca-
pabilities of the encoder-decoder Large Language
Model (LLM). Specifically, we design a task to
train an adapted encoder-decoder LLM, as depicted
in Figure 2. We generate an embedding using
this architecture, which exhibits high clusterability
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compared to established models as illustrated in
Figure 1. Furthermore, we design a topic modeling
approach using the last hidden layer of our modi-
fied LLM encoder as input. This technique notably
outperforms standard methods across all pertinent
metrics. Additionally, we leverage diffusion and
our proposed framework to generate relevant docu-
ments. Our major contributions are as follows:

1. We modify the encoder-decoder LLM and de-
sign a task to create an embedding ideal for
topic modeling, even using a smaller model.

2. The fabricated embeddings outperform exist-
ing methods in terms of clusterability

3. We devise a topic modeling method based on
the embedding that achieves superior results
in both clusterability and semantic coherence,
compared to the relevant topic modeling meth-
ods.

4. We demonstrate the ability to produce relevant
content based on this model by harnessing dif-
fusion, indicating potential practical applica-
tions.

5. Our framework exhibits flexibility as it can
be seamlessly adapted to various encoder-
decoder LLMs and neural topic modeling
methods, broadening its applicability in the
field.

By documenting detailed methodology and empir-
ical results, we aim to inspire further research in
this domain, and provide a strong foundation for
future work on topic modeling and LLM:s.

2 Related work
2.1 Language Modeling

Recent transformer-based models, such as
BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), and GPT-4 (OpenAl, 2023) have achieved
unmatched performance in numerous language
tasks. Utilizing self-attention mechanisms, they
capture context from both past and future tokens,
generating coherent text. These rapidly evolving
Large Language Models (LLMs) carry significant
implications for diverse sectors and society.
T5 (Raffel et al., 2020) treats every NLP task as a
text-to-text problem, using a standard format with
input and output as text sequences. It employs
an encoder-decoder framework and is pretrained

Compare Purity between DeTIME and other methods

Hidden Dimension Size

Compare NMI between DeTIME and other methods

Hidden Dimension Size

Figure 1: A summary of a few of our findings: (1)
Our embeddings outperform the best clusterable meth-
ods (selected from (Muennighoff et al., 2022)). (2)
The same framework with a slightly different finetuned
task(DeTiME Training) does not perform well. (3)
When compressed, our embeddings excel in higher di-
mensions, making them ideal for topic modeling. De-
tailed settings is in Appendix E.

on extensive datasets. FlanT5 (Chung et al.,
2022) enhances TS5 by finetuning instructions
across multiple datasets. Compared to encoder
only (Bert) or decoder only model(GPT), encoder-
decoder models such as FlanT5 allow the encoder
to extract vital input information for output
generation (Rothe et al., 2020).

Prefix tuning (Li and Liang, 2021) modifies a
fixed-length "prefix" of parameters prepended to
the input during fine-tuning, significantly reducing
the number of parameters required. This efficiency
doesn’t compromise performance; it often matches
or surpasses traditional fine-tuning methods across
various NLP tasks. The technique enables the
model to learn task-specific initial hidden states
for LLM, steering the generation process appropri-
ately without hindering the model’s generality due
to the fine-tuning task.

2.2 Sentence Embedding

Contextual embeddings aim to encode sentence
semantics in a machine-readable format. Word em-
beddings like Word2Vec (Mikolov et al., 2013)

9041



and GloVe (Pennington et al., 2014) capture word-
level meaning but struggle with larger text struc-
tures. Advanced models like the Universal Sen-
tence Encoder (USE) (Cer et al., 2018) and In-
ferSent (Conneau et al., 2018) were developed
to better capture sentence nuances. USE employs
transformer or Deep Averages Networks, while
InferSent uses a bidirectional LSTM with max
pooling. Sentence-BERT (Reimers and Gurevych,
2019) utilizes siamese BERT-Networks. However,
these models often struggle to capture context-
dependent sentence meanings, resulting in lower
clusterability. This might be due to their reliance
on contrastive loss on sentence pairs, which might
focus on specific similarities rather than the overall
semantic relationship.

2.3 Topic Modeling

The Neural Topic Model (NTM) (Miao et al., 2016)
employs variational inference but struggles with
semantics and interpretability, while the Embed-
ding Topic Model (ETM) (Dieng et al., 2019) uses
pre-trained word embeddings to capture semantics.
However, NTMs rely on bag-of-word representa-
tions, limiting their ability to capture document
semantics effectively.

The Contextual Topic Model (CTM) (Bianchi
et al., 2021a) uses sentence embeddings and bag
of words as input to reconstruct bag of words em-
beddings, while BERTopic (Grootendorst, 2022)
combines sentence embedding and clustering tech-
niques like UMAP and HDBSCAN for topic gen-
eration. Other models (Han et al., 2023) use both
clustering techniques and reconstruction to create
high-quality topics. Nonetheless, contextual em-
bedding based topic modeling methods lack a re-
construction process or only reconstruct bag of
words representations. These disadvantages limit
its ability to generate relevant content. We exam-
ined other related works in Appendix H

2.4 Diffusion

Drawing inspiration from non-equilibrium ther-
modynamics, the diffusion model adds noise to
the data distribution in a forward process and
learns a reverse denoising process (Sohl-Dickstein
et al., 2015). (Song and Ermon, 2020) further ap-
plied this for high-quality image generation, com-
parable to leading likelihood-based models and
GANSs (Goodfellow et al., 2014), but with more
stable training and generation due to iterative diffu-
sion.

Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020) have garnered attention
for generating high-quality samples sans adversar-
ial training, sometimes surpassing other generative
models. Speedier sampling was achieved in (Song
et al., 2022) with denoising diffusion implicit
models. The success of image generation models
like CLIP (Radford et al., 2021), Stable Diffusion
(Rombach et al., 2022), and Midjourney (Oppen-
laender, 2022) leveraged such diffusion-based
methods. Their use extends to NLP tasks including
natural language generation, sentiment analysis,
and machine translation (Zou et al., 2023). It has
also demonstrated that the diffusion model is able
to generate high-quality text from noise samples in
the continuous embedding space(Li et al., 2022;
Gong et al., 2023; Gao et al., 2022; Lin et al.,
2023b). Yet, diffusion hasn’t been used for topic
modeling as a content generation tool.

3 Methods

The goal of this paper is to create a framework that
leverages encoder-decoder LLM to generate topics
that is highly clusterable and able to generate topic
related sentence. To achieve that, we need to create
an embedding that could be used to generate text
as well as be highly clusterable. Thus, we designed
a specific task and dataset for our use case. We
add CNN encoder and decoder on top of FlanT5 to
generate that can easily fit into neural topic mod-
eling for further dimension reduction. We further
design a variational autoencoder to take the output
of the CNN encoder as input and generate topics
and reconstruct embeddings. This is achieved by
2 autoencoders. The first autoencoder is a varia-
tional autoencoder which generates topic distribu-
tion and reconstructs bag of words representations.
To reconstruct the embeddings from ency. We use
another autoencoder to generate embeddings from
topic distribution and reconstructed bag of words.
The detailed structure and name are in Figure 3.
We do not train or finetune FlanT5 and CNN dur-
ing the topic modeling process which makes our
methods cost-effective. We then leverage diffusion
to generate high quality text that represents the
document.

This section contains four components. First, we
present the dataset and define the finetuned task.
Second, we elaborate on our modified FlanT5 and
the fine-tuning strategy. The third component intro-
duces a variational autoencoder designed for topic
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Figure 2: DeTiME framework. We have 4 encoders and 4 decoders. enc; and ency are compressing the input
document to the lower dimension. encs is to construct topic distribution. dec; is to reconstruct bag of words
representations. enc, is to extract the hidden dimension from the reconstructed bag of words. decs, decs and decy
is to reconstruct/rephrase the input document. In our method, we name the number of dimensions for embedding
Dioken and maximum sequence length N;. The dimension of the compressed vector is Deypeq. The number of
topics equals T'. The dimension of vocabulary is Np,w. The dimension of topic embeddings is Dy opjc.

modeling and generation. Finally, we utilize dif-
fusion to generate content relevant to the derived
topics.

3.1 Tasks and Finetune Dataset

To achieve effective topic modeling methods, we
aim to generate embeddings that are highly cluster-
able and capable of generating document-relevant
topics. We utilize a paraphrase dataset in which
the input and output sentences are equivalent in
meaning. Such equivalent sentences should be-
long to similar topics, thereby aiding us in gen-
erating similar sentences. In contrast to methods
that use the same sentence for both input and out-
put, our task assists the language model in learning
the semantic meaning of sentences rather than sim-
ply memorizing the embeddings. As illustrated in
Figure. 1, the DeTiME-training model represents
the model generated by the task where the input
and output are identical contents. As you can see,
the clusterability of this method is substantially
lower than ours. Thus, rephrase task is effective
to generate clusterable contents. Moreover, the
paraphrase task is not sufficiently easy (Vahtola
et al., 2022) and is less likely to impair the utility
of the language model. We concatenate similar
sentence pairs from the STS benchmark, a dataset

for comparing meaning representations, to form
our dataset (Agirre et al., 2012, 2013, 2014, 2015,
2016). We select pairs with scores above 80 per-
cent of the maximum, yielding a total of 22,278
pairs. This dataset addresses the limitations of ex-
isting paraphrase datasets, which are either domain-
specific (Dolan and Brockett, 2005; Gohsen et al.,
2023), or generated by potentially unreliable lan-
guage models (Shumailov et al., 2023). Our com-
posite dataset is diverse, including data from news,
captions, and forums.

3.2 Modified Encoder Decoder LLM

The motivation for this nested autoencoder struc-
ture stems from the limitation of existing sentence
embeddings, which struggle to reconstruct sen-
tences as they are primarily trained using con-
trastive learning (Reimers and Gurevych, 2019)
rather than reconstruction. In other words, simi-
lar sentences are distributed close to each other in
the learned embedded vector space. We choose an
encoder-decoder model due to its ability to preserve
essential information through encoding process.
Specifically, encoder-decoder approaches, like TS5,
encapsulate vital information in the encoder’s final
hidden state. We can compress this final hidden
state to create our embeddings. FlanT5 (Chung
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et al., 2022) outperforms TS5 in standard tasks by
leveraging a (Wei et al., 2023) and instruction
fine-tuning (Chung et al., 2022). We believe that
the final hidden layer of a fine-tuned FlanT5 can
represent the input information.

The purpose of CNN is to compress output from
FlanT5 encoder to create embeddings for topic
modeling as illustrated in Append F. Using the
encoder output as an embedding leads to exces-
sive length and dimensionality, causing sparsely
distributed vectors, poor clusterability, and issues
in downstream tasks like topic modeling. To ad-
dress this, we incorporate a variational autoencoder
to reconstruct FlanT5’s final encoder hidden layer.
We trained MLP, RNN, and CNN-based autoen-
coders, but MLP introduced too many parameters
and underperformed. LSTM, bidirectional LSTM,
and GRU (Sherstinsky, 2020), with varied attention
schemes (Xia et al., 2021), mostly yielded empty
results or identical output embeddings, likely due
to the FlanT5 encoder’s non-sequential informa-
tion processing. Applying a 1D convolution on
the sequence dimension allowed for dimensionality
reduction, with nearby embeddings showing high
correlation, suggesting possible compression using
a convolutional network on the sequence side. We
can adapt the same framework to other exist-
ing encoder decoder LLM such as BART (Lewis
et al., 2019).

