
Findings of the Association for Computational Linguistics: ACL 2023, pages 13597–13609
July 9-14, 2023 ©2023 Association for Computational Linguistics

End-to-end Aspect-based Sentiment Analysis
with Combinatory Categorial Grammar

Yuanhe Tian♠♥, Weidong Chen♠, Bo Hu♠, Yan Song♠†, Fei Xia♥
♠University of Science and Technology of China ♥University of Washington

♥{yhtian, fxia}@uw.edu ♠{chenweidong, hubo}@ustc.edu.cn ♠clksong@gmail.com

Abstract
End-to-end Aspect-based Sentiment Analysis
(EASA) is a natural language processing (NLP)
task that involves extracting aspect terms and
identifying the sentiments for them, which pro-
vides a fine-grained level of text analysis and
thus requires a deep understanding of the run-
ning text. Many previous studies leverage ad-
vanced text encoders to extract context infor-
mation and use syntactic information, e.g., the
dependency structure of the input sentence, to
improve the model performance. However,
such models may reach a bottleneck since the
dependency structure is not designed to pro-
vide semantic information of the text, which
is also important for identifying the sentiment
and thus leave room for further improvement.
Considering that combinatory categorial gram-
mar (CCG) is a formalism that expresses both
syntactic and semantic information of a sen-
tence, it has the potential to be beneficial to
EASA. In this paper, we propose a novel ap-
proach to improve EASA with CCG supertags,
which carry the syntactic and semantic infor-
mation of the associated words and serve as
the most important part of the CCG derivation.
Specifically, our approach proposes a CCG su-
pertag decoding process to learn the syntactic
and semantic information carried by CCG su-
pertags and use the information to guide the
attention over the input words so as to identify
important contextual information for EASA.
Furthermore, a gate mechanism is used in incor-
porating the weighted contextual information
into the backbone EASA decoding process. We
evaluate our approach on three publicly avail-
able English datasets for EASA, and show that
it outperforms strong baselines and achieves
state-of-the-art results on all datasets.1

1 Introduction
End-to-end aspect-based sentiment analysis
(EASA) is an important task that provides the

†Corresponding author.
1The code involved in this paper is released at https:

//github.com/synlp/ASA-CCG.

Figure 1: An example sentence for EASA where the
sentiments of two aspect terms, namely, “environments”
and “bar service”, are positive and negative, respec-
tively. The supertag and EASA label of each word are
also presented for better illustration. The EASA labels
aggregate the BIO labels for aspect term extraction with
the positive/negative labels for sentiment polarity.

understanding of attitudes and emotions of
individuals towards specific topics or entities on a
fine-grained level. In general, EASA is normally
required to identify aspect terms in the running
text and then predict their sentiment polarities.
Therefore, understanding sentence structure is of
great importance in locating different parts of a
sentence and thus finding the aspect and associated
sentiment terms for EASA. For example, in Figure
1, a sentence “Total environment is fantastic
although I hate bar service” contains two aspect
terms, namely, “environment” and “bar service”
and the sentiment polarities towards them are
positive and negative, respectively.

Most of the previous studies (Hu et al., 2019; He
et al., 2019; Luo et al., 2019; Wang et al., 2021; Bie
and Yang, 2021; Li et al., 2019a,b; Hu et al., 2019;
Chen et al., 2020; Liang et al., 2021) on EASA are
generally categorized into three categories, namely,
pipeline, multi-task, and joint-label approaches,
based on how they formalize the task. Among
the three types of approaches, the joint-label ap-
proaches aggregate labels for the sub-tasks rather
than directly conducting them, and they achieve the
best performance. Figure 1 shows the aggregated
EASA labels where the first part indicates the po-
sition of a word in an aspect term following the

13597

https://github.com/synlp/ASA-CCG
https://github.com/synlp/ASA-CCG


BIO schema and the second part indicates the sen-
timent of the aspect term.2 In performing EASA,
previous studies try advanced encoders, such as
LSTM, Transformer (Vaswani et al., 2017), and
BERT (Devlin et al., 2019), to capture contextual
information and achieve outstanding performance.
Since most aspect terms are noun phrases and the
syntactic structure of the text is able to provide
additional clues about the sentiment expressed to-
wards an aspect, previous studies leverage syntactic
information, e.g., the dependency of the sentence,
to further enhance sentiment analysis (Huang and
Carley, 2019; Tian et al., 2021a,b; Wu et al., 2021;
Liang et al., 2021). However, approaches enhanced
by conventional syntactic information, especially
the dependencies, may reach a bottleneck since it is
unable to provide semantic information about the
sentence, which is also important for EASA.

