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Abstract

Language models (LMs) that jointly generate
end-task answers as well as free-text rationales
are known as self-rationalization models. Re-
cent works demonstrate great performance gain
for self-rationalization by few-shot prompt-
ing LMs with rationale-augmented exemplars.
However, the ability to benefit from expla-
nations only emerges with large-scale LMs,
which have poor accessibility. In this work, we
explore the less-studied setting of leveraging
explanations for small LMs to improve few-
shot self-rationalization. We first revisit the
relationship between rationales and answers.
Inspired by the implicit mental process of how
human beings assess explanations, we present
a novel approach, Zero-shot Augmentation of
Rationale-Answer pairs (ZARA), to automat-
ically construct pseudo-parallel data for self-
training by reducing the problem of plausibility
judgement to natural language inference. Ex-
perimental results show ZARA achieves SOTA
performance on the FEB benchmark, for both
the task accuracy and the explanation metric.
In addition, we conduct human and quantita-
tive evaluation validating ZARA’s ability to
automatically identify plausible and accurate
rationale-answer pairs.1

1 Introduction

Driven by the concerns of whether the decisions
made by the artificial intelligence models are trust-
worthy, providing free-text, natural language expla-
nations (NLEs) has drawn substantial attention in
the research community (Camburu et al., 2018; Li
et al., 2018; Rajani et al., 2019; Aggarwal et al.,
2021; Chen et al., 2022). Comparing with popular
explanation techniques within the input scope, e.g.,
attributing feature importance scores to tokens (Li
et al., 2016; Godin et al., 2018) or extracting frag-
ments of text highlights (Lei et al., 2016; Jain

1https://github.com/ntunlplab/ZARA

Answer: (B)

Rationale: 
You can’t drive a computer.

Question: 
Which sentence is more nonsensical? 
(A)  I drove my car to the gas station. 
(B)  I drove my computer to the gas station.
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Figure 1: The role of our plausibility agent. As the main
component of ZARA, the agent, i.e, the approximator,
imitates how humans assess the plausibility of explana-
tions, in an explicit fashion.

et al., 2020), free-text explanation2 is more expres-
sive, inherently apt for human comprehension and
brings richer information in addition to input con-
text (Camburu et al., 2018; Wiegreffe et al., 2021).
Yet, the construction of NLE datasets is expensive
and challenging due to quality control issues such
as inconsistency and under-specification (Wiegr-
effe and Marasovic, 2021). The development of in-
terpretable NLP systems which can provide NLEs
in few-shot is necessitated.

Recent works (Wei et al., 2022; Wang et al.,
2022b; Lampinen et al., 2022) achieve few-shot
self-rationalization, i.e., jointly generating free-
text explanations and end-task labels, by extending
the usage of NLEs to compose chain-of-thought
(CoT) input-rationale-output demonstrations for
prompt-based learning. Comparing with standard

2We use the term “free-text explanation” and “natural lan-
guage explanation” interchangeably; and the term “explnan-
tion” can also refer to the rationale generated by the model.
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prompting (i.e., without rationales), prompting
with rationale-augmented exemplars triggers LM’s
complex reasoning ability, significantly boosting
the end-task performance. However, the main draw-
back is that only excessively large LMs (generally
100B-plus) demonstrate this ability to leverage ex-
planations, which sharply emerges when scaling
model size sufficiently (Wei et al., 2022; Lampinen
et al., 2022).

In this work, we explore the less-studied setting
of improving few-shot self-rationalization only re-
lying on affordable, small LMs (200M∼2.7B). We
adopt self-training (Scudder, 1965), a simple yet
effective methodology that is not practical for large
LMs in most real-world scenarios. We first investi-
gate the relationship between the generated expla-
nations and end-task predictions, and find plausible
explanations are usually paired with correct label
predictions. Namely, plausibility is a strong indi-
cator for answer correctness. Motivated by this
finding, we propose Zero-shot Augmentation of
Rational-Answer pairs (ZARA) for self-training.

