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Abstract
Parameter-efficient tuning (PET) methods can
effectively drive extremely large pre-trained
language models (PLMs) by training only min-
imal parameters. Different PET methods uti-
lize different manually designed tunable mod-
ules. In small PLMs, there are usually notice-
able performance differences among PET meth-
ods. Nevertheless, as the model scale increases,
the performance differences become marginal.
Hence, we hypothesize that model scaling miti-
gates the impact of design differences on PET
methods. To investigate this hypothesis, we
introduce a more flexible PET method called
Arbitrary PET (APET) method. The APET
method is compatible with a tunable module,
which consists of any number of parameters dis-
tributed in arbitrary positions. Then, we utilize
it and conduct experiments on 11 NLP tasks
across 3 representative PLMs. Our investiga-
tions reveal that model scaling (1) mitigates
the effects of the positions of tunable param-
eters on performance, and (2) enables tuning
methods to achieve performance comparable to
full-parameter fine-tuning by optimizing fewer
tunable parameters. Intriguingly, we also ob-
serve that tuning methods optimize the similar
number of tunable parameters to exceed ran-
dom guess performance on different tasks. We
collectively discuss this phenomenon and the
two aforementioned findings from an optimiza-
tion perspective to understand the underlying
mechanisms. These conclusions enhance our
understanding of the impact of model scaling
on PET and assist in designing more effec-
tive and efficient PET methods for PLMs of
different scales. The source code can be ob-
tained from this GitHub repository: https://
github.com/yushengsu-thu/PET_Scaling.

1 Introduction

Pre-trained language models (PLMs), such as GPT
(Radford et al., 2018), BERT (Devlin et al., 2019),
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Figure 1: Different PET methods have distinct tunable
modules, which typically result in noticeable perfor-
mance differences. However, as the model scale in-
creases, these differences become less significant.

and T5 (Raffel et al., 2020), have achieved great
success on various natural language processing
(NLP) tasks. Despite their effectiveness, fine-
tuning (FT) these large-scale PLMs with full param-
eters incurs both unaffordable computational and
storage costs. To solve this problem, researchers
have proposed a series of parameter-efficient tun-
ing (PET) methods (Houlsby et al., 2019a; Li and
Liang, 2021; Mahabadi et al., 2021a; Lester et al.,
2021; Mahabadi et al., 2021b; Hu et al., 2022a;
Ben Zaken et al., 2022; He et al., 2022b) which
only update an assigned tunable module consist-
ing of minimal parameters while freezing the rest
parameters in a PLM during model adaptation.

Although these existing representative PET
methods can reduce computational and storage
costs, there are usually noticeable performance dif-
ferences among these representative PET methods
on downstream tasks. Intriguingly, as the scale
of a PLM increases, the performance differences
among PET methods become narrower, as illus-
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trated in Figure 1. These findings are interesting
and worth exploring because the existing represen-
tative PET methods are designed with disparate
philosophies, e.g., tunable modules that are com-
posed of different numbers of tunable parameters
distributed in arbitrary positions. Hence, we hy-
pothesize that model scaling mitigates the effects of
the above design differences among the PET meth-
ods on performance. To validate this hypothesis,
we further conduct two lines of ablation analyses:

(A1) Whether the model scale mitigates the perfor-
mance differences resulting from the position
of tunable parameters.

(A2) Whether the model scale mitigates the perfor-
mance differences resulting from the number
of tunable parameters.

However, solely investigating the four representa-
tive PET methods (see Figure 1) might be insuffi-
cient to encompass an adequate range of parameter
positions for the ablation analyses (A1). Addition-
ally, the tunable modules of these four PET meth-
ods are constrained to be composed of layer-level
tensors or matrices, making it challenging to pre-
cisely control the number of tunable parameters at
the fine-grained (parameter) level in the ablation
analyses (A2). To facilitate the ablation analyses,
we develop a more flexible Arbitrary Parameter-
Efficient Tuning (APET) method (§ 5.1), which
can be compatible with any number of tunable pa-
rameters distributed in arbitrary positions.

In analysis (A1), we compare the performance
of APET methods with an equal number of tunable
parameters distributed in different positions. Based
on the experimental results, we observe smaller dif-
ferences in the performance of these APET meth-
ods on larger models. This finding suggests that
scaling the model mitigates the effects caused by
the position of tunable parameters on performance.