We utilize Parameter Efficient Fine-tuning
(PEFT) because it reduces the number of param-
eters to be fine-tuned, making the process more
efficient and often yielding comparable or even su-
perior performance to traditional fine-tuning (Liu
et al., 2022). We adopt prefix fine-tuning (Li and
Liang, 2021) in our work. During fine-tuning, we
train both prefix fine-tuning related parameters and
the CNN-based autoencoder for the paraphrase
tasks. We then use the output from the CNN-based
autoencoder’s encoder for downstream topic mod-
eling tasks. In our experiment, we use a relatively
small model FlanT5 base (248M parameters) to
illustrate the effectiveness of our framework.

3.3 VAE structure for topic modeling

Our VAE serves two purposes. First, it generates
a highly clusterable topic distribution. Second, it
reconstructs the output of the CNN encoder e, en-
abling it to be input into the decoder of the CNN
autoencoder. Prior research (Srivastava and Sutton,
2017) demonstrated that a Variational Autoencoder

(VAE) aiming to reconstruct a bag of words pro-
duces high-quality topic embeddings. Our VAE has
two encoders and two decoders. encs is used to
encode the output of the CNN encoder (e) into
a topic distribution t. encs has two parts: the
first is a multi-layer perceptron (MLP) that maps
the input to a lower dimension, and the second
consists of two MLPs to generate the mean and
the log of the standard deviation vector of size T:
i, log(c) = encs(e). We sample a latent repre-
sentation using the mean and standard deviation:
n ~ N(u,0), and apply a softmax function to
generate the topic distribution ¢ = softmax(n).

The decs is used to decode the topic distribu-
tion ¢ into a bag-of-words representation X'. Ex-
isting research (Dieng et al., 2020) shows that
topic-word similarity matrix offers better qual-
ity in reconstructions. The decoder consists of
two matrices. We use a vocabulary embedding
matrix ey € RPTopieXNBow where Dropic rep-
resents the dimension of word embeddings and
Npow represents the dimension of the vocabulary.
The decoder ¢ learns a topic embedding matrix
er € RT*Provic The topic-to-word distribution is
denoted as

E = softmax(eTeg) )

X —txE (2)

Here, X' represents the reconstructed bag of words.
The product of the generated topic distribution and
this matrix F yields a bag-of-words reconstruction.

The ency 1s a neural network that encodes the
generated bag of words back to a vector /, hav-
ing the same dimension as the topic embeddings
dimension: ¢ = enc4(X). We add residual con-
nections between two compressed vectors and use
a neural network to generate input embeddings:

¢ = decy(t +t') 3)

It’s necessary to reconstruct input embeddings
(e) to be fed into the decoder to reconstruct the
rephrased input sentence. We believe that the re-
constructed bag of words can enhance the ability of
sentence reconstruction. The residual connection
helps the model leverage both the reconstructed bag
of words and topic distribution to reconstruct input
embeddings. This simplifies our input embedding
reconstruction and ensures that the topic embed-
dings can capture semantic information from the
output of the CNN decoder e. Our VAE leverages
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only bag of words representations and contextual
embeddings. Our VAE can also take other con-
textual embeddings as input. Our loss function
has three components: the reconstruction loss for
the bag of words, the reconstruction loss for input
embeddings using mean square error, and the KL
Divergence for the normal distribution. The loss
for a single input e is as follows:

L= —Xlog(X") + (e — €)? + KL(t|N(u,0))
“4)

3.4 Diffusion for content generation

Our pretrained model can compress the text and em-
bed them in a low-dimensional space while keeping
the semantic information and high-quality cluster-
ing. It is natural to wonder if this pretrained model
can be used to generate topic-guided text. One of
the challenges is that the decompression process in
the pretrained model may induce noise, loss some
information and thus the quality of the generated
text will be impacted. Specifically, the latent di-
mension (i.e. the vector space of 2" before the
decy in Figure 3) is several orders of magnitude
lower than the dimension of embedding vector ¢
in DeTiME. When we reconstruct text from latent
vectors, it may hugely deviate from any reasonable
input for FlanT5 decoder decs.

To overcome this, we have leveraged the dif-
fusion models to denoise the generated text em-
bedding from the topic modeling with structure as
shown in Figure 3. It has demonstrated that the dif-
fusion model is able to generate high-quality text
from noise samples in the continuous embedding
space (Li et al., 2022; Gong et al., 2023; Gao et al.,
2022; Lin et al., 2023b). In the training compo-
nent, we employ a DDPM-scheduled Autoencoder
with residual connections as the diffusor (Ho et al.,
2020) in the text embedding continuous space (i.e.
the space after ency in Figure 3) using the embed-
ded vectors obtained from the pretrained model.
Specifically, during the forward process, the Gaus-
sian noises is gradually added to X according to
a variance schedule (1, ..., 87, the noisy sample at
time step ¢ is expressed as

q(X¢|Xo0) = N (Xp; VauXo,vVI—al) (5)

where &y = II'_, a; with o;; = 1— $3;. Our diffusor
is trained to minimize the squared error between
the predicted and true noise. The predicted noise

z(X¢,t) at time step ¢ is obtained by the diffusor
as following:

21 = X; + Sinusoid(t)

22 _ FCICOMP(ZI)

23 — FCQCOMP(Z2)

2= FCO3(2%)

25 — PORFCONST (4 | .3

2(Xy,t) = FCFFCONST (5 4 22)  (6)

This diffusor consists of 2 fully connected lay-
ers FCYOMP o compress the input and 2 fully-
connected layers FCRECONST (4 reconstruct. We
also add residual connections between compress
and reconstruct layers. Similar to UNet (Ron-
neberger et al., 2015), the Sinusoidal positional
embeddings Sinusoid(t) is used to encode time.