Specifically, we reduce the problem of assessing
rationale plausibility to the task of natural language
inference (NLI), and propose a zero-shot plausi-
bility approximator towards automatic assessment
of the generated rationales, without requiring any
ground-truth labels or golden explanations. The
approximator can be viewed as an agent for plau-
sibility judgement. As illustrated in Figure 1, to
determine the plausibility of the rationale, humans
implicitly ask themselves whether they can draw
conclusions to the predicted answer by understand-
ing the task, the input question, and the supported
rationale with their logic and reasoning. To ap-
proximate such process explicitly, the approximator
leverages the ability of textual entailment to yield
a probability score indicating the explanation plau-
sibility. Connecting to the self-training paradigm,
we first train a self-rationalization model by few-
shot prompt-based learning with natural language
prompts, and leverage the approximator to collect
pseudo-parallel data, i.e, unlabeled inputs paired
with high-confident rationale-answer pairs, for cre-
ating an augmented training set which is then used
to learn an improved self-rationalization model.

With various small-size LMs, experiments show
our approach notably improves the FEB bench-
mark3 (Marasovic et al., 2022)—a recently pro-

3https://github.com/allenai/feb (Licensed under
the Apache License 2.0.)

posed standardized few-shot self-rationalization
benchmark—with 3.4%∼ 5.1% and 3.0%∼ 5.8%
for task accuracy and the associated explanation
metric, respectively. Additionally, we validate the
approximator’s ability with both human and quan-
titative evaluations. The results suggest our ap-
proximator can effectively select plausible expla-
nations that lead to higher accuracy for end-task
predictions. In summary, our main contributions
are three-fold:

1. We show how to leverage explanations for
small LMs by an in-depth analysis of the rela-
tionship between rationales and task labels.

2. We propose ZARA, a novel approach for
small LMs to improve self-rationalization
with self-training.

3. Our NLI-based approximator sheds light on
the potential of automatic evaluation for expla-
nation plausibility and post-hoc verification
for label accuracy.

2 Background and Motivation

Given a trained self-rationalization model fθ(·)
and an input sequence x, we denote a prediction
fθ(x) = (r̂, â), where r̂ is the generated free-text
rationale and â is the predicted answer, typically a
classification label. Note that r̂ and â are parsed
from the output sequence of fθ(x). Evaluation of a
self-rationalization model requires assessing both
â for the end-task performance and r̂ for the quality
of the explanation. With the lack of an ideal and
unified automatic metric, the current gold standard
for determining the quality of r̂ is to conduct a hu-
man evaluation to check its plausibility (Marasović
et al., 2020; Kayser et al., 2021; Wiegreffe et al.,
2022; Marasovic et al., 2022). An ideal r̂ is con-
sidered to be plausible if it is able to justify â, that
is, providing a logical and reasonable explanation
supporting the model’s prediction.

However, if r̂ is deemed plausible by humans,
it does not mean â is correct. As the example in
Table 1, commonsense would know “bed" is likely
the answer, yet the generated explanation for the
corresponding prediction “couch" is still plausi-
ble. Plausibility illustrates the degree of convince-
ment towards the model’s prediction, regardless of
whether the model is actually making an accurate
prediction or not (Jacovi and Goldberg, 2021).4

4For a confounder-free setting, prior works (Kayser et al.,
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Figure 2: The percentage of correct/incorrect answers when explanations are plausible and not plausible. The y-axis
denotes the percentage of explanations deemed plausible/not plausible by humans.

Instance

Question: Danny is a human. He needed to catch a flight, but stayed
too long in an object made for humans to relax in. Where might he
have been?
Choices: a. bathroom b. couch c. airport d. homes e. bed

Prediction(â): couch
Label(a): bed
Explanation: Couch is an object made for humans to relax in. Danny
might have been in couch.

Table 1: A plausible but inaccurate prediction of an
instance from ECQA dataset output by our model.

Naturally, generating plausible explanations that
can justify the wrong answers should be much
harder comparing to justifying the correct answers.
Since such r̂ usually demonstrates a slight pivot
from commonsense yet still introduces a sound rea-
son to support the inaccurate â. We hypothesize
this—plausible explanation towards inaccurate end-
task prediction—is not the circumstance in most
cases of (â, r̂). In other words, if r̂ is considered
to be plausible, it is likely that â is a correct pre-
diction. Hence, the first research question arises:
RQ1: “To what extent do plausible explanations
imply correct label predictions?" And if we could
verify RQ1, the follow-up question would be RQ2:
“Is it possible to automatically identify plausible r̂
and utilize (r̂, â) for further model improvement?"