Combinatory categorial grammar (CCG) of-
fers an alternative to phrase structure grammar
for describing the syntax and build transparent
connections for syntax and semantics (Steedman,
1987; Baldridge, 2002; Hockenmaier and Steed-
man, 2005). In using combinatory rules over sim-
ple syntactic categories, a key feature of CCG is
its use of type-logical semantics, which provides a
systematic way of associating meanings with the
syntactic structures generated by the grammar. This
allows for a more precise and intuitive representa-
tion of the meanings of sentences as well as each
word in it. Particularly, the lexical category (which
is also known as CCG supertags) associated with
each word conveys both syntactic and semantic
information of the word. Therefore, learning the
CCG supertagging process allows the model to
learn the syntactic and semantic function of each
word in the running text and thus shows its effec-
tiveness in many tasks (Lewis et al., 2015; Kasai
et al., 2019; Tian and Song, 2022).

In this study, we hypothesize that CCG could be
useful in enhancing the performance of the model
for EASA as well. We propose a joint-label ap-
proach following the encoding-decoding paradigm
to enhance EASA with CCG supertags. In doing so,
we enhance EASA with a CCG supertag decoding
process to learn from the CCG supertags automati-
cally annotated by an off-the-shelf CCG supertag-
ger. An attention mechanism is performed over
all input words to identify the ones that contribute

2For example, “O” indicates that the associated word is
not part of an aspect term and “B-NEG” means the word is
the beginning of an aspect term whose sentiment is negative.

to the EASA task, where the attention weights are
guided by the supertag decoding process. This
allows our model to learn the syntactic and seman-
tic information carried by CCG supertags through
the CCG decoding process rather than using them
as additional input features and thus makes our
model run faster in inference. Furthermore, consid-
ering that there could be noise in the auto-generated
CCG supertags, we introduce a gate mechanism
to balance the contributions between the context
information obtained from the text encoder and the
attention module. Experimental results on three
English benchmark datasets for EASA present the
effectiveness of our approach, where our approach
outperforms strong baselines and achieves state-of-
the-art performance.

2 Related Work

The EASA task has drawn much attention in re-
cent years and existing approaches can be cate-
gorized into three groups, namely, pipeline ap-
proaches, multi-task approaches, and joint ap-
proaches. Specifically, the pipeline approaches
(Mitchell et al., 2013; Zhang et al., 2015; Hu et al.,
2019) contains two steps, where the first performs
the aspect term extraction and the second aims to
predict the sentiment polarities of the extracted as-
pect terms. The multi-task approaches (Ma et al.,
2018; Luo et al., 2019; He et al., 2019; Wang et al.,
2021) normally use a text encoder to model the
input and employ multi-task learning with two sep-
arately decoding processes to extract the aspect
terms and predict the sentiments. Joint-label ap-
proaches (Li and Lu, 2017; Li et al., 2019a; Chen
et al., 2020) perform the aspect term extraction and
the sentiment polarity prediction tasks simultane-
ously through a unified labeling scheme.

Most recent approaches to EASA apply ad-
vanced encoders (e.g., LSTM, Transformer, and
BERT) and achieve promising performance. To fur-
ther enhance EASA, Chen et al. (2020) proposed
a joint-label model to leverage the dependencies
between words through graph-based models; Wang
et al. (2021) used a hierarchical architecture to per-
form multi-task learning and outperforms existing
multi-task based approaches. Overall, the pipeline
approaches often suffer from error propagation is-
sues in the cascade steps and the multi-task ap-
proaches have label mismatching problems, where
the decoding results usually do not match each
other. In comparison, joint-label approaches are
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superior in avoiding error propagation and label
mismatch problems.

