
Findings of the Association for Computational Linguistics: EACL 2023, pages 1058–1070
May 2-6, 2023 ©2023 Association for Computational Linguistics

[MASK] Insertion for anti-adversarial attacks
Xinrong Hu†, Ce Xu†, Junlong Ma†, Zijiang Huang†,

Jie Yang⋄∗, Yi Guo‡, Johan Barthelemy△
†School of Computer Science and Artificial Intelligence, Wuhan Textile University

⋄School of Computing and Information Technology, University of Wollongong
‡School of Computer, Data and Mathematical Sciences, Western Sydney University

△NVIDIA
{hxr, yaoxun}@wtu.edu.cn, jiey@uow.edu.au,

y.guo@westernsydney.edu.au, jbarthelemy@nvidia.com

Abstract

Adversarial attack aims to perturb input se-
quences and mislead a trained model for false
predictions. To enhance the model robustness,
defensing methods are accordingly employed
by either data augmentation (involving adver-
sarial samples) or model enhancement (modi-
fying the training loss and/or model architec-
ture). In contrast to previous work, this paper
revisits the masked language modeling (MLM)
and presents a simple yet efficient algorithm
against adversarial attacks, termed [MASK]
insertion for defensing (MI4D). Specifically,
MI4D simply inserts [MASK] tokens to input
sequences during training and inference, maxi-
mizing the intersection of the new convex hull
(MI4D creates) with the original one (the clean
input forms). As neither additional adversarial
samples nor the model modification is required,
MI4D is as computationally efficient as tradi-
tional fine-tuning. Comprehensive experiments
have been conducted using three benchmark
datasets and four attacking methods. MI4D
yields a significant improvement (on average)
of the accuracy between 3.2 and 11.1 absolute
points when compared with six state-of-the-art
defensing baselines.

1 Introduction

Pretrained Language Models (PLMs) have rapidly
advanced the performance of the Natural Language
Processing (NLP) tasks, such as text/document clas-
sification. Yet, abundant evidences also indicate
that PLMs are vulnerable to adversarial attacks,
and the model performance can be dramatically im-
pacted by (even) small perturbations to the model
input (Gao et al., 2018; Li et al., 2019; Li et al.,
2020; Jin et al., 2020). As a result, adversarial
defenses have received significant attention, with
the ultimate goal of achieving the robust model
accuracy on both the clean (original) and polluted
(adversarial) inputs.
∗Corresponding author.

A large amount of research effort has been ded-
icated to adversarial defenses, ranging from the
data augmentation, the model enhancement, to the
randomized smoothing. Among data augmenta-
tion studies, recent works introduce small but con-
trollable perturbations to pollute clean data and
produce adversarial samples (Yoo and Qi, 2021;
Dong et al., 2021; Zhou et al., 2021; Li et al., 2021;
Meng et al., 2022), while the model is later trained
on both the clean and polluted inputs. However,
due to the additional adversarial samples, data-
augmentation methods suffer from the requirement
of enormous computational resources for training.
Additionally, model-enhancement approaches fo-
cus on polishing the vanilla model via manipulat-
ing the training loss or network architecture, with-
out acquiring additional adversarial data (Wang
et al., 2021; Le et al., 2022; Liu et al., 2022).
Yet, those methods often require extensive search
among numerous candidates to determine optimal
hyperparameters. Another line of work is to apply
ensemble-based randomized smoothing techniques
(Ye et al., 2020; Zeng et al., 2021). Unfortunately,
they induce substantial overhead due to the ensem-
ble classification; more importantly, their perfor-
mance are unstable to different types of attacks
(Zhang et al., 2022; Xu et al., 2022).

Our aim is then to explore a robust adversarial
defensing algorithm, which neither relies on addi-
tional adversarial data (as data augmentation), nor
adjusts the training loss and network architecture
(as model enhancement), nor requests ensemble-
based training (as randomized smoothing). By
contrast, this paper revisits the masked language
modeling (MLM) and further proposes a compact
and performance-preserving algorithm, termed
[MASK] insertion for defensing (MI4D). Specifi-
cally, MI4D only requires to insert [MASK] tokens
at the beginning of input sequences to produce
masked inputs. During training, (only) masked in-
puts are employed for the model fine-tuning, while

1058

later polluted samples are masked in the same man-
ner for inference. In contrast to the traditional
MLM, the prediction task of [MASK] tokens is
less emphasized in the proposed MI4D. Yet, the
injected [MASK] plays a role of maximizing the
intersection between the convex hull after attack-
ing and that of the original (clean) input, thereby
enhancing the defensing performance.

The main contributions of the proposed work are
summarized as follows:

• A novel [MASK] insertion for defensing
(MI4D) algorithm is proposed, neither relying
on additional adversarial data nor modifying
the training model nor requesting ensemble-
based classification;

• MI4D is characterized by simply injecting
[MASK] tokens at the beginning of input se-
quences during training and inference. Ac-
cordingly, the span of the convex hull (after
injecting) is critical to retain more solution
space as the clean one to enhance successful
defense;

• Empirically, our proposed method outper-
forms six recent baselines on a combination of
three standard benchmarks and four attacking
methods, advancing the best state-of-the-arts
by on average 3.2-11.1 absolute points in ac-
curacy.

2 Related work

Constructing misleading samples to fool the trained
neural-network models, adversarial attacks in the
text domain can be mainly classified into two cat-
egories of the character- and word-level perturba-
tion. The work of (Gao et al., 2018; Li et al., 2019)
belongs to the character-level attack, from which
the input is polluted by removing, substituting or
inserting letters. On the other hand, word-based at-
tacks usually involve the step of determining word
importance, and replacing with their synonyms to
maximize the prediction error of the model (Li
et al., 2020; Jin et al., 2020).

