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Abstract

Document-Level Relation Extraction aims at
predicting relations between entities from mul-
tiple sentences. A common practice is to select
multi-label classification thresholds to decide
whether a relation exists between an entity pair.
However, in the document-level task, most en-
tity pairs do not express any relations, resulting
in a highly imbalanced distribution between
positive and negative classes. We argue that
the imbalance problem affects threshold selec-
tion and may lead to incorrect "no-relation"
predictions. In this paper, we propose to down-
weight the easy negatives by utilizing a dis-
tance between the classification threshold and
the predicted score of each relation. Our novel
Adaptive Hinge Balance Loss measures the dif-
ficulty of each relation class with the distance,
putting more focus on hard, misclassified rela-
tions, i.e. the minority positive relations. Ex-
periment results on Re-DocRED demonstrate
the superiority of our approach over other bal-
ancing methods. Source codes are available at
https://github.com/Jize-W/HingeABL.

1 Introduction

Document-Level Relation Extraction (RE) plays an
important role in NLP applications such as knowl-
edge graph construction. It aims at predicting re-
lations between entities from multiple sentences.
As illustrated in Figure 1a, an entity pair may have
zero, one, or multiple relations, so document-level
RE is a multi-label classification task. To solve
this, a common practice is to adaptively select
thresholds for multi-label classification (Zhou et al.,
2021). For a correct prediction, the confidence
scores of existent relations should be higher than
the threshold, and conversely, those of non-existent
relations should be lower.

However, there is a significant imbalance prob-
lem between positive and negative classes in
document-level RE. The number of entity pairs
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Text: Ross Patterson Alger (August 20, 1920 -
January 16, 1992) was a politician in the Canadian
province of Alberta, ... After the war, he received an
MBA from the University of Toronto. He settled in
Calgary and started a career in accounting ...

Subject: University of Toronto
Object: Canadian
Relation: country, located in

(a) A sample document in Re-DocRED dataset.
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(b) False negative prediction with correct label ranking.
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(c) Correct prediction after utilizing adaptive hinge balance
loss.

Figure 1: Illustration on multi-label classification
in document-level relation extraction. (a) There are
two relations existing between University of Toronto
and Canadian. (b) The entity pair in (a) is incor-
rectly predicted as "no-relation". Scores of existent
relations (country, located in) are lower than the thresh-
old (11.16), but significantly higher than all non-existent
relations. (c) After utilizing adaptive hinge balance loss,
the threshold is reduced to an appropriate value.

increases quadratically with the number of entities.
Thus, compared with the sentence-level counter-
part, there are far more entity pairs to be classi-
fied in document-level RE, and most entity pairs
express no relation. For example, in the document-
level RE dataset, Re-DocRED (Tan et al., 2022b),
94% of the entity pairs express no relation.

The issue of class imbalance may lead to more
incorrect "no-relation" predictions. In our paper,
we mainly consider the "positive/negative imbal-
ance", rather than the imbalance between different
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types of "positive relations". The positive/negative
imbalance tends to drag the threshold towards the
large class, that is, the “no-relation” class. We
discover that 78.2% of incorrect "no-relation"
predictions have correct label ranking, but the
confidence score is lower than the threshold, which
is shown in Figure 1b . In other words, the model
has enough confidence in the existent relations, but
it makes a "no-relation" prediction due to the un-
necessarily high threshold.

Based on this intuitive finding, we aim to ad-
dress this “incorrect predictions with correct la-
bel ranking” phenomenon to improve the accuracy.
We believe that overtraining on well-classified non-
existent relations may lead to unnecessarily high
thresholds. Therefore, we propose to adaptively
select thresholds, and then down-weight the rela-
tions that are far from the decision boundary using
Hinge Weighting. Our contributions are three-fold:

• We design a general pipeline termed Separate
Adaptive Thresholding, to adaptively select
thresholds for multi-label classification.

• We propose a novel Adaptive Hinge Balance
Loss, tackling the imbalance problem of pos-
itive and negative classes in document-level
RE.

• Among all the existing balancing methods,
our method achieves the highest F1 score on
the common dataset Re-DocRED.

2 Preliminary

The task of document-level relation extraction is
concerned with the prediction of relation types be-
tween subject and object entities in a given docu-
ment. We will first introduce the formulation of
this task, and then discuss the commonly used ATL
method.