Compared with previous studies, this paper pro-
poses a joint-label approach for EASA with the
enhancement of using CCG information (rather
than the dependencies which are widely used in
previous studies) through CCG supertag decoding,
attention mechanism, and gate modules.

3 Preliminaries

3.1 Combinatory Categorial Grammar
Combinatory categorial grammar (CCG) is a lin-
guistic framework that describes the syntax and
semantics of natural language using mathematical
functions. It is based on the idea that the meaning
of a sentence can be derived from the combina-
tion of its individual words, and each word is as-
signed a specific category (i.e., supertag) based on
its grammatical function. CCG uses a set of rules
to combine these categories in order to generate the
meaning of a sentence.

The advantage of CCG for NLP is its ability to
handle the complex structure of natural language.
CCG provides a systematic and rigorous way to
analyze the syntactic and semantic structure of sen-
tences, which is essential for building accurate and
efficient NLP systems. It also allows for the integra-
tion of syntactic and semantic information, which
is crucial for language understanding. For exam-
ple, in the clause “I hate bar service” in Figure 1,
its CCG derivation presents that “bar service” is a
nominal phrase that serves as the object and patient
of the predicate “hate” that convey the negative sen-
timent, which implies a negative sentiment towards
the aspect term “bar service”.

Comparing with widely used phrase structure
grammar (PSG) or dependency grammar, CCG is
potentially useful for EASA in two aspects. First,
CCG is normally lexicalized3, where the syntac-
tic categories of words and phrases are determined
not only by their syntactic function, but also by
their specific meaning and usage. For example,
verbs can be divided into intransitive, transitive,
and ditransitive verbs depending on the number
of arguments they take. If the verb’s supertag is
“S\NP”, it means the verb requires only an NP argu-
ment from the left (i.e., the subject) and thus it is
an intransitive verb; if its supertag is “(S\NP)/NP”,
then it first requires an NP from the right (i.e., an

3We refer to lexicalized CCG in this paper, which is the
widely used version of CCG for real parsing and applications.

object) and then an NP from the left (i.e., a subject);
thus, it is a transitive one. Therefore, the supertag
of a word specifies not only the word’s syntactic
category but also other relevant information, such
as its subcategorization frame and the types of its
arguments, which is of great importance in analyz-
ing semantic relations among words. Second, CCG
is able to handle long-distance dependencies in an
elegant way through combinatory rules, especially
when it uses “type raising”, a process that changes
the syntactic categories of a word or a phrase for
representing the complex syntactic structure of a
sentence, and thus captures important contextual
information for EASA.

3.2 Joint-label Approaches for EASA

Previous joint-label approaches formalize EASA
as a standard sequence labeling task, where an
input sentence with n words, namely, X =
x1 · · ·xi · · ·xn, is tagged with the corresponding
EASA joint label sequence Ŷ = ŷ1 · · · ŷi · · · ŷn
with ŷi denotes the joint label for xi. Herein, a joint
label consists of two parts: the first part refers to
the BIO label with respect to aspect term boundary
and the second part indicates the sentiment polarity
(i.e., positive, negative, neutral) of that aspect.

4 The Approach

Our approach for EASA follows the standard se-
quence labeling paradigm, whose architecture is
illustrated in Figure 2. Specifically, our approach
consists of four parts: (1) the backbone model to
predict EASA labels, (2) the supertag decoding
process to learn syntactic and semantic information
carried by supertags, (3) the attention module to
weigh different contextual information, and (4) the
gate mechanism to balance the contribution of the
backbone model and the attention module to the
EASA task. The process of our approach (which is
denoted as f ) for EASA can be formalized as

Ŷ, ŶS = f (G (A (X ) ,X ) ,S (X )) (1)

where ŶS = ŷs1 · · · ŷsi · · · ŷsn stands for the supertag
sequence obtained from the supertag decoding pro-
cess (denoted as S), G is the gate module, and A
refers to the attention module. In training, the pre-
dicted EASA joint labels Ŷ are compared with the
gold standard Y∗ to obtained the EASA loss Le and
the predicted supertags ŶS are compared with the
silver standard Y∗ obtained from a CCG supertag-
ger to compute the supertag loss Ls. The total loss
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Figure 2: The overall architecture of our model. The right-hand side illustrates the supertag decoding process that
learns contextual information by predicting CCG supertags and the attention mechanism that obtains important
contextual information guided by the CCG supertags. The left-hand side presents the backbone model for EASA
and the gate module to incorporate the contextual information from the attention module into the backbone model.