Adversarial defense, by contrast, aims to form
a robust model with high accuracy on both clean
(original) and polluted (adversarial) samples. One
of the most effective approaches is through the
data augmentation (as shown in Fig. 1(a)),
where adversarial samples are produced and fed
into the model training. Specifically, A2T (Yoo
and Qi, 2021) generates adversarial samples via

employing a gradient-based method to identify im-
portant words, and iteratively substitutes with their
synonyms using a DistilBERT similarity. FreeLB
(and its variants) (Zhu et al., 2020; Li et al., 2021)
imposes norm-bounded noises on embeddings of
input sentences to produce adversarial samples.
ADFAR (Bao et al., 2021) applies a frequency-
aware randomization on both original and adversar-
ial samples (by other attacking methods) to form
a randomized adversarial set. This augmentation
set is then combined with original and adversar-
ial samples to train the model. More recently, in
(Meng et al., 2022), ADCL generates adversarial
examples using a geometry attack, which are later
utilized as hard positive samples to train the model
following a self-supervised contrastive learning.
Xu et al. propose WETAR-D (Xu et al., 2022) as
a sample reweighting method, in which the sample
weight is adjusted by minimizing the loss from the
validation set mixed of both original and adversar-
ial examples.

Besides the data augmentation, another
line of studies is proposed for the model
enhancement to refine the model architecture
and/or training loss, without acquiring additional
adversarial samples (as shown in Fig. 1(b)).
Among them, SHIELD (Le et al., 2022) modifies
the last layer of an trained model and transforms it
into an ensemble of multiple-expert predictors with
stochastic weights. Flooding-X (Liu et al., 2022)
introduces a regularization technique to prevent
the overfitting of training samples. Wang et al.
(Wang et al., 2021) propose InfoBERT to employ
two mutual-information-based regularizers for
suppressing noisy information between the input
and the latent representation, and for increasing
the correlation between local and global features.
A similar work is found in (Zhang et al., 2022),
where an information bottleneck layer (IB) is
inserted between the encoder and the final classifier.
This IB layer is utilized to extract robust and
task-related features.

Additionally, a set of ensemble-based random-
ized smoothing methods have been proposed,
shown in Fig. 1(c). SAFER (Ye et al., 2020), for
instance, constructs stochastic input ensembles and
leverages statistical properties of ensembles to clas-
sify testing samples. In RanMASK (Zeng et al.,
2021), few input tokens are randomly substituted
using [MASK] for fine-tuning, while testing sam-
ples are also masked (at different locations) to form

1059

Model

A2T, FreeLB(++), ADFAR,
ADCL, WETAR-D, …

(a) data augmentation

Model

Refine
SHIELD, infoBERT,
IB, Flooding-X, …

(b) model enhancement

Model
SAFER, RanMASK, …

(c) randomized smoothing

Figure 1: Comparison of existing adversarial defensing methods.

several masked versions. The final prediction is
then made by a majority vote from the ensemble of
these masked versions.

The proposed method is different from exist-
ing approaches: (1) compared to adversarial based
augmentation, no additional samples are required,
and significant computational overhead is avoid ac-
cordingly; (2) compared to the model-enhancement
ones, the proposed method is hyperparameter insen-
sitive, which maintains the vanilla model training
(loss and architecture) but only changes input for-
mats; (3) compared to randomized smoothing, the
ensemble based inference is no longer required.

3 Proposed method

Adversarial attack in text domain perturbs input
sequences to maximally mislead the classification
model, while this section presents a simple yet ef-
fective algorithm to reduce the model vulnerability,
termed [MASK] insertion for defensing (MI4D).

3.1 [MASK] insertion for defensing

The proposed method MI4D is characterized by
the normal fine-tuning process (the same net-
work architecture and training loss as the vanilla
model), while the only difference lies in the in-
serted [MASK] tokens at the beginning of input
sequences during training and inference. Specif-
ically, given the tokenized input sequence x (i.e.,
x=[CLS]x1· · ·x|x|[SEP]), where xi represents
the i-th token from x. For the text classification
task, we aim to optimize an encoder Enc(·) and a
Multilayer Perceptron (MLP) layer f(·) to map x
to a desirable label y, i.e., f(Enc(x)) 7→ y.

Let bM be the pre-defined masking budget (or
the fraction of masked tokens). Then, MI4D in-
jects M consecutive masks after [CLS] within
x to form a masked sequence, that is, x′=[CLS]
[MASK]1 · · · [MASK]Mx1 · · · x|x|[SEP], and
M = ⌈|x| ∗ bM⌉.

Next, only x′ (instead of x) is utilized for train-
ing, while Enc(·) is leveraged to extract the latent
representation for x′ and the normal loss (such

as the cross-entropy based) function L(x′, y) is
adopted. During inference, with an unseen se-
quence x̄, the insertion procedure is repeated to
inject M consecutive masks to x̄, i.e., x̄′ = [CLS]
[MASK]1 · · · [MASK]M x̄1 · · · x̄|x̄|[SEP]. The
label of x̄ is finally produced by f(Enc(x̄′)).

3.2 Analysis
Notably, RanMASK (Zeng et al., 2021) substitutes
input tokens with [MASK], while MI4D injects
[MASK]. Despite its simplicity, conceptually and
computationally, MI4D has strong theoretical re-
sults as the following claim: RanMASK is the lower
bound of MI4D in terms of adversarial defensing
performance.

To prove the claim, given the tokenized input x,
the output of a self-attention module Y is derived
by

Y = softmax(XW1W
⊤
2 X

⊤)XW3,

where X ∈ R|x|×d is the latent representation of x,
d is the hidden dimension, and Wk (∀k ∈ [1, 3])
are projection matrices with compatible dimen-
sions. The property of softmax dictates that each
row of Y (written as yi) is a convex construction of
XW3 (written as X̃), i.e., yi ∈ C(X̃), where C(X̃)
stands for the convex hull of X̃ (see Fig. 2 for the
area enclosed by thick dashed lines). The same
process happens in multi-head attention modules.
They operate in different projected spaces but the
observation of the convex construction still holds.