In the following of our work, we answer RQ1 by
inspecting the interrelationship between the plau-
sibility of r̂ and the correctness of â (Section 4),
where we show evidence supporting the linkage to
RQ2. Ergo, we propose ZARA coupled with self-
training to accomplish RQ2 (Section 5), improving
few-shot self-rationalization models.

3 Datasets and Tasks

We adopt FEB (Marasovic et al., 2022), a newly
proposed few-shot self-rationalization benchmark,

2021; Marasovic et al., 2022) only evaluates r̂ with â =
a, i.e, explanation for the correctly predicted answer. This
may overestimate the quality of explanations (Wiegreffe et al.,
2022).

as the dataset for experiments throughout this
work. FEB consists of four sub-tasks from ex-
isting English-language explainable datasets with
free-text explanations: (1) Nonsensical sentence
selection (COMVE; Wang et al., 2019). Given two
sentences, select the sentence that is less likely
to make sense. (2) Offensiveness classification
(SBIC; Sap et al., 2020). Classify a given post as
offensive or not. (3) Natural language inference
(E-SNLI; Camburu et al., 2018). Classify the re-
lationship between two sequences as entailment,
neutral, or contradiction. (4) Multiple-choice com-
monsense QA (ECQA; Aggarwal et al., 2021).
Given a question, select the correct answer from
five choices.

The goal for each sub-task is the same, namely,
to predict a label for the underling classification
task and generate a free-text explanation support-
ing the model’s decision. Each sub-task has 60
episodes, and each episode is a train-test split with
48 training examples and 350 evaluation examples.
This design of no extra validation data encompasses
the FLEX principles (Bragg et al., 2021) for per-
forming robust few-shot NLP evaluation to avoid
per-episode hyper-parameter tuning, which could
inflate the evaluation results considerably as shown
in previous work (Gao et al., 2021). Hence, a single
set of hyper-parameter is used across all episodes.

4 Correlation between Plausibility and
Correctness

As described in Section 2, following we attempt
to answer RQ1 by measuring the correlation be-
tween the plausibility of r̂ and the correctness of
â. We conduct human studies on results from a
self-rationalization model (without self-training)
using the FEB dataset. We adopt prompt-based fine-
tuning with natural language prompt on a sequence-
to-sequence language model to perform few-shot
self-rationalization.

For each episode of the sub-task, we train a self-
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Example
choice1: i drove my car to the gas station.
choice2: i drove my computer to the gas station.
Answer: choice2
Rationale: you can’t drive a computer.

Post: just when i thought women couldn’t get any
stupider.
Answer: offensive
Rationale: this post implies that women are stupid.

Mapping Mapping
Premise: [Rationale]
Hypothesis: [Answer’s sentence]
NLI Class: Contradiction

Premise: The post: [Post]
Hypothesis: The post is [Answer] because
[Rationale]
NLI Class: Entailment

Mapped example Mapped example
Premise: you can’t drive a computer.
Hypothesis: i drove my computer to the gas station.

Premise: The post just when i thought women
couldn’t get any stupider.
Hypothesis: The post is offensive because this post
implies that women are stupid.

E
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N
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Example

E
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Q
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Example
Premise: a woman in a black mesh skirt plays
acoustic guitar.
Hypothesis: a woman is wearing black.
Answer: Entailment
Rationale: The woman is wearing a black mesh,
she is wearing black.

Question: what is a place that has a bench nestled
in trees?
Choices:(a) state park (b) bus stop (c) bus depot (d)
statue (e) train station
Answer: (a)
Rationale: state park is a protected public garden.
public gardens generally have benches for people
to sit and relax. gardens are places with lots of
trees and plants.

Mapping Mapping
Premise: [Premise] [Rationale].
Hypothesis: [Hypothesis]
NLI Class: [Answer]

Premise: Because [Rationale]
Hypothesis: The answer of the question
“[question]" is [Answer’s choice].
NLI Class: Entailment

Mapped example Mapped example
Premise: A woman in a black mesh skirt plays
acoustic guitar. The woman is wearing a black
mesh, she is wearing black.
Hypothesis: A woman is wearing black.