is the sum of EASA loss and supertag loss and the
model is updated accordingly. In this section, we
will first introduce the overall tagging process for
EASA labels, next present the supertag decoding
process, then elaborate the attention module, and
finally illustrate the gate mechanism.

4.1 Overall Tagging Process
The overall tagging process follows the standard
encoding-decoding paradigm. First, a text encoder
fe (such as BiLSTM, Transformer, and BERT) is
applied to the input sentence and obtains the hidden
vector sequence

h1 · · ·hi · · ·hn = fe (X ) (2)

where hi is the hidden vector of xi which stores
contextual information learnt by the encoder. Then,
the hidden vector for each word is fed into a
multi-layer perceptron (denoted by MLPe) to ob-
tain the hidden vector he

i for EASA through he
i =

MLPe(hi). Afterwards, he
i and the output from the

attention module ai are fed into the gate module
to obtain the output oi through oi = G(he

i ,ai).
Finally, oi is fed into a fully connected layer to
produce ui = Wo · oi + bo with Wo and bo serv-

ing as its weight matrix and bias vector. Finally, a
softmax classifier is applied to the resulting vector
ui to predict the joint label ŷi for EASA.

4.2 Supertag Decoding

To leverage the information carried by CCG su-
pertags, one straightforward approach is to use
an off-the-shelf CCG supertagger to tag the in-
put sentence and then use the supertags as extra
word-level features by concatenating them with
the input words before sending them to the text
encoder. However, such approaches require the
CCG supertagging as a pre-processing step in in-
ference, which is not efficient, especially when the
data to be processed is relatively large. Consider-
ing combining several decoding processes serves
as an effective approach to learning from different
tasks and does not require the label from differ-
ent tasks as an extra input, we propose to learn
the CCG information through an additional CCG
supertag decoding process and then use the CCG
information to guide EASA through an attention
mechanism over all input words.

For CCG supertag decoding, we take the hidden
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Dataset LPTP REST TWTR
Train Test Total Train Test Total Total

# of Sentences 3,045 800 3,845 3,877 2,158 6,035 2,350
# of Aspects 2,300 634 2,934 4,310 2,288 6,598 3,223
(a) # of Positive 987 339 1,326 2,609 1,524 4,133 698
(b) # of Negative 861 130 991 1,035 501 1,536 271
(c) # of Neutral 452 165 617 666 263 929 2,254

Table 1: The statistics of three benchmark datasets, showing the numbers of sentences and aspect terms, as well as
the numbers of aspect terms with positive (POS), negative (NEG), and neutral (NEU) sentiment polarities.

Hyper-parameters Values

Learning Rate 5e-6, 1e-5, 3e-5
Warmup Rate 0.1, 0.2
Dropout Rate 0.2
Batch Size 4, 8, 16

Table 2: The hyper-parameters that were tested in our
experiments. The best ones are highlighted in boldface.

vector hi of the word xi obtained from the encoder
and pass it through an MLP (denoted by MLPs)
to get hs

i = MLPs (hi). The resulting hs
i is then

mapped to the vector us
i = Ws · hs

i + bs in the
output space by a trainable matrix Ws and a bias
vector bs. Finally, a softmax classifier is applied to
us
i to predict the supertag ŷsi .

4.3 Supertag-driven Attentions

In the attention module, we use two trainable ma-
trix Wk and Wv to map hs

j to the key vector kj

and value vector vj , respectively:

kj = Wk · hs
j (3)

and
vj = Wv · hs

j (4)

Then, for each word xi, we compute the attention
weight pi,j assigned to the value vj through

pi,j =
exp (he

i · kj)∑n
l=1 exp (h

e
i · kl)

(5)

Afterwards, we apply pi,j to the value vector vj

and obtain the weighted sum vector ai via

ai =
n∑

j=1

pi,j · vj (6)

Finally, ai is fed into the gate module.
In training, the model is optimized on EASA

and CCG supertagging, which allows our model to
learn CCG information and use it to enhance the en-

tity representation through the attention mechanism
with the attention weights assigned to different in-
put words guided by the learned CCG information.