We hypothesize that the successful defense rate
(against attacks) is determined by the intersection
of the new convex hull (a defensing method cre-
ates) with the original convex hull (the clean data
forms), and the larger intersection results in the
better defensing performance. This leads to the
following assumption.
Assumption 1. Given the latent representation of
the clean input and its adversarial version in X
and X′, for a very small ϵ ≈ 0,

P(successful defense) =
Vol(C(X′

ϵ) ∩ C(Xϵ))

Vol(C(Xϵ))
,

1060

[CLS]
[MASK]

[CLS]
[MASK]

Figure 2: Illustration of the proof to Corollary 1. Circles represent tokens from the input sequence as vectors in
projected space. Black circles are attacked and further replaced by the square ones. Gray (Stripped) areas are the
intersection of MI4D (RanMASK) convex hull with the original data convex hull. Left: removing attacked tokens;
Right: removing two good tokens. Removed tokens are marked by cross.

where Vol(·) is a function to estimate the volume
of a geometric object, and Xϵ is the ϵ ball centred
at X.

The ϵ ball spans the convex hulls to the dimen-
sion of the ambient space so that volume always ex-
ists. More importantly, it also reflects the model tol-
erance to the variation of vector representations, in-
dicating small disturbance will not affect the model
output. To ease notation, we omit the ϵ in later
development.

MI4D differs from RanMASK at no random
elimination of input tokens, but a simple insertion
of [MASK] while keeping clean and polluted to-
kens. This choice leads to the fact that the convex
hull formed by MI4D always contains those by
RanMASK as guaranteed by the following lemma.

Lemma 1. Given a set X, we have C(S) ⊆ C(X)
for any subset S ⊆ X. The equality holds when
S = X trivially or otherwise S contains all the an-
chor points of C(X), i.e., the convex hull vertices.

Proof. Let X be the index set for X and a subset
S ⊆ X gives the indices for S. For any point
p ∈ C(S), p =

∑
i∈S λixi such that λi ≥ 0 and∑

λi = 1, i.e., the convex condition. Apparently
p ∈ C(X) as well by setting λj = 0 for j ∈ X\S .

For any point xi ∈ X, it is either an anchor point
or an internal point referring to C(X). If S contains
only anchor points, C(S) = C(X) as the internal
points can be “absorbed”. To see this, assume x1

is an internal point, then x1 =
∑

i>1 βixi and all
βis for i > 1 satisfying convex condition. Then

p =
∑

i=1

λixi =
∑

i>1

(λi + λ1βi)xi.

Therefore, C(X) = C(X−1) where X−1 is the set
of vectors after removing x1. After eliminating
internal points, the convex hull will still be the
same.

The immediate result from above lemma is the
following corollary stating the relations between
convex hulls generated by MI4D and RanMASK.

Corollary 1. Convex hull generated by MI4D al-
ways contains those by RanMASK.

Proof. Let X be the latent representation of input
tokens for MI4D (including [MASK] tokens), and
X the corresponding indices set. RanMASK runs
several, say n, times of random eliminations but
keeping [MASK] tokens, i.e., leading to index sub-
sets Si (Si ⊂ X (i = 1 ∼ n)). Clearly, from
Lemma 1, we have ∀i, C(Si) ⊆ C(X), where Si

is the corresponding representations in X indexed
by Si. Equality holds only when Si contains all
anchor points set in C(X).

Next, we are ready to formalize and prove the
claim as the following proposition.

Proposition 1. Given Assumption 1, MI4D has at
least the same successful defensing rate as that
of RanMASK. In other words, MI4D has at least
equally good adversarial defense performance as
RanMASK.

Proof. Let X′ (X) be the adversarial (original) rep-
resentations in latent space, and Si be the i-th sub-
set of X′. The successful defensing probability of
MI4D and RanMASK at the i-th run is defined as
pm and pri , respectively. We have

pm =
Vol(C(X) ∩ C(X′))

Vol(C(X))
,

1061

and

pri =
Vol(C(X) ∩ C(Si))

Vol(C(X))
.

For RanMASK to succeed, the successful Sis
have to be chosen and become majority and hence
the final success probability of RanMASK pr =
P(∃i,Si success ∧ successful sets are majority).
Clearly,

pr ≤ min(P(∃i, Si success),
∑

k≥⌈n/2⌉
B(k;n,max

i
{pri}))

≤ min(max
i

{pri},
∑

k≥⌈n/2⌉
B(k;n,max

i
{pri})

≤ pm,

where B(k;n, p) is the probability of k out of n
trials successes with probability p, i.e.,

(n
k

)
pk(1−

p)n−k. The last inequality comes from Corollary 1
as pm ≥ pri (∀i) and hence pm ≥ maxi(pri).

Overall, an illustration is shown in Fig. 2 with the
convex hull of MI4D (Cm) and those of RanMASK
(Cr) with two different random eliminations. The
gray area shows the intersection of MI4D convex
hull with the original convex hull C, i.e., C ∩ Cm,
while stripe areas are the intersections of those of
RanMASK, i.e., C ∩ Cr. We know that C ∩ Cm
always contains C ∩ Cr. As such, the span of the
convex hull after [MASK] insertion is critical to
retain more solution space to enhance successful
defense. Additionally, we also infer that the posi-
tion of inserted [MASK] tokens and the number
of insertions are less important (multiple of them
differ only at the positional encoding), as they may
well be in the ϵ ball of the same [MASK] token
itself. These inferences are verified in the ablation
study.

4 Experiments

4.1 Setup
Datasets. Experiments are carried on three text
classification benchmarking datasets, including
SST2(Socher et al., 2013) (sentiment classifica-
tion on the Stanford Sentiment Treebank corpus),
AGNEWS(Zhang et al., 2015) (category classi-
fication for news articles from more than 2000
news sources), IMDB(Maas et al., 2011) (docu-
ment polarity classification using the online IMDB
database).