Premise: Because state park is a [...] gardens are
places with lots of trees and plants.
Hypothesis: The answer of the question “what is
a place that has a bench nestled in trees?" is state
park.

Table 2: The mapping design for the four sub-tasks with non-cherry-picked examples. See Section 3 for description
about each sub-task.

rationalization model with the training set and gen-
erate rationale-answer pairs on the test set. We
then gather all predictions from the 60 episodes
and randomly select 350 examples for human stud-
ies. We present the description of the task, the input
instance x and the rationale-answer pair (r̂, â) for
the annotators, and ask them to judge the plausi-
bility of r̂, i.e., whether it can justify â. Following
prior works (Marasović et al., 2020; Marasovic
et al., 2022), the annotator determines the plausi-
bility by assigning labels from {“no", “weak no",
“weak yes", “yes"}. We then map labels to plausi-
bility scores {1, 2, 3, 4} and instances with average
scores above 2.5 are deemed plausible. We provide
inter-annotator agreement details in Appendix C.

The results are shown in Figure 2. We can ob-
serve that for all sub-tasks, when the explanations

are judged as plausible, they are much more likely
paired with correctly predicted answers in constrast
to implausible ones. This verifies our hypothesis
(discussed in Section 2) and shows plausibility to
be a strong signal for correct label predictions. Our
results also align with the prior work (Wiegreffe
et al., 2021), where they find self-rationalization
models demonstrate high label-rationale associa-
tion against robustness testing. In conclusion, iden-
tifying (r̂, â) pairs that have plausible r̂ spurs great
potential for boosting model performance, and con-
nects us to RQ2.

5 Zero-Shot Augmentation of
Rationale-Answer Pairs

As shown in Section 4, plausible explanations im-
ply that the corresponding task predictions are more
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Figure 3: Overview of the self-training paradigm for ZARA. A language model is fine-tuned to generate predictions
for unlabeled instances, which are then mapped to NLI formats. The approximator then identifies high-confident
(likely plausibile) ones as augmentation for learning an new model.

likely to be correct. Following we present ZARA—
the approach towards automatically judging the
plausibility of generated explanations, and lever-
ages the high confident rationale-answer pairs to
boost model performance via self-training.

5.1 Reduce plausibility judgement to NLI

Given a rationale-answer pair (r̂, â) output by
a self-rationalization model, a human evaluates
whether r̂ is plausible by understanding the input
context and the task objective, and applying reason-
ing ability to determine if r̂ justifies â. Specifically,
humans implicitly form propositions from the input
context and rationale by understanding the prob-
lem (the task). Then do inference, i.e., apply logic
and reasoning to draw conclusions, in their mind
to decide if the propositions support the predicted
answer. This mental process of assessing plausibil-
ity resembles determining the relationship between
a premise and a hypothesis. Driven by this for-
mulation, we reduce the problem of judging the
plausibility of explanations to the task of natural
language inference (NLI), and construct a zero-
shot approximator, which leverages existing NLI
models to automatically approximate the human
judgement of plausibility.

NLI Mapping. The formulation as NLI requires
the mapping of (x, r̂, â) → (p, h), where x, p, and
h are the input instance, premise, and hypothesis,
respectively. We manually create the mappings for
each FEB sub-task as shown in Table 2. Construct-
ing such mappings can be easily achieved with
minimal effort 5 compared with human evaluation
on all r̂. Consider the COMVE example in Table 2,
the goal is to select the nonsensical sentence from
two sentences. As we can see “i drove my computer
to the gas station." is nonsensical, and the rationale

5One can simply design the mapping by observing the
training data.

justifies it by stating “you can’t drive a computer.",
which explains why the answer is nonsensical by
providing information refuting the answer sentence,
resulting in a contradiction relationship between
the two. Hence, the approximator can estimate the
degree of plausibility by referring to the score of
the contradiction class.