4.4 The Gate Mechanism

We observe that the contribution of the obtained
contextual information to the EASA task could vary
in different contexts and a gate module (denoted by
G) is naturally desired to weight such information
in varying contexts. Thus, to improve the capability
of EASA with the semantic information, we pro-
pose a gate module to aggregate such information
to the backbone NER model. Particularly, we use a
reset gate to control the information flow by

gi = σ(W1 · he
i +W2 · ai + b), (7)

where W1 and W2 are trainable matrices and b
the corresponding bias term. Afterwards, we use

oi = [gi ◦ he
i ]⊕ [(1− gi) ◦ ai] (8)

to balance the information from the backbone
model and the attention module, where ⊕ denotes
vector concatenation operation, oi is the derived
output of the gate module; ◦ represents the element-
wise multiplication operation and 1 is a 1-vector
with its all elements equal to 1.

5 Experimental Settings

5.1 Datasets

In experiments, we follow previous studies for
EASA and evaluate models on three English bench-
mark datasets, including restaurant (REST) dataset
from SemEval ABSA challenges (Pontiki et al.,
2014, 2015, 2016), laptop (LPTP) dataset from
Pontiki et al. (2014), and Twitter (TWTR) dataset
from Mitchell et al. (2013).4 All datasets contain
the ground truth labels of the target aspects and

4All datasets are public available and our use of them is
consistent with their intended use.
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Models
Dev Test

Para. # SpeedREST LPTP TWTR REST LPTP TWTR

BERT-Base 73.62±0.11 60.54±0.14 55.78±0.08 73.44±0.13 60.72±0.12 55.99±0.12 110M 35.4
+ Concat 75.80±0.15 61.21±0.09 57.74±0.10 75.69±0.10 61.34±0.13 57.88±0.14 113M 33.6
+ Att + Gate 73.80±0.12 60.68±0.10 55.95±0.09 73.61±0.14 60.90±0.08 56.16±0.13 112M 30.6
+ Ours 76.81±0.10 66.20±0.13 60.59±0.10 76.72±0.11 66.64±0.15 60.82±0.12 112M 30.9

BERT-Large 76.44±0.13 65.30±0.10 58.42±0.14 76.27±0.11 65.43±0.12 58.66±0.10 336M 24.5
+ Concat 76.72±0.15 66.01±0.11 58.90±0.10 76.50±0.15 66.20±0.12 59.10±0.12 339M 23.0
+ Att + Gate 76.62±0.14 65.52±0.16 58.50±0.10 76.33±0.12 65.50±0.13 58.73±0.09 338M 21.5
+ Ours 78.01±0.11 68.42±0.14 62.08±0.13 77.95±0.10 68.68±0.11 62.37±0.14 338M 21.3

XLNet-Base 73.75±0.12 60.76±0.10 56.01±0.13 73.68±0.11 61.09±0.14 56.36±0.11 118M 34.8
+ Concat 76.40±0.13 62.03±0.13 58.37±0.15 76.29±0.12 62.28±0.10 58.47±0.12 121M 32.6
+ Att + Gate 73.87±0.10 60.90±0.14 56.26±0.11 73.80±0.13 61.34±0.10 56.52±0.14 120M 29.1
+ Ours 77.14±0.11 66.33±0.14 60.80±0.12 77.09±0.10 66.80±0.12 60.92±0.11 120M 29.2

XLNet-Large 76.72±0.12 65.60±0.10 58.78±0.11 76.60±0.13 65.85±0.14 59.04±0.13 362M 23.8
+ Concat 77.21±0.10 66.69±0.13 59.92±0.14 77.15±0.09 67.02±0.16 60.28±0.13 365M 22.1
+ Att + Gate 76.87±0.15 65.84±0.11 60.06±0.15 76.83±0.10 66.01±0.14 59.27±0.12 364M 20.7
+ Ours 78.51±0.12 68.64±0.10 62.77±0.14 78.24±0.09 68.93±0.10 62.90±0.11 364M 20.5