Attacking algorithms. Four adversarial attacking
methods are implemented using TextAttack (Morris
et al., 2020) to pollute input sequences, that is,

• DeepWordBug (Gao et al., 2018) deletes, re-
places, and inserts characters to inputs;

• TextBugger(Li et al., 2019) performs per-
turbations of space insertion, char dele-
tion/swapping, and synonym substitution;

• BERT-Attack (Li et al., 2020) substitutes key
words using a pre-trained masked model;

• TextFooler (Jin et al., 2020) replaces impor-
tant words with their synonyms.

Evaluation Metrics. Three measurements are con-
sidered to evaluate the model robustness against ad-
versarial attacks. Specifically, Cln% refers to the
model classification accuracy on the original clean
data. Aua% is the classification accuracy under cer-
tain adversarial attacks, and higher Aua% means
better defensing performance. Suc% is defined as
the number of examples successfully being fooled
against the number of all attempted attacks; ac-
cordingly, lower Suc% indicates the higher model
robustness.

All experiments are performed five trials with
random seeds for each dataset. For each run, the
training is performed with batches of 32 sequences
of length 512. The maximal number of training
epoch is 10. Meanwhile, 10% samples are ran-
domly selected from the training set to form the
validation set, and the training stops if the vali-
dation accuracy fails to improve for one epoch.
On the other hand, 1,000 testing examples are ran-
domly selected for the evaluation purpose. This
is the typical experimental setting as (Wang et al.,
2021; Zhang et al., 2022; Zeng et al., 2021). More
details are provided in Appendix A.1.

4.2 Main results

The following state-of-the-art defensing meth-
ods are employed to compare with the proposed
MI4D, including WETAR-D(Xu et al., 2022),
FreeLB++(Li et al., 2021), IB(Zhang et al., 2022),
InfoBERT(Wang et al., 2021), Flooding-X(Liu
et al., 2022), and RanMASK(Zeng et al., 2021).
Among them, the first two methods are based on ad-
versarial data augmentation, while IB, InfoBERT
and Flooding-X are for the model enhancement.
The last one represents the randomized smoothing
method.

1062

Table 1: Averaged defensing performance (over five trails) obtained by MI4D and current SOTAs using four
attacking methods, including TextFooler, BERT-Attack, Deepwordbug, and TextBugger. The number with bold, †

and ∗ represents the best, second, and third result, respectively.

Datasets Methods TextFooler BERT-Attack Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc%

SST2

Baseline 94.1∗ 5.4 94.3 94.1∗ 6.2 93.4 94.1 17.0 81.9 94.1∗ 29.7 68.4
WETAR-D 94.3 31.1∗ 67.0∗ 94.3 31.4∗ 66.7∗ 94.3† 42.3† 55.1† 94.3 56.3† 40.3†

FreeLB++ 93.9 23.6 74.9 93.9 21.2 77.4 93.9 33.6 64.2 93.9 46.6 50.4
IB 94.1∗ 28.9 69.3 94.1∗ 26.5 71.8 94.1 40.5∗ 57.0∗ 94.1∗ 51.9∗ 44.8∗

InfoBERT 94.0 19.5 79.3 94.0 18.4 80.4 94.0 29.7 68.4 94.0 42.5 54.8
Flooding-X 94.2† 32.2† 65.8† 94.2† 35.4 62.4 94.2∗ 38.2 59.4 94.2† 49.9 47.0
RanMASK 92.7 12.9 86.1 93.0 11.4 87.7 92.7 27.5 70.3 92.8 39.9 57.0
MI4D 94.3 36.4 61.4 94.3 34.5† 63.4† 94.4 45.6 51.7 94.2† 58.3 38.1

AGNEWS

Baseline 94.2∗ 15.8 83.2 94.2∗ 26.7 71.8 94.2 33.0 65.0 94.2 49.2 47.8
WETAR-D 94.0 64.4∗ 31.5∗ 94.0 57.5† 38.8† 94.0 63.7† 32.2† 94.0 71.6† 23.8†

FreeLB++ 95.1 58.7 38.3 95.1 38.8 59.2 95.1 55.1 42.1 95.1 64.9 31.8
IB 93.9 60.7 35.4 93.9 51.6 45.0 93.9 59.2 37.0 93.9 63.6 32.3
InfoBERT 93.6 51.3 45.2 93.6 39.9 57.4 93.6 53.9 42.4 93.6 50.6 45.9
Flooding-X 94.4† 68.9 27.0 94.4† 56.4∗ 40.3∗ 94.4∗ 65.3 30.8 94.4∗ 70.3∗ 25.5∗

RanMASK 93.9 25.0 73.4 93.7 39.3 58.1 93.7 29.4 68.6 93.2 61.2 34.3
MI4D 94.2∗ 66.7† 29.2† 94.1 69.7 25.9 94.6† 62.4∗ 34.0∗ 94.6† 73.9 21.9

IMDB

Baseline 91.5 0.5 99.4 91.5 0.6 99.3 91.5 48.5 47.0 91.5 11.9 87.0
WETAR-D 92.1 47.1 48.9 92.1 34.7∗ 62.3∗ 92.1 90.0† 2.3† 92.1 58.3 36.7
FreeLB++ 93.3∗ 36.3 61.1 93.3 21.0 77.5 93.3∗ 78.3 16.1 93.3∗ 42.2 54.8
IB 91.9 51.3† 44.2† 91.9 40.6† 55.8† 91.9 87.3∗ 5.0∗ 91.9 64.1† 30.3†

InfoBERT 91.8 16.9 81.6 91.8 15.8 82.8 91.8 62.3 32.1 91.8 37.6 59.0
Flooding-X 94.7 48.5∗ 48.8∗ 94.7 33.4 64.7 94.7 83.1 12.2 94.7 62.3∗ 34.2∗

RanMASK 93.0 18.0 80.7 93.5∗ 17.0 81.8 92.5 66.0 28.7 92.5 18.0 80.5
MI4D 94.5† 56.2 40.5 94.3† 54.2 42.5 94.4† 93.6 0.8 94.5† 69.8 26.1