The approximator. For developing the approxima-
tor, we ensemble three state-of-the-art pre-trained
NLI models by averaging their output scores for
the decision of NLI class. Specifically, we adopt
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2020), and BART (Lewis et al., 2020), trained on
the MultiNLI corpus (Williams et al., 2018), one
of the largest available NLI dataset. The approxi-
mator is zero-shot, i.e., all three models are used
off-the-shelf (See Appendix A for details) without
any fine-tuning on our dataset, accommodating the
few-shot, data scarcity setting.

5.2 Self-training

In the self-training paradigm, a trained model
augments its own training set by constructing
pseudo-parallel data with predictions on unlabeled
instances, where the most confident predictions
are collected as new training examples and used
to re-train an improved model. For applying
self-training, most works focus on classification
tasks (Miyato et al., 2018; Xie et al., 2020; Gera
et al., 2022) with common strategies based on
operations of confidence scores such as probabil-
ity values to select new examples. E.g., finding
predictions that are far from the decision bound-
ary (Slonim et al., 2011).

However, the adoption of self-training for self-
rationalization differs from typical classification
tasks in two aspects: (1) Compared with fixed clas-
sification labels, the target space of neural sequence
generation is much more complex. (2) The selec-
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tion requires considering both the task label â and
the rationale r̂ with their relationship. By a proxy
model, i.e, the approximator, we could reduce the
target dimensions to fixed class labels to address
the former. For the latter, we could resolve it by
only considering the plausibility of r̂ since plausi-
ble r̂ likely implies correct â as shown in Section 4.
Following we introduce our self-training paradigm
of ZARA—a train-judge-train procedure. See Fig-
ure 3 for illustration.

Given an episode E consisting of a training split
Dtrain and a test split Dtest, where an example in E
is an input-rationale-answer tuple (x, r, a). We first
train a LM M0 on Dtrain for self-rationalization
by prompt-based fine-tuning with natural language
prompts. The trained model is denoted as M1.

Next, we perform inference with M1 on unla-
beled instances x ∈ Dunlabled, where Dunlabled is a
non-overlapping set randomly sampled from other
episodes with size |Dunlabled| = |Dtest|. For each
prediction, the input x and the generated rationale-
answer pair (r̂, â) are mapped to the NLI format,
i.e., (x, r̂, â) → (p, h), and passed to the zero-shot
plausibility approximator.6 The approximator au-
tomatically judges the plausibility of r̂, where the
most confident predictions are selected by a plau-
sibility threshold α, i.e., a probability score (See
Appendix B for details). This process does not
require any ground truth label or golden rationale.

The collected high-confident (x, r̂, â) predic-
tions become new instances to augment Dtrain.
Also, we ensure the added instances are balanced
for classification tasks by downsampling majority
classes. We then re-train M0 on the augmented
training split to obtain our final self-rationalization
model M2, and evaluate on Dtest.

6 Experiments

In this section, we discuss the experimental setup
and present the results of our proposed method,
ZARA, for improving few-shot self-rationalization
via self-training. We also perform human and quan-
titative evaluations to validate the automatic plausi-
bility assessment for our approximator.

6.1 Model

For comparison purposes, we follow FEB and use
UNIFIEDQA (Khashabi et al., 2020), a T5 (Raffel
et al., 2020) variant trained on a multi-task

6Depending on the mapping design, some sub-tasks do not
require input content x to form the premise and hypothesis.

mixture of QA datasets, as our self-rationalization
model for all experiments. The model performs
few-shot learning via fine-tuning with natural
language prompts. We experiment with three
model sizes: UNIFIEDQA-base (200M), UNI-
FIEDQA-large (770M), and UNIFIEDQA-3B
(2.7B). The results presented in Section 4 are
conducted with UNIFIEDQA-3B. More details of
the experimental setups and configurations are
provided in Appendix A.