In analysis (A2), we compare the performance
of the same APET methods with varying numbers
of tunable parameters. Based on the experimen-
tal results, we observe that model scaling does not
mitigate the effects caused by the number of tun-
able parameters on performance. Furthermore, we
have observed two interesting phenomena when the
number of tunable parameters reaches two thresh-
olds: the high threshold and the low threshold.
When the number of tunable parameters equals
the high threshold, APET methods can achieve the
full-parameter fine-tuning performance of the cor-
responding backbone model, and the high threshold

tends to be lower on the larger models. Namely,
PET methods can optimize fewer tunable param-
eters to achieve full-parameter fine-tuning perfor-
mance on the larger models. On the other hand,
when the number of tunable parameters exceeds the
low parameter threshold, all APET methods outper-
form random guess performance. We find that the
low thresholds are nearly identical across the same
models, even for different tasks. This suggests that
across different tasks, PET methods can optimize a
similar number of tunable parameters on the same
PLM to surpass random guess performance.

In summary, we introduce a more flexible PET
methods - APET methods - to conduct the extensive
ablation analyses and reveal the impact of model
scaling on PET design, e.g., (1) the position of
tunable parameters (§ 5.2) and (2) the number of
tunable parameters (§ 5.3). (3) Furthermore, we
discuss the findings of ablation analyses from the
perspective of optimization (§ 6). We hope these
conclusions not only encourage more researchers
to explore the impact of model scaling on tuning
methods from a theoretical perspective, but also
provide guidance for designing tuning methods for
models of different scales.

2 Related Work

Parameter-Efficient Tuning (PET) Methods
With larger PLMs continuously being developed,
fine-tuning all of the parameters and storing the
adapted weights become increasingly cumbersome.
To address the issue, researchers propose PET
methods which keep most of the parameters of
PLMs frozen and optimize only a tunable module
consisting of a few parameters during downstream
adaptation. Over the recent years, many differ-
ent designs of PET methods have emerged. For
instance, some PET methods insert the external
tunable modules after the feed-forward and atten-
tion layers in a PLM (Houlsby et al., 2019a; Pfeif-
fer et al., 2021; Mahabadi et al., 2021c); others
prepend the tunable modules into attention layers
(Li and Liang, 2021; Hu et al., 2022a) or the embed-
ding layer (Lester et al., 2021). Another line of PET
method selects the existing parameters in a PLM
(Ben Zaken et al., 2022; Guo et al., 2021) as the
tunable module to optimize. To further enhance the
performance of PET methods, some works propose
automatic selection strategies (Hu et al., 2022c;
Chen et al., 2023; Lawton et al., 2023; Zhou et al.,
2023) for tunable parameters.
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PET Methods Unified View of PET Methods Positions of Tunable Modules θ = {W1,W2, ...,Wp}
Prompt (Lester et al., 2021)

hout = f(hin) + ∆h

W will be concatenated to input hidden states
Adapter (Houlsby et al., 2019a) W will be plugged between SelfAttn./FFN. layers

LoRA (Hu et al., 2022a) W will be plugged into SelfAttn layers
BitFit (Ben Zaken et al., 2022) W will be add into Bias terms

Table 1: We uniformly re-frame the transformations of PET methods as modifications ∆h of specific hidden states
in the corresponding PLM layer (f ) where W is introduced in computing ∆h, as suggested by He et al. (2022a);
Hu et al. (2022c). Each PET method has p tunable weights W in designed positions. Hence, we represent each PET
tunable module as θ = {W1,W2, ...,Wp}.

Although these PET methods have distinct tun-
able modules, they can be unified into a similar
form. He et al. (2022a) formalize PET methods
as a unified framework to study the connections
among PET methods. Yi et al. (2022) also conduct
the same study and further indicate that the opti-
mization of different PET methods can be unified
in a similar subspace. In this paper, we leverage
these unified perspectives to explain the impact of
model scaling on PET in the final discussion (§ 6).

The Power of Model Scaling With the scaling of
model size, PLMs emerge numerous capabilities,
including reasoning ability (Wei et al., 2022b,a),
and can achieve state-of-the-art results in various
understanding and generation tasks (Du et al., 2022;
Chowdhery et al., 2022).