AVG

Baseline 93.3 7.2 92.3 93.3 11.2 88.1 93.3 32.8 64.6 93.3 30.3 67.7
WETAR-D 93.5 47.5∗ 49.1∗ 93.5 41.2∗ 56.0† 93.5 65.3† 29.9† 93.5∗ 62.1† 33.6†

FreeLB++ 94.1∗ 39.5 58.1 94.1∗ 27.0 71.4 94.1∗ 55.7 40.8 94.1† 51.2 45.6
IB 93.3 47.0 49.6 93.3 39.6 57.6 93.3 62.3∗ 33.0∗ 93.3 59.9 35.8∗

InfoBERT 93.1 29.2 68.7 93.1 24.7 73.5 93.1 48.6 47.7 93.1 43.6 53.3
Flooding-X 94.4 49.9† 47.2† 94.4 41.7† 55.8∗ 94.4† 62.2 34.2 94.4 60.8∗ 35.6
RanMASK 93.2 18.6 80.1 93.4 22.6 75.9 93.0 41.0 55.9 92.8 39.7 57.3
MI4D 94.3† 53.1 43.7 94.2† 52.8 43.9 94.5 67.2 28.8 94.4 67.3 28.7

The RoBERTa-base model (Liu et al., 2019) is
employed as the Baseline. All contender meth-
ods are re-implemented using their released codes,
and their key configurations are summarized in Ap-
pendix A.1. Their results are competing with those
reported. Additionally, for MI4D most of the hy-
perparameters, such as learning rate, are consistent
with the vanilla RoBERTa-base, while the masking
budget bM is set as 30%. The comparison results
over five trails are shown in Table 1.

To begin with, the proposed MI4D achieves com-
parative results of averaged Cln% (94.35%) across
all three clean testing datasets. The performance
is only second to that of Flooding-X (averaged
94.40%), while a consistent improvement is ob-
served in comparison with other existing meth-
ods. Importantly, MI4D achieves the state-of-the-
art defensing accuracy in terms of Aua (60.18%)
and Suc (36.40%) outperforming all contenders.
Notably, all methods seemingly perform better
against character-level attacks (Deepwordbug and
TextBugger), which demonstrates the difficulty of
defensing word-based attacks. Yet, MI4D still
achieves the largest improvement (in comparison

with the Baseline) and secures averaged 43.85 and
46.85 absolute percent points on Aua% and Suc%
for the TextFooler and BERT-Attack, respectively.

By contrast, another [MASK] based approach
(i.e., RanMASK) scores the worst performance
across three datasets. The main difference between
RanMASK and ours lies in the usage of [MASK]
tokens (substitution or insertion). By replacing
residual tokens after attacking, RanMASK could
further destroy the original semantic of input se-
quences. However, MI4D spans the semantic con-
vex hull to increase the chance of including original
anchor points, as Lemma 1 and Corollary 1 indi-
cated, so as to enhance the defensing performance.

4.3 Ablation study

To better understand the effectiveness of the pro-
posed method, a series of careful analysis is carried
out. Again, all results are reported as an averaged
accuracy over five trials.
On the masking location. To start with, the ab-
lation experiment is performed to understand the
impact from the location of inserted [MASK] to-
kens. In comparison with adding [MASK] right

1063

Cln% Aua% Suc%0

20

40

60

80

100 94.4

36.3

61.5

94.3

36.4

61.4

94.2

38.8

58.8

Head
Random
Tail

(a) SST2

Cln% Aua% Suc%0

20

40

60

80

100 94.9

67.3

29.1

94.2

66.7

29.2

93.7

67.7

27.7

Head
Random
Tail

(b) AGNEWS

Cln% Aua% Suc%0

20

40

60

80

100 94.1

56.6

39.8

94.5

56.2

40.5

94.1

57.1

39.3

Head
Random
Tail

(c) IMDB

Figure 3: Impact analysis of the masking location from either adding [MASK] after [CLS] (labeled as Head),
randomly (labeled as Random) or at the end of the input sequence (labeled as Tail).

after the [CLS] (labeled as Head hereafter), the
Random one is implemented to randomly insert
[MASK] following a uniform sampling until bM is
met (where bM is the masking budget). Similarly,
we also consider to insert at the end of the input
sequence (labeled as Tail).

With bM=0.3, the comparison result using three
datasets and the TextFooler attack is shown in
Fig. 3 (results from other attack methods can be
found in Appendix A.2). Clearly, the proposed
method is insensitive to the masking location, due
to the similar performance achieved by either Head,
Random or Tail insertion. This shows positional
encoding has negligible effect as we asserted in
analysis, as the position embedding is less impor-
tant compared to the token embedding. In MI4D
context, exactly same [MASK] tokens are inserted
and they do not change the relative order of exist-
ing tokens. Therefore position embeddings can be
seen as a disturbance to “tag” on token embeddings
to create the small variation, and have less impact
on MI4D.
On the masking budget. The following experi-
ments are to evaluate the impact of the masking
budget (bM) on the proposed method. Obviously,
with a higher value of bM , more [MASK] tokens
will be inserted that could lead to more perturbed
samples. Specifically, experiments are conduced
by varying bM from 0.1 to 0.9. We need to point
out that for the dataset of SST2, with bM=0.1 it
is equivalent to injecting only 1 [MASK] token
due to the average length of input sequences. As
such, we are particularly interested in the model
performance with/out [MASK].

The comparison is shown in Fig. 4 for the MI4D
performance against the TextFooler attack on three
datasets (results from other attack methods can

be found in Appendix A.3). Notably, the results
demonstrate the robustness of the proposed method
to different masking budgets. That is, MI4D ob-
serves a stable defensing performance across all
three evaluation metrics for different masking bud-
gets. As the span of the convex hull is utterly impor-
tant rather than its multiplicity, this observational
experiment once again confirms our inference in
the Analysis.