Method Model Acc. ∆ BERTsc. ∆

C
O

M
V

E

FEB Base 67.30.7 6.8 61.00.6 6.6
ZARA Base 74.1†

0.5 67.6†
0.5

FEB Large 81.30.4 5.9 73.90.4 5.8
ZARA Large 87.2†

0.3 79.7†
0.2

FEB 3B 89.00.4 4.7 81.00.3 4.9
ZARA 3B 93.7†

0.2 85.9†
0.1

GPT-3 INSTRUCTGPT 74.01.5 – 67.61.3 –
Random – 50.0 – – –

SB
IC

FEB Base 67.50.4 5.4 65.30.4 5.0
ZARA Base 72.9†

0.2 70.3†
0.2

FEB Large 71.10.4 3.6 68.50.4 3.5
ZARA Large 74.7†

0.2 72.0†
0.2

FEB 3B 71.70.5 4.4 68.90.5 4.4
ZARA 3B 76.1†

0.2 73.3†
0.2

GPT-3 INSTRUCTGPT 74.21.4 – 71.51.4 –
Random – 50.0 – – –

E
-S

N
L

I

FEB Base 75.00.3 3.0 67.50.3 3.0
ZARA Base 78.0†

0.2 70.5†
0.2

FEB Large 84.80.3 1.2 76.60.3 1.1
ZARA Large 86.0†

0.2 77.7†
0.2

FEB 3B 87.40.2 2.1 79.10.2 2.2
ZARA 3B 89.5†

0.2 81.3†
0.2

GPT-3 INSTRUCTGPT 65.40.5 – 59.80.5 –
Random – 33.3 – – –

E
C

Q
A

FEB Base 41.40.3 -1.9 36.70.3 -2.0ZARA Base 39.50.2 34.70.2

FEB Large 57.20.4 0.4 51.00.3 0.0ZARA Large 57.60.2 51.00.2

FEB 3B 65.90.4 4.1 59.00.3 3.2
ZARA 3B 70.0†

0.2 62.2†
0.2

GPT-3 INSTRUCTGPT 60.61.5 – 54.41.3 –
Random – 20.0 – – –

Table 3: Experiments comparing FEB (Marasovic et al.,
2022) and ZARA, where the results with GPT-3 (175B)
and random baseline, i.e., 1

number of classes are also pre-
sented. We assess the statistical significance of ZARA’s
performance gain over the FEB baseline by adopting
one-sided McNemar’s test (McNemar, 1947), where †
denotes p < 0.01.
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6.2 Main results

The evaluation metrics of FEB are accuracy and
BERTscore (Zhang et al., 2019) for end-task labels
and explanations, respectively.7 For each sub-task,
we train 60 models (one per episode) and report the
mean and standard error of accuracy/BERTscore in
Table 3. We also provide statistics on the number of
instances added for augmentation in Appendix D.
To the best of our knowledge, we present the first
results on the newly introduced FEB benchmark
(besides their original approach in the paper).

We experiment with three model sizes: base,
large and 3B. In ZARA, both training stages adopt
models of the same size; the original FEB base-
line only involves training one model (one stage).
As observed in Table 3, our method substantially
outperforms the FEB baseline for all datasets. In
general, COMVE, SBIC and E-SNLI demonstrate
relatively consistent improvements across model
size. The only anomoly is for ECQA. We hypoth-
esize the under-parameterized models (base and
large) suffer forgetting from continuous learning
with the augmented data (Kirkpatrick et al., 2017),
since ECQA may require commonsense knowledge
which is not presented in the FEB training data but
is encoded in models’ parameters originally. How-
ever, for the 3B model—which is still significantly
smaller than most large-scale LMs—great perfor-
mance gain with ZARA is exhibited.

6.3 Approximator evaluation

Plausibility evaluation We conduct human eval-
uation to validate our approximator. Specifically,
the human evaluation can be considered as a meta-
evaluation for evaluating the approximator’s ability
to evaluate explanations, i.e., its ability to assess

7BERTscore is one of the most correlated automatic NLG
metrics with human judgement of plausibility for free-text
explanation, as shown by Kayser et al. (2021).

plausibility. To recap, the approximator’s output
probability of the corresponding NLI class (based
on the mapping design in Table 2) represents an
estimation of plausibility degree, i.e., a pseudo-
plausibility score. We use the same batch of anno-
tated data from Section 4. That is, 350 randomly se-
lected examples generated by the stage-one model
with human judgement of plausibility value {1, 2,
3, 4} mapped from {“no", “weak no", “weak yes",
“yes"} and averaged across annotators.