Then, in generating component, this trained dif-
fusor is used to denoise the embedding after the
decy in Figure 3. The intuition behind this denois-
ing process is as follows. The forward process of
diffusion itself is a process that converts the un-
known and complex data distribution into one (nor-
mal distribution in our case) that is easy to sample
from. By adding back the learned noise with small
iterative steps, we are able to take a sample from
the noise subspace (support a simple distribution)
to the data subspace (support the unknown data
distribution). Similarly, for an embedding obtained
from the topic modeling that deviates from the em-
bedding distribution corresponding to the unknown
input data distribution, we should also be able to
take this embedding back to the area supporting the
original embedding distribution.

4 Experimental Results

4.1 Topic Modeling

Dataset Our experiments are conducted on labeled
benchmark datasets for topic modeling: AgNews
(Zhang et al., 2016), 20Newsgroups (Lang, 1995)
and bbc-news (Greene and Cunningham, 2006).
The average document length varies from 38 to
425. We use the text as it is for the contextual
embedding generation. To get bag of words, we
use the word tokenizer from nltk to tokenize, re-
move digits and words with lengths less than 3,
and remove stop words and words that appear less
than 10 time. Additional details on the dataset and
places to download processed data are available in
Appendix B.
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Methods Purity NMI Km-Purity Km-NMI diversity Cy

ETM 0.4677 £ 0.04 0.2502 £ 0.07 0.4063 £ 0.07 0.2400 £ 0.08 0.4177 £0.05 | 0.5594 £ 0.01
GSM 0.2701 £ 0.02 0.0687 £ 0.03 0.3167 £ 0.03 0.1312 4+ 0.03 0.2991 £ 0.01 | 0.3495 £ 0.01
VONT 0.3727 £ 0.02 0.1604 £ 0.03 0.4941 £ 0.05 0.2688 £ 0.05 0.5937 £0.06 | 0.5151 £0.01
NVDM 0.4254 £ 0.04 0.2373 £ 0.07 0.3768 £ 0.07 0.2138 £ 0.05 0.2633 £0.05 | 0.4715 + 0.02
ZT™M 0.3637 £0.003 | 0.1019 £0.003 | 0.3479 £0.003 | 0.1087 £0.001 | 0.6796 £0.03 | 0.6705 % 0.02
CTM 0.4307 £ 0.03 0.1641 £ 0.04 0.4191 £ 0.04 0.1819 £ 0.05 0.7198 £ 0.01 | 0.6966 + 0.02
DeTiME bow | 0.3416 £ 0.004 | 0.1300 &£ 0.009 | 0.5007 4 0.03 0.2591 £ 0.02 0.5362 £ 0.04 | 0.7186 £ 0.004
DeTiME resi 0.3239 £ 0.01 0.1098 £ 0.01 0.4230 £ 0.01 0.1741 £ 0.02 0.5802 £ 0.01 | 0.7435 % 0.002
DeTiME 0.4577 £ 0.03 0.2983 + 0.03 0.5929 + 0.04 0.3463 + 0.05 0.6913 £0.02 | 0.7203 £ 0.01

Table 1: The main results for all clusterability metrics, diversity, and coherence (C,,). The number of topics is 20.
The best and second-best scores of each dataset are highlighted in boldface and with an underline, respectively.
The result represents the average value obtained from three datasets, where each dataset was processed 10 times to

compute the mean and standard deviation.
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Figure 3: The diffusion framework based on the main
framework in Figure 2. In the training component, a
DDPM-scheduled Autoencoder with residual connec-
tions diffusor is trained using the embedding vectors
obtained from the enc,y. In generating part, the trained
diffusor is used to denoise the embedding vectors trans-
formed from the topic vectors hidden space before the
text generation. It’s important to note that we normal-
ized the hidden space before passing it to the decs.

Baseline Methods We compare with common
NTM methods and contextual embedding based
methods. We explain the reasons for choos-
ing these methods in Appendix D. These meth-
ods include: NVDM (Wang and YANG, 2020),
VAE architecture for topic modeling with the en-
coder is implemented by multilayer perceptron, the
variational distribution is a Gaussian distribution;
GSM (Miao et al., 2018), an NTM replaces the
Dirichlet-Multinomial parameterization in LDA
with Gaussian Softmax; ETM (Dieng et al., 2020),
an NTM model which incorporates word embed-
ding to model topics; VONT (Xu et al., 2023e),
a VMF based NTM where they set the radius of
vMF distribution equal to 10; CTM (Bianchi et al.,
2021b) trains a variational autoencoder to recon-
struct bag of words representation using both con-
textual embeddings as well as bag of words repre-
sentation. ZTM (Bianchi et al., 2021b) is similar
to CTM but only use contextual embeddings; De-
TiME resi is the DeTiME model with out resid-
ual connections. The reconstruction of embedding
is hugely dependent on the reconstructed bag of
words; DeTiME bow is the DeTiME model with-
out reconstruction of bag of words and ¢’ is used to
represent topics.