4.4 Discussion

In this section, we investigate different strategies
of utilizing [MASK] tokens, and further seek for a
reasonable explanation for the result. Again, exper-
iments are conducted with [MASK] being inserted
after [CLS] and bM=0.3.
When to insert. First, we discuss the [MASK] in-
sertion whether for training and/or inference. That
is, three scenarios are considered to insert [MASK]:
(1) only during the training, (2) only during the
inference, and (3) both training and testing (equiva-
lent to MI4D).

The comparison is shown in Table 2. The “Train
only” variant is observed with the worst perfor-
mance for the mostly collapsed convex hull, while
others have more “developped” convex hull to em-
brace the original solution space. We highlight that
including [MASK] in training is to fine-turning
token embedding as a semantic place holder, and
hence a “wild card”. Accordingly, the capacity to
span the convex hull to more likely intersect with
original one is further enhanced, although [MASK]
is employed for extensive pre-training of PLMs be-
fore.
What to substitute. Hereafter the impact from
substituting/masking different types of tokens is
discussed, where tokens are cast as polluted (be-

1064

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(a) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(b) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(c) IMDB

Figure 4: Comparison of the defensing performance as a function of the masking budget (bM), against the TextFooler
attack across three datasets (where x-axis represents bM).

Table 2: Averaged defensing performance via masking training and/or testing samples for MI4D, while the Baseline
method (vanilla RoBERTa-base) is adopted for reference.

Datasets Strategy TextFooler BERT-Attack Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc% Cln% Aua% Suc%

SST2

Baseline 94.1 5.4 94.3 94.1 6.2 93.4 94.1 17.0 81.9 94.1 29.7 68.4
Train only 93.0 6.1 93.4 93.4 7.2 92.3 93.9 19.6 79.1 93.7 31.4 66.5
Test only 92.3 31.8 65.5 92.8 31.5 66.0 92.2 35.3 62.2 92.4 54.9 40.5
Train+Test 94.3 36.4 61.4 94.3 34.5 63.4 94.4 45.6 51.7 94.2 58.3 38.1

AGNEWS

Baseline 94.2 15.8 83.2 94.2 26.7 71.7 94.2 33.0 65.0 94.2 49.2 47.8
Train only 93.6 11.2 88.0 92.4 18.2 80.3 93.4 18.1 80.6 93.3 47.8 48.7
Test only 91.0 52.0 42.8 92.0 63.4 29.7 92.1 43.8 52.4 93.0 71.4 23.2
Train+Test 94.2 66.7 29.2 94.1 69.7 25.9 94.6 62.4 34.0 94.6 73.9 21.9

IMDB

Baseline 91.5 0.5 99.4 91.5 0.6 99.3 91.5 48.5 47.0 91.5 11.9 87.0
Train only 93.8 22.7 75.8 93.1 20.7 77.8 92.1 53.3 42.1 93.3 32.5 65.2
Test only 94.1 44.2 52.9 94.2 37.5 61.1 94.2 84.4 10.4 94.2 65.9 30.0
Train+Test 94.5 56.2 40.5 94.3 54.2 42.5 94.4 93.6 0.8 94.5 69.8 26.1

AVG

Baseline 93.3 7.2 92.3 93.3 11.2 88.1 93.3 32.8 64.6 93.3 30.3 67.7
Train only 93.5 13.3 85.7 93.0 15.4 83.5 93.1 30.3 67.3 93.4 37.2 60.1
Test only 92.5 42.7 53.7 93.0 44.1 52.3 92.8 54.5 41.7 93.2 64.1 31.2
Train+Test 94.3 53.1 43.7 94.2 52.8 43.9 94.5 67.2 28.8 94.4 67.3 28.7

ing attacked) and normal (remaining unchanged).
The following experiment then involves MI4D and
three other variants for comparison, that is to (1)
only substitute polluted (labeled as Mask_Pol), (2)
only substitute normal (labeled as Mask_Normal),
and (3) substitute randomly (explicitly as Ran-
MASK). Fig. 5 illustrates the defensing accuracy
of masking different types of tokens from the SST2
dataset (results from other datasets can be found in
Appendix A.4).

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100
MI4D
Mask_Pol
Mask_Normal
RanMASK

(a) Aua%

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100

(b) Suc%

Figure 5: Comparison of the model performance against
categorizes of masked tokens with SST2.

The comparison results clearly imply that
the best performance is achieved via substitut-
ing/masking polluted tokens (i.e., Mask_Pol),
while Mask_Normal is the worst. In our hypothe-

sis, when polluted tokens are replaced by [MASK],
it generates the convex hull that has the maximum
overlap with the original one and hence leads to the
best chance to defense. By contrast, Mask_Normal
introduces more noise by maintaining perturbed but
removing normal tokens. Notably, as there is no
clue about adversarial attacking on which specific
tokens in reality, Mask_Pol and Mask_Normal then
reveals the theoretically best and worst defensing
outcome (or the upper and lower bound), respec-
tively.

RanMASK is then a special combination of
Mask_Pol and Mask_Normal, as tokens of either
polluted or normal are randomly masked out with
a predefined probability. On the other hand, the
proposed MI4D becomes an effective solution for
masking inputs (due to the uncertainty of which
tokens being polluted during testing), that is con-
sistently better than RanMASK (randomly mask
tokens). Again, the reason is that MI4D includes
all by exploiting the fact that polluted tokens are
still informative, to some extent, when they are
combined with residuals ones, to create a larger
convex hull overlapping (compared to RanMASK)

1065

with the original one. That is shown clearly in
Proposition 1.
[MASK] or others. The last experiment aims to
investigate the possibility of injecting different to-
kens, instead of [MASK]. Specifically, the [PAD]
token is selected and further inserted into the orig-
inal input sequence. Note that, in this regard, all
other configurations (such as the masking budget
and the random insertion) remain explicitly the
same, but only to replace [MASK] with [PAD]
for the injection. Table 3 reports the averaged per-
formance using the SST2 dataset with four attacks.
As observed, the performance using [PAD] is sim-
ilar to that of [MASK], indicating we can insert
[MASK] (or similar) as a “wild card” to increase
the span of the convex hull.