Table 3: Experimental results (average F1 scores of five runs and the standard deviation) of different models on
three English benchmark datasets. The last two columns show the number of parameters and the inference speed
(in terms of the number of sentences processed per second) of the models, respectively. The improvement of our
approach over the baselines is significant under all settings with p < 0.005.

their sentiment polarities. Following the conven-
tion in previous studies for aspect-level sentiment
analysis (Li et al., 2019a,b; He et al., 2019; Hu
et al., 2019; Qin et al., 2021, 2022), we only con-
sider three sentiment polarities, namely, positive,
negative, and neutral, where all cases labeled by a
conflict sentiment in REST and LPTP dataset are
filtered out. For all datasets, we report in Table
1 their numbers of sentences and aspect terms, as
well as the numbers of aspect terms with positive,
neutral, and negative sentiment polarities. The
TWTR dataset does not have a standard train-test
split and thus we only report its overall statistics.

5.2 Baselines
To explore the effect of our approach to leverage
CCG information, we compare our approach with
the following baselines:

Base: This baseline follows the standard
encoding-decoding paradigm, which corresponds
to the backbone model of our approach.

Concat: This baseline uses the auto-generated
CCG supertags as additional input. Specifically,
the embeddings of the supertags are concatenated
with the hidden vectors of the corresponding words
and the resulting vectors are fed into a two-layer
Transformer to further encode contextual informa-
tion before passing through the decoder.

Attention + Gate: This baseline uses the same
attention and gate module as our proposed model

but does not use the CCG decoding process to learn
the CCG supertag information.

5.3 Implementation

To obtain the auto-generated CCG supertags for
the baselines and our approach, we use an off-the-
shelf CCG supertagger called NeST-CCG5 (Tian
et al., 2020) to supertag the text. Because a high-
quality text representation is significantly important
for a model to obtain high performance in many
tasks (Mikolov et al., 2013; Song et al., 2017; Bo-
janowski et al., 2017; Song et al., 2018; Song and
Shi, 2018; Peters et al., 2018; Diao et al., 2020;
Lewis et al., 2020; Song et al., 2021), in the ex-
periments, we choose two commonly used pre-
trained language models, namely BERT (Devlin
et al., 2019) and XLNet (Yang et al., 2019). We use
the base and large versions of the models following
the default hyper-parameter settings, i.e., 12 lay-
ers of self-attention with 768-dimensional hidden
vectors for the base version and 24 layers of self-
attention with 1024 dimensional hidden vectors for
the large version.6

We randomly initialize all trainable parameters
in our approach and update them during training.
For REST and LPTP which do not have an offi-

5We downloaded the publicly available model from https:
//github.com/synlp/NeST-CCG following its intended use.

6We download the publicly available cased version of
BERT from https://github.com/google-research/bert
and XLNet from https://github.com/zihangdai/xlnet
following their intended use.
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Models REST LPTP TWTR

Pipeline Hu et al. (2019) 74.92 68.06 57.69

Multi-task

He et al. (2019) - 58.37 -
Luo et al. (2019) 72.78 60.35 51.37
Wang et al. (2021) - 63.69 -
Bie and Yang (2021) - 55.08 47.89

Joint-label

Li et al. (2019a) 69.80 57.90 48.01
Li et al. (2019b) 73.24 61.12 -
Hu et al. (2019) 57.85 48.66 48.11
Chen et al. (2020) 77.81 68.53 62.26
Liang et al. (2021) - 63.04 -

Ours (BERT-Large) 78.02 68.77 62.47
Ours (XLNet-Large) 78.29 69.01 62.98

Table 4: Comparison of our best-performing models with previous studies.

cial development set, we randomly sampled 10%
instances from the training set and use them as
the development set for hyper-parameter tuning
(the hyper-parameters tried in the experiments are
elaborated in Table 2). Once the hyper-parameters
are tuned, we train our final model on the whole
training set and evaluate it on the test set. For
TWTR, we follow the convention in previous stud-
ies (Mitchell et al., 2013; Zhang et al., 2015; Li
et al., 2019a; Luo et al., 2019; Hu et al., 2019)
to use ten-fold cross-validation on it, where the
hyper-parameter tuning process is the same as the
experiments on REST and LPTP. For evaluation,
we follow previous studies (Li et al., 2019a,b; Luo
et al., 2019; He et al., 2019; Hu et al., 2019) and
evaluate all models with F1 scores.