Settings In our experiment setting, The hyper-
parameter setting used for all baseline models and
DeTiME is the same as (Burkhardt and Kramer,
2019). For neural topic modeling and our encoder
and decoder, we use a fully-connected neural net-
work with two hidden layers of half of the hidden
dimension and one quarter of hidden dimension
and GELU (Hendrycks and Gimpel, 2023) as the
activation function followed by a dropout layer. We
use Adam (Kingma and Ba, 2017) as the optimizer
with learning rate 0.001 and use batch size 256.
We use (Smith and Topin, 2018) as scheduler and
use learning rate 0.001. We use 0.0005 learning
rate for the DeTiME bow because the loss may
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overflow when the learning rate is 0.001. We use
word embeddings (Mikolov et al., 2013) to rep-
resent word embeddings on the dataset for vONT,
ETM, and DeTiME and keep it trainable for De-
TiME. For vONT, we set the radius of the vMF
distribution equal to 10. For CTM and ZTM, we
use all-mpnet-base-v2 as our embeddings since it
performs the best in clusterability in Figure 1. We
use the same way to find key words as suggested
by CTM. Our code is written in PyTorch and all the
models are trained on AWS using ml.p2.8xlarge
(NVIDIA K80). Detailed code implementations
for methods and metrics are in Appendix C

Evaluation Metrics We measure the topic clus-
terability, diversity, and semantic coherence of the
model. To measure clusterability, we assign ev-
ery document the topic with the highest probability
as the clustering label and compute Top-Purity
and Normalized Mutual Information(Top-NMI) as
metrics (Nguyen et al., 2018) to evaluate alignment.
Both of them range from 0 to 1. A higher score
reflects better clustering performance. We further
apply the KMeans algorithm to topic proportions
z and use the clustered documents to report pu-
rity(Km-Purity) and NMI Km-NMI (Zhao et al.,
2020). We set the number of clusters to be the
number of topics for the KMeans algorithm. Topic
coherence(C’,) uses the one-set segmentation to
count word co-occurrences and the cosine similar-
ity as the similarity measure. Compared to other
metrics, C), is able to capture semantic coherence.
We only benchmark C), because most of coherence
metrics are similar to each other (Lim and Lauw,
2023). For diversity, we measure the uniqueness
of the words across all topics divided by total key-
words. For each topic, we set the number of key-
words equal to 25. Furthermore, we run all these
metrics 10 times. We report averaged mean and
standard deviation. We also include evaluations on
Perplexity in Appendix G

Results The experiment shows that DeTiME out-
performs all other methods in NMI, Km-NMI, and
Km-Purity, which underscores its ability to gener-
ate highly clusterable topic distributions. Fur-
thermore, DeTiME has the second highest scores
in coherence(The highest score is also a DeTiME
variation), validating the exceptional semantic co-
herence of topics generated from our methods.
Observations reveal that the CTM and DeTiME’s
high diversity scores highlight the benefit of incor-
porating bag of words inputs, enhancing diversity

performance. By eliminating the bag of words
reconstruction components, we found a decrease
in diversity and clusterability, indicating the im-
portance of this component in boosting purity and
NMI. When we removed the residual connection,
we observed an improvement in coherence but a de-
crease in clusterability. This trade-off suggests that
the absence of a residual connection may prevent
the topic distribution from effectively capturing the
information from embeddings, thus reducing clus-
terability. DeTiME resi performs better than ZTM
in clusterability related metrics, which confirms
that our embedding is more clusterable than ex-
isting sentence embeddings.

4.2 Diffusion for content generation

To evaluate how the diffusor improves the qual-
ity of the generated text, we compared the gener-
ated text before and after the diffusion. Specifi-
cally, we utilized the Flesch Reading Ease (FRE),
Flesch-Kincaid Grade Level (FKGL), and Dale-
Chall Readability Score (DCRS) to measure the
readability of the generated text before and after
the diffusion (Goldsack et al., 2022). In general,
a higher FRE (lower FKGL and DCRS) indicates
that the text is easier to read. In this experiment, we
generated 1000 random topic vectors and passed
them to decsy, then the denoising process is fol-
lowed to generate text. The main results are shown
in Table 2. As observed, after the denoising pro-
cess, the FRE increases significantly across all
datasets, which indicates that diffusion makes the
content easier to understand. Meanwhile, the value
of FKGL and DCRS decreases from 1" = 500 to
T = 1000. One of the reasons for the low score
of FKGL and DCRS at T' = 0 is that some of the
samples contain only repeated words, making them
easy to understand. Overall, after more steps in dif-
fusion, the generated text becomes more readable
for a lower grade. This experiment demonstrates
that our generated content achieves higher read-
ability, indicating the potential of our frame-
work to generate topic-relevant content.

Human Evaluation To ensure the generated
content is valuable to humans, a human evalua-
tion was conducted with regard to the text gener-
ated after diffusion, as seen in Figure 3. In this
evaluation, we generated 400 pieces of text. Each
piece was evaluated for fluency, grammar, and re-
dundancy by three different human annotators, as
suggested by (Celikyilmaz et al., 2021). We com-
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Datasets 20Newsgroups bbc-news AgNews

Time point | T'=10 T =500 | T=1000 | T =0 T =500 | T=1000 | T=0 T =500 | T = 1000
FRE -25.9600 | 51.1390 54.2467 6.8600 36.5889 60.9407 36.6200 | 64.1707 63.1074
FKGL 53.2000 10.7017 9.8955 30.2000 | 12.6860 9.1856 8.4000 9.0876 8.6781
DCRS 7.3500 8.4758 7.8822 4.0100 8.3304 8.2010 66.8500 | 8.1890 8.1059

Table 2: The average readability scores at different time steps during the denoising process. A general increase in

readability is observed.

pared our results with a baseline through t-tests
and found that the generated text exhibited fluency
and grammatical correctness with statistical signifi-
cance (p < le — 14). This demonstrates that our
generated contents are of high quality. More de-
tails about the survey setup, results, and examples
of generated text can be found in Appendix A.