2.1 Problem Formulation
Given a document D that contains a set of entities
{ei}ni=1, the task of document-level relation extrac-
tion is to predict the relation types between the
entity pairs (es, eo)s,o∈{1,...,n},s ̸=o, where es and
eo represent the subject entity and the object en-
tity, respectively. The set of relations is defined as
R ∪ {NA}, where R is a set of pre-defined rela-
tions and NA stands for no relation between a pair
of entities.

With the document D and an entity pair (es, eo)
contained in it, we can get the representation of the

subject and object entity through:

[zs, zo] = Rep(D, es, eo), (1)

where zs and zo are the representation of the sub-
ject and object entity. Rep is a representation mod-
ule.

The score of relation r is defined as sr, which
can be computed via the subject and object entity
representation using a bilinear classifier:

sr = zTs Wrzo + br, (2)

where Wr ∈ Rd×d, br ∈ R are model parameters.

2.2 Adaptive Thresholding Loss
Adaptive Thresholding Loss (ATL) (Zhou et al.,
2021) is the most widely used loss function in
transformer-based document-level relation extrac-
tion methods. It enables the model to choose multi-
label classification thresholds, thereby achieving
superior results when compared to the global
threshold of BCE loss (Bengio et al., 2013).

In ATL, the labels of entity pair T = (es, eo)
are divided into two subsets: positive classes PT

and negative classes NT , where PT ⊆ R denotes
the relations that exist between T , and NT ⊆ R
denotes the relations that do not exist between the
entities. ATL introduces an additional threshold
class TH. If an entity pair is correctly classified,
the scores of PT should be higher than TH while
those of NT should be lower. ATL comprises of
two parts:

L1 = −
∑

r∈PT

log

(
exp(sr)∑

r′∈PT∪{TH} exp(sr′)

)
,

(3)

L2 = −log

(
exp(sTH)∑

r′∈NT∪{TH} exp(sr′)

)
, (4)

LATL = L1 + L2. (5)

2.3 An Empirical Analysis of ATL
A preliminary analysis is conducted to investigate
the cause of classification error in ATL, as shown
in Table 1. All false predictions can be categorized
into three patterns: FP, FN_CRK, and FN_IRK,
which are illustrated in Figure 2. In particular,
FN_CRK is the most dominant source of errors,
which accounts for 78.2% of all false negative pre-
dictions.

We notice that the number of relations in NT is
significantly larger than that in PT , and therefore
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# FP # FN_CRK # FN_IRK
2859 3192 889

Table 1: Number of three false patterns of ATL’s predic-
tions on Re-DocRED. Three patterns are illustrated in
Figure 2.

L2 has a much greater impact on the overall loss
than L1(see equations (3) and (4)). Due to the dom-
inance of L2, it can be rewritten as the following
form:

L2 = −log

(
1

1 +
∑

r′∈NT
exp(sr′ − sTH)

)
.

(6)

L2 → 0 when sr′ − sTH → −∞, which means
sTH ≫ sr′ . This suggests ATL learns a threshold
sTH well above the candidate score, which leads to
an increase in the number of FN_CRK predictions.

3 Adaptive Hinge Balance Loss

Based on the analysis above, we aim to maximize
the distance between the decision boundary sTH
and the sample point sr, r ∈ R while simultane-
ously down-weighting the classes distant from the
boundary. To this end, we propose our Adaptive
Hinge Balance Loss.

3.1 Separate Adaptive Thresholding

An ideal loss should maximize the distance from
the decision boundary to the sample point. More-
over, in the loss formulation, each relation class
should be independent of the others to enable indi-
vidual weighing of each class. Therefore, we pro-
pose the Separate Adaptive Thresholding (SAT),
which is formulated as:

L = −
∑

r∈R
log(σ(−dr)), (7)

dr =

{
sr − sTH r ∈ PT

sTH − sr r ∈ NT
(8)

where σ is the sigmoid function, i.e. σ(x) = 1
1+ex .

We define sTH as the decision boundary. Then dr
is the distance from the decision boundary to the
score of relation r ∈ R. dr > 0 if a relation is
correctly classified. L → 0 when dr → ∞.

The loss pushes dr to be as large as possible.
The score of each relation is compared with the
threshold separately. Thus we can assign different
weights to different relations.