6 Results and Analysis

6.1 Overall Results

We run our models and baselines using the base
and large versions of BERT and XLNet. Table 3
shows the average results (F1 scores) of five runs
on the development and test set of the three English
datasets, where the number of parameters (“Para.
#”) and the inference speed (“Speed”) in terms of
the number of sentences processed per second are
shown in the last two columns.

There are several observations from Table 3.
First, our approach outperforms the “Base” model
with base and large versions of BERT and XLNet
on all datasets without requiring many additional
model parameters, which is promising given that
BERT and XLNet baselines have already achieved
outstanding performance on the datasets. Second,

compared with the “Concat” baselines that lever-
age CCG supertags by concatenating the supertag
embeddings with the hidden vectors, our approach
consistently achieves better performance under all
settings, which demonstrates the effectiveness of
the attention and gate modules, as well as the CCG
supertag decoding process, to leverage CCG infor-
mation to improve EASA. Third, our model signifi-
cantly outperforms the “Att+Gate” models without
the CCG supertag decoding process to learn the
CCG information, which confirms the effective-
ness of the CCG supertags in providing necessary
information to guide the model to distinguish im-
portant context information.

Next, we compare our best-performing models
using the large version of BERT and XLNet with
previous studies for EASA. The results are in Ta-
ble 4, showing that our approach outperforms all
the previous studies and achieves state-of-the-art
performance on the three benchmark datasets. Par-
ticularly, different from existing approaches that
leverage dependencies for EASA, our approach
proposes an alternative by incorporating syntac-
tic and semantic information from CCG supertags
into the EASA task. Our model integrates a CCG
supertag decoding process to automatically learn
the syntactic and semantic information contained
within CCG supertags. This eliminates the need for
using CCG supertags as additional input features,
which is computationally expensive in inference.

6.2 Comparison with Dependencies

Since the dependency structure of the input sen-
tence is widely used in previous studies for EASA,
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Models REST LPTP TWTR

BERT-base 73.44 60.72 55.99
+ Dep. (GAT) 76.31 66.03 58.00
+ CCG (Ours) 76.72 66.64 60.82

BERT-large 76.27 65.43 58.66
+ Dep. (GAT) 77.13 68.18 61.88
+ CCG (Ours) 77.95 68.68 62.37

XLNet-base 73.68 61.09 56.36
+ Dep. (GAT) 76.63 66.04 60.27
+ CCG (Ours) 77.09 66.80 60.92

XLNet-large 76.50 66.05 59.24
+ Dep. (GAT) 76.97 66.52 59.85
+ CCG (Ours) 78.24 68.93 62.90

Table 5: Comparison of the results (average F1 scores)
of models with GAT to encode dependency information
and our models to leverage CCG supertags, where the
performance of the “Base” model with BERT and XL-
Net encoder are also reported for reference.

we compare our approach which leverages CCG
supertags with previous studies that leverage de-
pendencies. Since graph attention networks (GAT)
(Veličković et al., 2017) is a widely used architec-
ture with an attention mechanism to encode de-
pendencies and is demonstrated to be effective in
many NLP tasks, we use GAT to encode the de-
pendency of the input sentence obtained from the
dependency parser DMPar (Tian et al., 2022). The
average F1 scores of GAT and our approach, as
well as the “Base” model, with base and large ver-
sions of BERT and XLNet are reported in Table
5, where our approach consistently outperforms
the GAT model under all settings. This observa-
tion shows that in addition to dependencies, CCG
could be another effective linguistic information
that could be beneficial for EASA.