Table 3: Averaged defensing performance via injecting
[PAD] (instead of [MASK]) tokens.

TextFooler BERT-Attack
Cln% Aua% Suc% Cln% Aua% Suc%

[MASK] 94.3 36.4 61.4 94.3 34.5 63.4
[PAD] 94.1 36.4 61.4 93.5 32.8 64.9

Deepwordbug TextBugger
Cln% Aua% Suc% Cln% Aua% Suc%

[MASK] 94.4 45.6 51.7 94.2 58.3 38.1
[PAD] 93.2 44.7 52.0 93.1 63.1 32.3

5 Conclusion

We propose a novel adversarial defensing algo-
rithm (MI4D), that is hyperparameter insensitive
and structure free. The proposed method simply
inserts [MASK] tokens at the beginning of input
sequences, and follows the normal fine-tuning to
train the model. Theoretically speaking, we have
argued that adding additional [MASK], while re-
maining other residual tokens, creates a large con-
vex hull overlapping with that of the clean one to
increase the defensing probability. Empirically, in
comparison to existing state-of-the-arts, the pro-
posed algorithm exhibits superior performance on
three benchmark datasets with four attack methods.
In future work, we could combine with external
knowledge for more strategical masking. More im-
portantly, MI4D is agnostic to downstream tasks,
i.e., we could incorporate it into other applications.

Limitations

Our theoretic analysis is constructed on a crucial as-
sumption asserting that the successful defense prob-
ability is determined by the volume of the convex
hull formed by the input. Although our empirical
study results confirmed the inferences based on this

assumption repeatedly (shown in Section 4.4), we
are still seeking direct dynamics of the convex hull
to the prediction/classification probability where
a more rigorous result may be derived. We envis-
age that the understanding of the current model
behavior can lead to more robust models against
adversarial attacks and hence further improvement
to text classification.

Acknowledgments

This work was partially supported by the
Australian Research Council Discovery Project
(DP210101426) and the Australian Research Coun-
cil Linkage Project (LP200201035).

References
Rongzhou Bao, Jiayi Wang, and Hai Zhao. 2021. De-

fending pre-trained language models from adversar-
ial word substitution without performance sacrifice.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 3248–3258,
Online. Association for Computational Linguistics.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong
Liu. 2021. Towards robustness against natural lan-
guage word substitutions. In International Confer-
ence on Learning Representations.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? a strong
baseline for natural language attack on text classifi-
cation and entailment. volume 34, pages 8018–8025.

Thai Le, Noseong Park, and Dongwon Lee. 2022.
SHIELD: Defending textual neural networks against
multiple black-box adversarial attacks with stochastic
multi-expert patcher. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6661–
6674, Dublin, Ireland. Association for Computational
Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. TextBugger: Generating Adversarial
Text Against Real-world Applications. In Network
and Distributed Systems Security (NDSS) Sympo-
sium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages

1066

https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2022.acl-long.459
https://dx.doi.org/10.14722/ndss.2019.23138
https://dx.doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500

6193–6202, Online. Association for Computational
Linguistics.

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao-
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui
Hsieh. 2021. Searching for an effective defender:
Benchmarking defense against adversarial word sub-
stitution. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3137–3147, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Qin Liu, Rui Zheng, Bao Rong, Jingyi Liu, ZhiHua Liu,
Zhanzhan Cheng, Liang Qiao, Tao Gui, Qi Zhang,
and Xuanjing Huang. 2022. Flooding-X: Improv-
ing BERT’s resistance to adversarial attacks via loss-
restricted fine-tuning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5634–
5644, Dublin, Ireland. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv Preprint, abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Zhao Meng, Yihan Dong, Mrinmaya Sachan, and Roger
Wattenhofer. 2022. Self-supervised contrastive learn-
ing with adversarial perturbations for defending word
substitution-based attacks. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 87–101, Seattle, United States. Association for
Computational Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan,
Ruoxi Jia, Bo Li, and Jingjing Liu. 2021. InfoBERT:

Improving robustness of language models from an
information theoretic perspective. In International
Conference on Learning Representations.

Jianhan Xu, Cenyuan Zhang, Xiaoqing Zheng, Linyang
Li, Cho-Jui Hsieh, Kai-Wei Chang, and Xuanjing
Huang. 2022. Towards adversarially robust text clas-
sifiers by learning to reweight clean examples. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 1694–1707, Dublin, Ire-
land. Association for Computational Linguistics.

Mao Ye, Chengyue Gong, and Qiang Liu. 2020.
SAFER: A structure-free approach for certified ro-
bustness to adversarial word substitutions. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3465–
3475, Online. Association for Computational Lin-
guistics.

Jin Yong Yoo and Yanjun Qi. 2021. Towards improv-
ing adversarial training of NLP models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 945–956, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jiehang Zeng, Xiaoqing Zheng, Jianhan Xu, Linyang Li,
Liping Yuan, and Xuanjing Huang. 2021. Certified
robustness to text adversarial attacks by randomized
[Mask]. arXiv preprint, abs/2105.03743.

Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing
Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. 2022.
Improving the adversarial robustness of NLP models
by information bottleneck. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 3588–3598, Dublin, Ireland. Association for
Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649–657, Cambridge,
MA, USA. MIT Press.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei
Chang, and Xuanjing Huang. 2021. Defense against
synonym substitution-based adversarial attacks via
Dirichlet neighborhood ensemble. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5482–5492, Online.
Association for Computational Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. FreeLB: Enhanced ad-
versarial training for Natural Language Understand-
ing. In International Conference on Learning Repre-
sentations, pages 26–30, Addis Ababa, Ethiopia.