The results are presented in Figure 4. We group
the instances into four bins, each containing 25%
of data according to the percentile ranking of their
pseudo-plausibility score. In general, the median
performance of human plausibility judgement in-
creases with higher percentile groups, especially
for the COMVE and SBIC sub-tasks. Interestingly,
due to the nature of NLI model of the approxima-
tor, its output (i.e., pseudo-plausibility scores) may
be effected by spurious surface features learned
only for NLI tasks (transferred from the MultiNLI
dataset), giving rise to the larger interquartile range
of the top percentile group in E-SNLI. Overall, the
results show our approximator is capable of reflect-
ing human plausibility judgement.

Correctness evaluation As stated in Section 4,
plausible rationales likely indicate correct answer
predictions. We further evaluate our approximator
regarding this property by checking the end-task
answer accuracy of the data subset selected for
augmentation from stage-one model’s prediction
pool. We consider three selection strategies: (1)
ZARA, i.e., our proposed method, which selects con-
fident (high-scoring) predictions; (2) Random, the
data subset is selected randomly from prediction
pool; (3) Lowest, in contrast to ZARA, we select a
subset from the data with lowest-ranking pseudo-
plausibility scores.

For each episode, the number of augmented
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Figure 5: The average accuracy (per episode) of the selected subset from the stage-one model’s generated results by
different selection strategies: (1) ZARA, (2) Random, and (3) Lowest.

instances for (2) and (3) are determined by (1),
i.e., we randomly select n instances or select n
bottom-ranking instances, where n is the number
of instances for augmentation using ZARA. The re-
sults are shown in Figure 5. We can observe ZARA
consistently outperforms Random and Lowest with
substantial margins under different model sizes
across all four datasets, and Lowest demonstrates
the poorest accuracy. This suggest our approxima-
tor is able to verify label predictions post-hoc, i.e.,
the high/low pseudo-plausibility score suggests the
prediction is accurate/inaccurate. In conclusion,
the overall evaluation results suggest our approxi-
mator can effectively extract rationale-answer pairs
which are more plausible and accurate.

7 Related Work

7.1 Few-shot self-rationalization

To provide NLEs under low supervision, Maraso-
vic et al. (2022) propose the FEB benchmark
and establish the first results by exploring natu-
ral language prompt-based fine-tuning. Wiegreffe
et al. (2022) focus on improving NLEs with an
overgenerate-and-filter pipeline: prompting GPT-3
with gold labels to generate explanation candidates
which are then filtered by a model trained with hu-
man annotations. Recent works (Wei et al., 2022;
Wang et al., 2022b; Huang et al., 2022) leverage
rationale-augmented chain-of-thought (CoT) inputs
to prompt frozen large-scale LMs in few-shot. Con-
current works (Wang et al., 2022a; Ho et al., 2022;
Hsieh et al., 2023) propose pipeline frameworks
to distill knowledge by prompting a large “teacher”
LM to generate diverse reasoning rationales which
are then used to fine-tuning a small “student” LM.
In comparison, ZARA directly optimizes small
LMs on downstream tasks, without access to any
large LMs.

A previous work that shares a conceptual simi-

larity to ours is STaR (Zelikman et al., 2022). Give
an initial training set consisting of a large amount
of labels and a few seed rationales, STaR iteratively
fine-tunes a GPT-J model to build an augmented
training set to bootstrap itself. The fundamental
difference between ZARA and STaR is that STaR
needs ground-truth labels to select and generate
rationales for augmentation, whereas, ZARA aug-
ments rationale-label pairs in zero-shot, without
any requirements of ground-truth labels or golden
rationales. Another related work by Ye and Durrett
(2022) leverages NLEs to boost end-task predic-
tions post-hoc, via training a calibrator. In com-
parison, we directly improve self-rationalization
and our approximator does not require any further
training. Moreover, all LMs used by Ye and Durrett
(2022) are 175B.