5 Conclusion and Future Work

We have developed a framework DeTiME for gen-
erating highly clusterable embeddings, leveraging
the strengths of paraphrase tasks, FlanT5, and CNN.
In addition to this, we introduced a variational au-
toencoder structure capable of reconstructing em-
beddings while simultaneously producing highly
coherent, diverse, and clusterable topics. Our de-
sign incorporates a diffusion process for generating
content that provides representative depictions of
various topics. The flexibility of our embedding
generation structure allows for easy adaptation to
other encoder-decoder language model architec-
tures, eliminating the need for retraining the en-
tire framework, thereby ensuring cost-effectiveness.
Additionally, our variational autoencoder structure
is versatile, and capable of being applied to any
contextual embeddings. Other methods could fur-
ther improve with larger LLM.

Moving forward, we aim to further improve the
performance of our embeddings by training on
larger models such as Flan-T5-XL. Benchmark-
ing other Pre-training with Fine-Tuning (PEFT)
methods, such as LORA, may also enhance our
system’s performance. Given the high clusterabil-
ity of our embeddings, we plan to extend our work
to semi-supervised document classification (Xu
et al., 2023b,c; Balepur et al., 2023; Lin et al.,
2023a). This framework could be applied to iden-
tify the most representative documents within ex-
tensive document collections. This functionality
could make our model suitable for generation topic
guided generation (Xu et al., 2023a) Finally, we en-
visage utilizing this framework to generate superior
summarizations for large documents. This could be
achieved by training a decoder for summarization,

generating a summarization for each topic, and
subsequently concatenating them. This framework
can also be extended to hierarchical topic model-
ing (Chen et al., 2023; Shahid et al., 2023; Eshima
and Mochihashi, 2023), mitigate data sparsity for
short text topic modeling (Wu et al., 2022), gen-
erate topic-relevant and coherent long texts (Yang
et al., 2022), and construct a network of topics to-
gether with meaningful relationships between them
(Byrne et al., 2022).
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6 Limitations

While our study has made significant strides in
its domain, we acknowledge certain limitations
that present themselves as opportunities for future
research and optimization. Firstly, we have not
yet benchmarked our model with other encoder-
decoder frameworks such as BART, or with alter-
native PEFT methods like LORA, leaving room
for potential performance enhancement. We be-
lieve that the diversity could further improve with
diversity aware coherence loss (Li et al., 2023).
Secondly, our model has yet to reach the full poten-
tial of FlanT5 due to current model size constraints.
This implies that scaling up the model could fur-
ther improve its performance. Thirdly, we have
not fine-tuned the number of dimensions for the
CNN encoder output or explored structures beyond
basic CNN, LSTM, and MLP, both of which could
enhance our current performance. Fourthly, We
noted a relatively high variance in DeTiME’s per-
formance, we interpret this as a consequence of the
complicated autoencoder structure. Lastly, we have
not benchmarked all coherence metrics. Though
many metrics have similarities and some may not
consider semantic word meaning, a more extensive
benchmarking could provide a richer evaluation
of our approach. Despite these limitations, each
of these points serves as a promising direction for
future research, thereby helping to further elevate
our model’s capabilities.
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Appendix
A Qualitative study

In this appendix, we mainly discuss how we set
up the qualitative survey for diffusion-based text
generation.

As mentioned in the main content, we mainly
measure the fluency, grammar, and redundancy of
the generated text. Based on this reference (Ce-
likyilmaz et al., 2021), we have designed the corre-
sponding questions in Table. 3. For each question,
five answer options are listed from strong negative
to strong positive, and a score is assigned to each
option. In this survey, we have sampled 400 one-
hot topic vectors and generated text following the
generating component in fig. 3 for each datasets.
We then leverage the Amazon Mechanical Turk to
evaluate the quality of each generated sentence. In
this process, We have requested three independent
reviewers to mitigate the individual bias, and the
average score is calculated for each sample. The
histogram of the collected scores is shown in fig.4.
At the end, we have employed a t-test to evaluate
if this survey is statistically significant. The null
hypothesis has been tested against the one-sided al-
ternative that the mean of the population is greater
than O for fluency and grammar, and the null hy-
pothesis against the one-sided alternative that the
mean of the population is less than 1 for redun-
dancy. The p < le — 14 have been obtained and
thus we can reject the null hypothesis for all of
them.

We use the ratings and word intrusion tasks as
human evaluations of topic quality. We recruit
crowdworkers using Amazon Mechanical Turk in-
side Amazon Sagemaker. We pay workers 0.024
per task. We select 3 crowdworkers per task for
400 generated contents per task.

In Table.4 below, we present a comparison be-
tween a sample text generated without the denois-

Fluency

= 20News-groups
=3 bbcnews
= AgNews

Count
S
8

-05 0.0 05 1.0
Average fluency score per sample

Grammar

Count

-0.5 0.0 0.5 1.0
Average grammar score per sample

Redundancy

1 20News-groups
= bbc-news
=1 AgNews

Count

-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Average redundancy score per sample

Figure 4: The histogram of survey scores from fluency,
grammar, and redundancy perspectives.

ing process and five generated text with denoising
from the same topic vector z”.