6.3 Ablation Study

To determine the effect of the attention module
and the gate module in leveraging CCG supertag
information, we conduct an ablation study where
either the attention module or the gate module is
ablated from our full model. Specifically, when the
attention module is ablated, the attention weights
are equal for all the words; when the gate module
is ablated, the output from the attention module
is directly concatenated with the hidden vector of
each word. Table 6 summarizes the average perfor-
mance of different models, where the performance

Models REST LPTP TWTR

Full Model 76.72 66.64 60.82
− Att 76.09 63.54 59.03
− Gate 76.53 66.39 60.35

BERT-base 73.44 60.72 55.99

Full Model 77.95 68.68 62.37
− Att 76.78 67.13 60.32
− Gate 77.64 68.37 62.04

BERT-large 76.27 65.43 58.66

Full Model 77.09 66.80 60.92
− Att 76.60 64.74 59.43
− Gate 76.76 66.57 60.61

XLNet-base 73.68 61.09 56.36

Full Model 78.24 68.93 62.90
− Att 77.41 67.53 60.67
− Gate 77.97 68.56 62.59

XLNet-large 76.50 66.05 59.24

Table 6: Experimental results (average F1 scores) of
ablation studies, where either the attention module (“−
Att”) or the gate module (“− Gate”) is ablated from our
full model. The performance of the “Base” model with
base and large versions of BERT and XLNet are also
reported for reference.

of the “Base” model with base and large versions
of BERT and XLNet is included for reference. The
table shows that the ablation of either the atten-
tion module or the gate module hurts the model’s
performance. Furthermore, the performance de-
crease due to ablating the attention module is much
severe than that due to ablating the gate module,
indicating the importance of the attention module
in leveraging CCG supertags, as the attentions al-
low the model to identify the important context
features for EASA and leverage them accordingly
to improve system performance.

6.4 The Effect of Supertags

To investigate the contribution of individual CCG
supertags to the EASA task, for each word that is
a part of an aspect term, we collect the attention
weights over the input words and their attached
CCG supertags and compute the average weight
of each supertag. Figure 3 presents the top 5 rank-
ing CCG supertags when using our model with
BERT-base encoder on the test set of REST, LPTP,
and TWTR. It is observed that, “N/N”, “S\NP”,
“(S\NP)/NP”, and “(S\NP)/(S\NP)” are the top rank-
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Figure 3: The average attention weight assigned to the
top 5 ranking CCG supertags by our model that uses
BERT-base encoder on the test set of (a) REST, (b)
LPTP, and (c) TWTR.

ing CCG supertags shared by all datasets. One
possible explanation could be the following. “N/N”
is often the supertag of a noun modifier (e.g., the
word “beautiful” in “beautiful view”), which could
express sentiment toward the noun being modified.
The supertag “S\NP” is for both intransitive verbs
and adjectives in the predicative position (e.g., “fan-
tastic” in “Total environment is fantastic” shown in
Figure 1); some words in that position could pro-
vide sentiment information toward the subject of
the clause. The supertag “(S\NP)/NP” is normally
associated with transitive verbs and some of them
(such as like, hate, and prefer) may express senti-
ment toward the object of the clause. The supertag
“(S\NP)/(S\NP)” is normally for adverbs that mod-
ify VPs. Some of those adverbs (e.g., happily and
not) can be important for identifying the sentiment.

7 Conclusion

In this paper, we propose to enhance joint-label
EASA by leveraging CCG information, which con-
tains both syntactic and semantic information of
the running text and thus shows its superior to the
conventional phrase and dependency style gram-
mars. Specifically, we learn the CCG supertag
information through a CCG supertag decoding pro-
cess, where such information is used to guide the
attention weights over the input words in the atten-
tion module so that important context information
is distinguished and leverage accordingly. To fur-
ther enhance the model performance, we employ
the gate module to balance the contribution of the
context information obtained from the backbone

text encoder and the attention module. Experimen-
tal results and further analysis on three English
benchmark datasets demonstrate the effectiveness
of the proposed model, where our model outper-
forms strong baselines and achieves state-of-the-art
performance on all datasets. For future study, we
plan to explore effective approaches to leverage the
CCG derivation of the input text to improve EASA.
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