1067

https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.18653/v1/2022.acl-long.386
https://doi.org/10.18653/v1/2022.acl-long.386
https://doi.org/10.18653/v1/2022.acl-long.386
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2022.findings-naacl.8
https://doi.org/10.18653/v1/2022.findings-naacl.8
https://doi.org/10.18653/v1/2022.findings-naacl.8
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://openreview.net/forum?id=hpH98mK5Puk
https://openreview.net/forum?id=hpH98mK5Puk
https://openreview.net/forum?id=hpH98mK5Puk
https://doi.org/10.18653/v1/2022.findings-acl.134
https://doi.org/10.18653/v1/2022.findings-acl.134
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.18653/v1/2021.findings-emnlp.81
https://doi.org/10.18653/v1/2021.findings-emnlp.81
https://arxiv.org/abs/2105.03743
https://arxiv.org/abs/2105.03743
https://arxiv.org/abs/2105.03743
https://doi.org/10.18653/v1/2022.findings-acl.284
https://doi.org/10.18653/v1/2022.findings-acl.284
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

A Appendix

A.1 Training Details

The RoBERTa-base model (Liu et al., 2019) is em-
ployed as the contextual encoder. The dropout rate
across all layers is set as 0.1. The Adam optimizer
with a dynamic learning rate is adopted, for which
the learning rate is warmed up for 10 thousand
steps to a maximum value of 2e−5 before decay-
ing linearly to a minimum value of 1e−6 (by the
cosine annealing) and a gradient clip of (−1, 1).
Additionally, for WETAR-D, 50% of samples are
polluted in the validation set (the size of 256); for
FreeLB++, the number of search steps (for adver-
sarial samples) is 30; for IB, the hidden dimension
for the IB layer is set as 150 and the penalty of
the IB loss is 0.1; for InfoBERT, the penalty of
the mutual-information loss is 5× 10−2; for Ran-
MASK, the masking budget is set as 30%, while
the majority vote is adopted for the final classifica-
tion stage. At last, all models are performed using
a machine with NVIDIA Tesla V100 PCIe of 32G
GPU memory.

A.2 Impact from the location of inserting
[MASK]

The model accuracy is evaluated by adding the
[MASK] token in different locations, i.e., either
after [CLS] (termed Head), randomly (termed Ran-
dom) across the input sequence, or at the end
(termed Tail) . The comparison is shown in Fig 6,
and the result illustrates that the proposed method
achieves a similar performance regardless of the
inserted [MASK] location.

A.3 Impact from the [MASK] budget

The model accuracy is also evaluated as a function
of the masking budget. The comparison is shown
in Fig 7, and the result illustrates that the proposed
method achieves a stable performance regardless
of different budgets.

A.4 Result from masking different types of
tokens

Fig. 8 shows the comparison of the defensing re-
sults with different types of tokens being masked.
Clearly, masking all polluted but retaining normal
tokens leads to the best performance, while mask-
ing normal tokens is the worst. The proposed MI4D
achieves the competitive outcome by injecting ad-
ditional [MASK] tokens while keeping others. The
result indicates that the larger the insertion between

new convex hull (after masking) with the original
one, the better defensing performance.

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100
MI4D
Mask_Pol
Mask_Normal
RanMASK

(a) AGNEWS-Aua%

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100

MI4D
Mask_Pol
Mask_Normal
RanMASK

(b) AGNEWS-Suc%

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100
MI4D
Mask_Pol
Mask_Normal
RanMASK

(c) IMDB-Aua%

TextFooler BERT-Attack DeepWordBug TextBugger0

20

40

60

80

100

MI4D
Mask_Pol
Mask_Normal
RanMASK

(d) IMDB-Suc%

Figure 8: Comparison of the model performance against
categorizes of masked tokens.

1068

Cln% Aua% Suc%0

20

40

60

80

100
93.0

34.2

63.2

94.3

34.5

63.4

92.7

34.2

63.1

Head
Random
Tail

(a) SST2

Cln% Aua% Suc%0

20

40

60

80

100 94.3

69.1

26.7

94.1

69.7

25.9

93.5

69.3

25.9

Head
Random
Tail

(b) AGNEWS

Cln% Aua% Suc%0

20

40

60

80

100 94.7

55.0

41.9

94.3

54.2

42.5

93.9

54.8

41.6

Head
Random
Tail

(c) IMDB

Cln% Aua% Suc%0

20

40

60

80

100
93.2

45.3
51.4

94.4

45.6
51.7

92.8

42.8

53.8

Head
Random
Tail

(d) SST2

Cln% Aua% Suc%0

20

40

60

80

100
93.3

61.7

33.9

94.6

62.4

34.0

93.1

60.9

34.6

Head
Random
Tail

(e) AGNEWS

Cln% Aua% Suc%0

20

40

60

80

100 94.3 93.0

1.4

94.4 93.6

0.8

93.2 92.9

0.3

Head
Random
Tail

(f) IMDB

Cln% Aua% Suc%0

20

40

60

80

100
93.1

58.9

36.7

94.2

58.3

38.1

92.8

61.3

33.9

Head
Random
Tail

(g) SST2

Cln% Aua% Suc%0

20

40

60

80

100 94.6

72.7

20.4

94.6

73.9

21.9

93.5

74.6

20.2

Head
Random
Tail

(h) AGNEWS

Cln% Aua% Suc%0

20

40

60

80

100 94.4

68.6

27.3

94.5

69.8

26.1

93.6

69.1

26.2

Head
Random
Tail

(i) IMDB

Figure 6: Comparison of the defensing performance as a function of inserting [MASK] after [CLS] (labeled as
Head), randomly (labeled as Random), or at the end of the input sequence (labeled as Tail). Among them, (a)-(c) is
for the BERT-Attack, (d)-(f) is for DeepWordBug, and (g)-(i) is for TextBugger, respectively.

1069

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(a) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(b) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(c) IMDB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(d) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(e) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(f) IMDB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(g) SST2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(h) AGNEWS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

Cln%
Aua%
Suc%

(i) IMDB

Figure 7: Comparison of the defensing performance as a function of masking budget. Among them, (a)-(c) is for
the BERT-Attack, (d)-(f) is for DeepWordBug, and (g)-(i) is for TextBugger, respectively.

1070