B Datasets

We have created a huggingface account to upload
all relevant data used for training our modified
FlanT5: https://huggingface.co/datasets/
xwjzds/pretrain_sts

We use the same account to upload all
raw data for topic modeling as you can see:
https://huggingface.co/datasets/xwjzds/
ag_news, https://huggingface.co/datasets/
xwjzds/bbc-news, and https://huggingface.
co/datasets/xwjzds/20_newsgroups. We
have uploaded text after preprocessing here:
https://huggingface.co/datasets/xwjzds/
ag_news_lemma_train, https://huggingface.
co/datasets/xwjzds/bbc-news_lemma_train,
and https://huggingface.co/datasets/
xwjzds/20_newsgroups_lemma_train. We have
uploaded words used for bag of words here:
https://huggingface.co/datasets/xwjzds/
ag_news_keywords, https://huggingface.co/
datasets/xwjzds/bbc-news_keywords, and
https://huggingface.co/datasets/xwjzds/
20_newsgroups_keywords. Overall, we use 3
datasets that combines different domain to evaluate
the performance.

(1) AgNews We use the same AG’s News dataset
from (Zhang et al., 2016).Overall it has 4 classes
and, 30000 documents per class. Classes categories
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Table 3: The setup of survey

metrics question

options

Fluency

Is the language in the sentence fluent?

not fluent at all (-2)
not fluent (-1)
neutral (0)

fluent (1)

very fluent (2)

Grammar

How grammatical the generated text is?

not grammatical at all (-2)
not grammatical (-1)
neutral (0)

grammatical (1)

perfectly grammatical (2)

Redundancy

How repetitive or redundant the generated text is?

not redundant at all (-2)
not redundant (-1)
neutral (0)

redundant (1)

very redundant (2)

Table 4: The generated text with and without denoising

The text generated without denoising

The text generated with denoising

idea."

"I’m not sure if this is a good idea or not, but I’'m sure it’s a good

"the act of removing a bacteriophage from a plant
is a source of danger."

"a few years ago a blond man was driving a honda
civic car."

"the act of putting a letter or a symbol in a docu-
ment."

"the man, who is a philanthropist, died in a car crash
in april, 2000."

"the act of stealing a car."

include World, Sports, Business, and Sci/Tech.

(2) bbe-news (Lang, 1995) has 2225 texts from
bbc news, which consists of 5 categories in total.
The five categories we want to identify are Sports,
Business, Politics, Tech, and Entertainment.

(3) 20Newsgroups (Lang, 1995) is a collection
of newsgroup posts. We only select 20 categories
here. Compare to the previous 2 datasets, 20 cate-
gories newsgroup is small so we can check the per-
formance of our methods on small datasets. Also,
the number of topics is larger than the previous
one.

C Code

Code for our architecture Enc; and Encs
is modified from https://huggingface.
co/transformers/v3.0.2/_modules/
transformers/modeling_t5.html#T5Model.
forward by modifying the forward process.
Training process for modified TS5 We use
google/flan-t5-base as our basic model. We use
20 percent data as the validation set. We train
20 epochs or when validation loss deteriorates
consistently for 3 epochs. We set the number of
virtual tokens equal to 20. We set the learning
rate to 0.01. For the CNN encoder we have 2

1-dimension convolution layers with GELU as the
activation function. In channel is 256, 32, and
4. Kernal size is 3 and stride is 1 and padding
is 1. We set dropout after the convolution layer
with a dropout rate equal to 0.2. We have not
systematically finetuned these parameters. We
trained our modified FlanT5 for 3 times and choose
the lowest validation loss model as our model to
run topic modeling. It took less than 20 hours for a
single gpu to finetune task.

Code for comparable methods Code we used
to implement GSM is https://github.com/
YongfeiYan/Neural-Document-Modeling with
topic covariance penalty equals to 1. The code
we used to implement ETM is https://github.
com/adjidieng/ETM ntm.py in zip file is where
we rewrite and includes all relevant topic modeling
methods.

The code we used to implement CTM
and ZTM is https://github.com/MilaNLProc/
contextualized-topic-models For CTM and
ZTM, We set the number of samples for topic pre-
dictions equal to 5 and used their default prepro-
cessing methods. The code we used to implement
vONT 1is derived from https://github.com/
YongfeiYan/Neural-Document-Modeling The
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code we used to sentence embeddings vectors
is from huggingface: https://huggingface.co/
sentence-transformers gsm-vae.py is where we
implement our version of topic modeling.

Code for metric diversity is implemented us-
ing scripts: https://github.com/adjidieng/
ETM/blob/master/utils.py line 4. (), is im-
plemented using gensim.models.coherencemodel
where coherence =C',’, Top-NMI is implemented
using metrics.normalizedutual;n foscore from
sklearn. Top-Purity is implemented by definitions.
km based is implemented by the sklearn package
kmeans.

D Compared Methods Selection

Sentence Embedding We choose GTR-T5 and
Sentence-T5 because they are the only two em-
beddings that we are aware of TS5 as base models.
They also perform well in clustering tasks (Muen-
nighoff et al., 2022). We choose Mpnet because it
is commonly used in sentence embeddings and is
the second best method in clustering. Benchmark-
ing all these methods shows that our method is
superior in sentence embeddings when the number
of topics is large.

Topic Modeling There are many neural topic
modeling methods but no standard benchmarks.
For neural topic modeling methods, we choose
NVDM because it performs well in (Doan and
Hoang, 2021). We choose ETM because it is com-
monly used and is the first one to leverage word em-
beddings to topic modeling. We choose VONT (Xu
et al., 2023d) because it performs well in cluster-
ability topic modeling metrics. We choose GSM
because it also applied softmax after sampling from
the gaussian distribution. We think it is a similar
comparison.