TH R1 R2 R3 R4

(a) FP

TH R1 R2 R3 R4

(b) FN_CRK

TH R1 R2 R3 R4

(c) FN_IRK

Figure 2: Three false prediction patterns. (a) FP
(False Positive): The entity pair is recognized as re-
lated, but not all relations are accurately recognized. (b)
FN_CRK (False Negative with Correct label RanKing):
The entity pair is recognized as "no-relation", and all
the existent relations have higher confidence scores than
non-existent relations. (c) FN_IRK (False Negative
with Incorrect label RanKing): The entity pair is recog-
nized as "no-relation", and not all existent relations have
higher confidence scores than non-existent relations.
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Figure 3: Hinge weighting.
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Figure 4: The decision boundary and margin of hinge
weighting. Positive relations whose scores are higher
than sTH +m and negative relations whose scores are
lower than sTH −m will not be punished.

3.2 Hinge Weighting
To down-weight the easy and well-classified re-
lations, i.e. the majority negative relations,
we propose Hinge Weighting inspired by hinge
loss. (Hearst et al., 1998)

Our Hinge Weighting is shown in Figure 3. It is
formulated as:

wr = max(0,m− dr), r ∈ R, (9)

where m is a constant. When the distance dr is
larger than m, the relation is not penalized. Other-
wise, it is penalized linearly with dr. Essentially,
Hinge Weighting implies that we should avoid fo-
cusing on the relationship with large dr. 2m is the
maximum margin between positive and negative
classes, which is illustrated in Figure 4.

Note that our weighting mechanism down-
weights the well classified samples to zero. Since
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Model F1 F1 with HingeABL Ign_F1 Ign_F1 with HingeABL
ATLOP (Zhou et al., 2021) 77.56 79.79 (+2.23) 76.82 78.82 (+2.00)

DocuNet (Zhang et al., 2021) 77.87 79.43 (+1.56) 77.26 78.39 (+1.13)

KD-DocRE (Tan et al., 2022a) 78.28 79.34 (+1.06) 77.60 78.26 (+0.66)

Table 2: Performance of adaptive hinge balance loss with different backbones.

the majority of well classified classes are negative,
HingeABL achieves the effect of down-weighting
the majority negative relations.

3.3 Loss Definition
Combining separate adaptive thresholding and
hinge weighting, we obtain the adaptive hinge bal-
ance loss (HingeABL):

L = −
∑

r∈R

wr∑
r′∈Rwr′

log(σ(−dr)), (10)

where σ is the sigmoid function and wr is formu-
lated as Equation (9). The hinge weights are nor-
malized among all relations. Our adaptive hinge
balance loss simultaneously maximizes the dis-
tance between the decision boundary and the sam-
ple point and down-weights easy classes that are
far from it. This helps prevent over-fitting on well-
classified relations.

4 Experiments

4.1 Setup
We conduct experiments on Re-DocRED (Tan et al.,
2022b), the largest and well-labeled dataset for
document-level RE. We use F1 and Ign_F1 as the
metrics. Ign_F1 is measured by removing the rela-
tions existing in the training set from the dev/test
sets. More details about statistics and implementa-
tion are provided in Appendix A and B. Note that
we use micro F1 here in order to maintain consis-
tency with previous methods. However, macro F1
is more suitable to illustrate whether the proposed
method can perform better on minority classes. Re-
sults evaluated under macro F1 are provided in
Appendix C.

4.2 Results
Different balancing methods. To compare dif-
ferent balancing methods, we use ATLOP (Zhou
et al., 2021) as the representation module and
BERTbase (Devlin et al., 2019) as the encoder of it.
We also compare our method with three other ap-
proaches: Balanced Softmax (Zhang et al., 2021),
AML (Adaptive Margin Loss) (Wei and Li, 2022),
and AFL (Adaptive Focal Loss) (Tan et al., 2022a).

Loss Function F1 Ign_F1
ATL (Zhou et al., 2021) 73.29 72.46
Balanced Softmax (Zhang et al., 2021) 73.68 72.85
AML (Wei and Li, 2022) 72.60 71.78
AFL (Tan et al., 2022a) 74.15 73.20
SAT 73.46 72.61
MeanSAT 74.68 72.90
HingeABL 75.15 73.84

Table 3: Comparison with other balancing methods.

Both AML and HingeABL are margin-based loss
functions.

To illustrate the effectiveness of hinge weight-
ing, we implement an alternative weighted loss
called MeanSAT by weighting positive and nega-
tive classes of SAT by the inverse of their number.
Its formulation is in Appendix D.

The results are shown in Table 3. HingeABL
achieves the highest F1 and Ign_F1 of 75.15 and
73.84 among all balancing methods. We observe a
substantial increase in performance by implement-
ing two weighting methods on the SAT. Our ex-
periments indicate that hinge weighting surpasses
constant weighting with MeanSAT, which demon-
strates the superiority of HingeABL.