7.2 Leveraging NLI for downstream tasks

The framework of NLI has been expanded to bene-
fit many NLP tasks. Welleck et al. (2019) develop
a dataset to improve dialogue models by framing
the dialogue consistency problem as NLI. Hon-
ovich et al. (2021); Dziri et al. (2022) use NLI
to design automatic metrics evaluating factuality
of knowledge-grounded dialogue systems. Falke
et al. (2019); Kryscinski et al. (2020); Laban et al.
(2022) use NLI models to detect factual errors in
abstractive summarization tasks. For question an-
swering, Chen et al. (2021) propose a framework
to verify QA systems’ predictions with NLI by
training models to generate premise-hypothesis
pairs from QA instances. Driven by human rea-
soning, Yin et al. (2019) approach text classifica-
tion in zero-shot by formulating it as an entailment
problem—given the input text (premise), humans
mentally construct hypotheses “the text is about
[label choice]” to determine the answer—and
adopt out-of-the-box NLI models for predictions.
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8 Conclusion

In this work, we first show evidences that plausible
explanations imply correct label predictions, and
leverage a novel NLI approximator to automati-
cally identify plausible rationales paired with cor-
rect answers from unlabeled results.s By collecting
such rationale-answer pairs with self-training, we
effectively improve the performance of few-shot
self-rationalization for small LMs. Moreover, we
demonstrate the potential for automatic evaluation
of free-text explanations. In light of this, we be-
lieve developing a supervised approximator with a
unified NLI mapping schema across tasks to be a
promising avenue for future works.

Limitations

The success of the approximator relies on the qual-
ity of the NLI mapping. Though we showcase great
improvement across four different tasks, if the com-
plexity of a task makes the mapping construction
non-trivial, the created mapping might not be able
to accurately reflect human plausibility judgement
of the generated rationales, and the benefit of self-
training could not be guaranteed. Namely, the ap-
proximator may identify noisy instances that would
instead hurt model performance.
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A Experimental setups and
configurations

We prepare the training data and format it as natural
language prompts using the scripts provided by the
FEB paper’s repository. We train our base and large
model (UNIFIEDQA-base and UNIFIEDQA-large)
by NVIDIA GeForce RTX 3090, and 3B model
(UNIFIEDQA-3B) by NVIDIA RTX A6000. For
hyper-parameter (HP) settings, we follow the origi-
nal setup in the FEB paper for stage-one training,
and for stage-two, we set maximum epochs to 48
and keep other HPs the same as stage-one. We do
not perform additional HP search.

For the approximator, We use facebook/bart-
large-mnli, microsoft/deberta-large-mnli, and
roberta-large-mnli from the Hugging Face Hub.

B Plausibility threshold

To estimate a threshold that is sufficient but not
overly strict, we compute the average number of
training set instances (which are required to be plau-
sible) per episode with probability scores above dif-
ferent threshold values, as shown in Figure 6. The
dotted line represents the segment with the smallest
slope, indicating increasing the threshold results
in the largest data lost. The starting, i.e., smaller,
x-value of the dotted line is chosen as our plausibil-
ity threshold. Thus, 0.9 for COMVE, E-SNLI and
ECQA, and 0.8 for SBIC.

C Human annotation details

We invite three annotators8 to conduct human eval-
uation and compute inter-annotator agreements by
Randolph’s κ on 100 overlapping annotation ex-
amples. We record κ of 0.60, 0.56, 0.36, and 0.49
for COMVE, SBIC, E-SNLI, and ECQA, respec-
tively. The low (0.36) to moderate (0.60, 0.56, 0.49)
agreements align with prior works’ observations
on evaluating plausibility of free-text explanation,
reflecting the task subjectivity (Wiegreffe et al.,

8The annotators include two graduate students and one
Ph.D. student. As our tasks do not require specific domain
expertise, the payment is determined by the minimum wage.
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Figure 6: The average number of training set instances
(per episode) with probability score above different
thresholds.

2022) and could require more fine-grained analysis
in the future (Marasovic et al., 2022).

D Data augmentation details

Table 4 reports the average number of additional
test set instances added per episode for stage-two
training. For COMVE, SBIC, and E-SNLI, about
one-third of the test data are selected, with only
minor differences against model sizes. On the other
hand, ECQA shows a notable increment on the
3B model, yet significant lower addition number
in general comparing to the other three sub-tasks,
which may attribute to the nature of difficulty for
commonsense question answering.

Model ComVE SBIC E-SNLI ECQA

Base 109.0 113.6 123.8 13.2
Large 132.3 109.0 128.6 13.4
3B 191.5 107.6 98.3 48.4

Table 4: The comparison for average number of in-
stances added (per episode) between model size.
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