For contextualized topic modeling, we choose
CTM and ZTM because they are the best perform-
ing ones with code available. We exclude methods
such as Topic2Vec or Berttopic because it is hard to
define the number of topics or get the embeddings
of documents to calculate clusterability. While
many methods are derived from CTM, they either
do not have code or are hard to use. For example,
(Wu et al., 2023) is hard to process data for bbc
news in the same format. In the future, we would
like to benchmark methods such as (Costello and
Reformat, 2023a) which leverage reinforcement
learning, (Wang et al., 2023) which leverage adver-
sairal training . Other methods such as (Han et al.,

2023) have no code. We only include methods that
leverage language models to do an apple-to-apple
comparison and exclude methods using graph neu-
ral network (Zhou et al., 2020) or reinforcement
learning (Costello and Reformat, 2023b).

E Settings for clusterability evaluations

Compare existing sentence embedding methods
with our proposed embedding on standard clus-
terability metrics such as purity and NMI on Ag-
News dataset (Zhang et al., 2016). We compare our
methods with GTR-T5 (Ni et al., 2021a), Sentence-
TS5 (Ni et al., 2021b) and Mpnet (Song et al., 2020).
We choose the largest version for all of them. De-
TiME training is the embedding finetuned on the
same dataset but we use the same input and output
instead of rephrasing. We train a 2 layer MLP neu-
ral network variational autoencoder without soft-
max suggested by (Miao et al., 2017). We choose
the mean to represent the hidden dimension of the
input. We train each embedding 10 times to get
the confidence band and average. The consistency
of DeTiME’s clusterability from 20 to 50 epochs
suggests its potential suitability for topic modeling
for the large number of topics.

F the purpose of CNN encoder

The theoretical advantage of CNN is to extract local
features, reduce dimension reduction and be robust
to noise(Li et al., 2021). In our cases, it helps to
further extract important and local features from
LLM encoder output and reduce dimensions.

The purpose of CNN is to compress output from
FlanT5 encoder to create embeddings for topic
modeling. The output of FlanT5 encoder is 256
(maximum sequence length used in our pre-train
model) * 768 (embedding dimension) = 393216.
To illustrate our points, we rerun the same cluster-
ability experiment but replacing CNN encoder with
MLP. The topic purity drops from 0.614 to 0.396
and NMI drops from 0.31 to 0.05. This shows that
CNN encoder helps the framework to achieve high
clusterability and suitable for topic modeling. For
efficiency, since the input dimension of encoder is
393216 and the output is 3072. MLP will require
parameters 1207962624 parameters while CNN
only reuqires 49624 parameters. This makes CNN
is easy to load and much effcient to train.

This dimension is too high for any NTM to ex-
tract information. Thus, we need to compress the
obtained embeddings for topic modeling. Here,
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using MLP only is hard to build representations
that incorporate information across the entire in-
put text sequence as we just concatenate the em-
beddings of each tokens and then fed into MLP.
In the same time, the authors in (Beltagy et al.,
2020) have shown that a very lightweight convolu-
tion can perform competitively to the best reported
self-attention results. This shows that CNN is ef-
fective on extracting information from attention
layer. Based on this, we thus leverage CNN en-
coder to build representations that capture infor-
mation across the text sequence. Also, by reduc-
ing the number of output channels, we are able to
obtain embeddings with reduced dimensions (4 *
768=3072 in our method), which hugely speed up
the training.

G Perplexity Evaluation

We have measured the perplexity for our method
and other methods on the dataset AgNews, and the
results are VNTM: 1479.32, ETM 692.17, NVDM:
1734.28, GSM 684.31 DeTiME: 612.71. This
strengthen our conclusion of our work that De-
TiME is promising in topic modeling. We use the
same set up as (Gupta and Zhang, 2021) for this
experiment.

Perplexity is not applied in topic-aware content
generation and has not been used in topic modeling
lately. We had not reported perplexity as the topic-
aware content is generated from the sampled latent
topic embeddings, where the ground truth (i.e. text
sequence ground truth) is not available. The reason
we used sampled latent topic embeddings is that
we are mainly focus on how diffusion can improve
the quality of topic aware text generation.

H Related Work

To the best of our knowledge, we are the first to fine-
tune and modify encode-decoder LLM (i.e. Flan-
T5) in topic modeling, and the first one to use dif-
fusion in topic aware content generation with topic
modeling, and integrate both in one unified frame-
work. We do not find simpler structures to solve
topic modeling and topic aware generation using
encoder decoder LLM. For topic aware content
generation using diffusion, there is no compara-
ble work and we have to establish all baselines
ourselves for this. We have list other comparable
works below and how our work distinguish from
them:

(Cui and Hu, 2021) has leveraged Bert as part of
encoder. However, they used NTM that taken bag
of words as input and Bert/Graph neural network as
encoder. We instead use encoder and decoder LLM
and we take embeddings from encoder as input to
Neural Topic Modeling. Also, their goal is sum-
marization but our goal is topic aware generation.
(Ailem et al., 2019) propose a new decoder where
the output summary is generated by conditioning
on both the input text and the latent topics of the
document. The latent topics, identified by a topic
model such as LDA, reveals more global semantic
information that can be used to bias the decoder to
generate words. In our work, we have leveraged a
more promising topic modeling based on encoder-
decoder LLM. Also, the diffusion model is used
to generate high-quality topic aware text, instead
of summarization. (Zhang et al., 2023) proposed
to directly generating the desired summary sen-
tence representations with diffusion models and ex-
tracting sentences based on sentence representation
matching. Even though this work leveraged the dis-
tribution of embedded vectors of text for matching,
it does not leverage the topic modeling. In compar-
ison, our work have leveraged topic modeling, and
also is able to generate high-quality topic-aware
text instead of extractive summarization.
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