Besides, we compare the two margin-based loss
functions, AML and HingeABL, through mathe-
matical analysis, provided in Appendix E. We find
that AML penalizes the misclassified samples lin-
early with the distance, while HingeABL penalizes
the misclassified samples nonlinearly with the dis-
tance. The nonlinear function is strictly convex,
which benefits optimization.
Different document-level RE models. To test
the generality of our approach, we select three
commonly used transformer-based methods for
document-level relation extraction and replace their
loss functions with our adaptive hinge balance
loss. Among the three original base methods, AT-
LOP employs ATL loss, DocuNet employs Bal-
anced Softmax loss, and KD-DocRE employs AFL
loss. Both Balanced Softmax and AFL are the im-
provements of ATL. All methods use RoBERTalarge
(Zhuang et al., 2021) as their encoder. Table 2
shows the results, all of which demonstrate consis-
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Loss Function F/(T+F) FN/F
FN_CRK

/FN
ATL 3.59% 58.80% 78.22%
Balanced Softmax 4.84% 51.16% 79.95%
AML 3.54% 65.30% 57.14%
AFL 3.59% 52.95% 75.98%
HingeABL 3.49% 51.11% 43.84%

Table 4: Statistics of prediction patterns for different
loss functions.

tent performance gains with the use of HingeABL.
This affirms the generalizability of our approach.
Note that HingeABL’s improvement seems to be
less significant when the base method is more pow-
erful. This is a natural result because better base
methods employ better loss functions. Replacing
a better loss function with HingeABL results in a
smaller improvement.
Prediction statistics. To verify whether our model
solves the problem of high thresholds, we count
the number of prediction patterns from Figure 2
and present the results in Table 4. Our analysis
reveals that the proportion of FN and FN_CRK
has decreased, indicating that the issue has been
resolved. An example of prediction results before
and after applying HingeABL is shown in Figure
1b and 1c. While one might assume that lower-
ing the threshold would lead to more false positive
predictions, we observe that the total proportion
of false predictions actually decreases. This sug-
gests that HingeABL achieves a good balance in
its threshold selection.

5 Conclusion

We propose a novel Adaptive Hinge Balance Loss
for document-level relation extraction to tackle the
imbalance problem of positive and negative classes.
Experimental results show our approach outper-
forms existing methods. Since our loss is model-
independent, it has potential applicability to other
multi-label classification scenarios.

Limitations

Compared with classifying an entity pair known
with relation, accurately determining whether a re-
lation exists between an entity pair is a more chal-
lenging task. Despite attempts to improve accuracy
through better thresholding methods, the results are
still far from ideal.
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A Re-DocRED Statistics

Re-DocRED is a more reliable benchmark in
document-level relation extraction. It is a revised
version of DocRED (Yao et al., 2019), whose anno-
tations are pointed out to be incomplete by recent
works ((Huang et al., 2022; Tan et al., 2022a)). Re-
DocRED contains 96 relations. Each document
has an average of 391 entity pairs, among which
94% contains no relation. The detailed statistics
are shown in Table 5 and Table 6.

# Relations 96
Avg. # Words 198.4
Avg. # Entities 19.4
Avg. # Entity Pairs 391.0
NA 94%

Table 5: Statistics on the whole set of Re-DocRED.

Train Dev Test
# Documents 3053 500 500
Avg. # Entities 19.4 19.4 19.6
Avg. # Triples 28.1 34.6 34.9
Avg. # Sentences 7.9 8.2 7.9

Table 6: Statistics on different train/dev/test dataset of
Re-DocRED.

B Implementation Details

All experiments are implemented based on Hug-
ging Face’s Transformers (Wolf et al., 2020). In the
experiment of comparing different balancing meth-
ods, we use BERTbase (Devlin et al., 2019) as the
encoder of ATLOP. In the experiment of comparing
different RE models, we use RoBERTalarge (Devlin
et al., 2019) as the encoder of these RE models, for
the sake of comparison on the benchmark.

We select the margin of HingeABL as m = 5
when conducting experiments. We use mixed-
precision training (Micikevicius et al., 2018) based
on the PyTorch amp library1. The models are opti-
mized with AdamW (Loshchilov and Hutter, 2019)
with a linear warmup (Goyal et al., 2017) for the
first 6% steps followed by a linear decay to 0. The
learning rate is 5e-5 for models with BERT as the
encoder and 3e-5 for models with RoBERTa as the
encoder. The train batch size is 4 and the test batch
size is 8. We train 30 epochs for each model. For
each experiment, we run 5 different seeds (1, 5, 42,
66, 233) and report the average score. All models
are trained with 1 Tesla A800 GPU.

C Comparison results under macro F1

The comparison results among different balancing
methods under macro F1 and macro Ign_F1 are
shown in Table 7. Our proposed HingeABL still
achieves the highest score under macro F1.

D Formulation of MeanSAT

MeanSAT weights positive and negative classes of
SAT by the inverse of their number. It is formulated

1https://pytorch.org/docs/stable/amp.html
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Loss Function F1 Ign_F1
ATL (Zhou et al., 2021) 59.39 56.57
Balanced Softmax (Zhang et al., 2021) 60.67 57.89
AML (Wei and Li, 2022) 58.65 55.81
AFL (Tan et al., 2022a) 61.48 58.66
SAT 60.23 57.41
MeanSAT 63.34 60.91
HingeABL 64.13 61.34

Table 7: Comparison with other balancing methods
under macro F1 and macro Ign_F1.

as:

L = − 1

Np

∑

r∈P
log(σ(−dr))− 1

Nn

∑

r∈N
log(σ(−dr)),

(11)

where Np and Nn are the number of positive and
negative classes for the entity pair.

E Mathematical analysis of Adaptive
Margin Loss and HingeABL

In addition to experiments, we also compare the
two margin-based losses, Adaptive Margin Loss
(AML) and HingeABL, from a mathematical anal-
ysis perspective.

Analysis 1: For a sample that is not well clas-
sified, the Adaptive Margin Loss is a linear func-
tion with respect to the distance.

The Adaptive Margin Loss is defined as:

L =
∑

r∈R
max(0,m− dr). (12)

For class r, Lr = max(0,m− dr).
For a well-classified sample, dr ≥ m, Lr = 0.
For a sample that is not well classified, dr < m,

Lr = m− dr.
In the second condition, we denote cr = −dr >

−m. It measures the distance between a sample
that is not well classified to the decision boundary.
Note that we call cr "distance" here, but it is not
necessarily greater than zero. The smaller cr is,
the better the sample is classified. This means we
should give a larger punishment to a larger cr. Then
we have:

Lr = m+ cr, (13)
∂Lr

∂cr
= 1. (14)

This means Adaptive Margin Loss penalizes the
samples that are not well classified linearly with

the distance. (Note: A sample that is not well
classified means cr = −dr > −m. A sample that
is misclassified means cr = −dr > 0.)

Analysis 2: For a sample that is not well clas-
sified, HingeABL is a strictly convex function
with respect to the distance.

HingeABL is defined as:

L = −
∑

r∈R

wr∑
r′∈R wr′

log(σ(−dr)) (15)

= −
∑

r∈R

max(0,m− dr)∑
r′∈R max(0,m− dr′)

log
(

1

1 + e−dr

)
.

(16)

The denominator
∑

r′∈R max(0,m−dr′) is a nor-
malization factor, which we discard for ease of
analysis.

For class r, if a sample is well classified, dr ≥
m, Lr = 0.

If a sample is not well classified, dr < m,

Lr = −(m− dr)log
(

1

1 + e−dr

)
(17)

= −(m+ cr)log
(

1

1 + ecr

)
, (18)

∂Lr

∂cr
= −log

(
1

1 + ecr

)
+

m+ cr
e−cr + 1

, (19)

∂2Lr

∂c2r
=

ecr

1 + ecr
+

e−cr + 1 + e−cr (m+ cr)

(e−cr + 1)2
> 0.

(20)

This means HingeABL penalizes the samples
that are not well classified nonlinearly with the
distance. The nonlinear function is strictly convex.

Analysis 3: Comparision between the Adap-
tive Margin Loss and HingeABL.

1. Similarities.
Both the Adaptive Margin Loss and HingeABL

are margin-based loss functions. They do not pun-
ish a prediction if it is correct and "good enough"
(rather than "perfect"), which is a form of regular-
ization to prevent overfitting.

2. Differences.
For the wrong prediction part, they both give a

penalty according to the distance cr. The Adaptive
Margin Loss gives a linear penalty, while Hinge-
ABL gives a strictly convex penalty. Compared to a
linear penalty, a strictly convex penalty has mainly
two advantages: 1. When cr is larger, HingeABL
gives a larger penalty than the Adaptive Margin
Loss. 2. Compared to linear functions, the nature
of strictly convex functions makes the optimiza-
tion more stable and more likely to converge to a
globally optimal solution.
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