In the adaption perspective, some researchers
find that performing some PET methods (Lester
et al., 2021; Ding et al., 2023; Su et al., 2022)
on large-scale models can almost achieve the full-
parameter fine-tuning performance. In this paper,
we further find that as the model scale increases,
the performance differences among distinct PET
methods become smaller (§ 4). Hence, we study
the impact of model scaling on PET methods (§ 5)
to fathom this phenomenon and explain it from the
optimization perspective (§ 6).

3 Preliminary

In this section, we first introduce the Transformer
framework (§ 3.1) and the most representative PET
(§ 3.2).

3.1 Transformer Framework
The Transformer model (Vaswani et al., 2017) is the
mainstream architecture for most powerful PLMs.
The model is stacked of L blocks, each of which
consists of a sequence of layers, including self-
attention and feed-forward network. During the
forward pass through each block, the input hidden

state is applied with the sequence of layers. For
simplicity, we formalize the transformation of each
layer as

hout = f(hin). (1)

Under the layer as the operator f , the input hidden
state hin ∈ Rs×din is transformed into the output
hidden state hout ∈ Rs×dout , where s is the input
length and din, dout are dimensions.

3.2 Parameter Efficient Tuning (PET)
Different PET methods1 are equipped with diverse
modules θ as shown in Figure 1. These modules are
composed of tunable parameters W that modify
the original layers and the corresponding transfor-
mations in PLMs. To make comparisons, we follow
the unified view (He et al., 2022a; Hu et al., 2022c)
to re-frame the transformations of all PET methods
as the modifications ∆h of specific hidden states
in the corresponding PLM’s layers as follows:

hout = f(hin) + ∆h. (2)

In the training process, given a downstream task
D = {X,Y }, we only optimize all tunable pa-
rameters of the module θ for each PET method to
generate desired outputs Y of a downstream task
while freezing the rest of the parameters Φ in a
PLM M, as shown in Figure 12. Formally, the
training objective is to minimize L as follows:

minθ L(M(Φ,θ)(X), Y ). (3)

4 Main Experiments

To explore the impact of model scaling on these
PET methods, we first introduce the investigated
tasks, PLMs, and settings of the existing represen-
tative PET methods in the experiments (§ 4.1), and
then report the main experimental results (§ 4.2).

1More implementation details are left in appendix B.
2The manipulations, including addition, concatenation, and

plugging, are discussed in § 5.1.
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4.1 Experimental Settings

Investigated NLP Tasks We investigate 11 tasks,
which can be divided into 5 categories: (1) Sen-
timent Analysis (SA), including SST-2 (Socher
et al., 2013), IMDB (Maas et al., 2011), and Rotten
Tomatoes (Pang and Lee, 2005); (2) Natural Lan-
guage Inference (NLI), including MNLI (Williams
et al., 2018), QNLI (Wang et al., 2019), and RTE
(Bos and Markert, 2005); (3) Paraphrase Identifi-
cation (PI), including MRPC (Dolan and Brockett,
2005) and QQP (Sharma et al., 2019); (4) Question
Answering (QA), including NQ-Open (Lee et al.,
2019); (5) Summarization (SUM), including SAM-
Sum (Gliwa et al., 2019) and Multi-News (Fabbri
et al., 2019). More details are in appendix A.

Investigated PLMs We will experiment on three
series of PLM backbones: BERT (Devlin et al.,
2019), BLOOM (Scao et al., 2023), and T5 (Raf-
fel et al., 2020) representing encoder-based model,
decoder-based model, and sequence-to-sequence
based model, respectively. Since BERT has fixed-
length output limitation, we only investigate SA,
PI, and NLI categories of tasks on it. Differently,
BLOOM and T5 models have no fixed-length out-
put limitation; thus, we investigate all tasks on
them.

Training Details of PET Methods We select
four representative PET methods: Prompt (Lester
et al., 2021), BitFit (Ben Zaken et al., 2022),
Adapter (Houlsby et al., 2019a), and LoRA (Hu
et al., 2022a), for conducting analysis experiments.
To ensure the consistency of the PET methods’ per-
formance, we maintain the original design of each
method, including the positions of tunable param-
eters and the number of trainable parameters, as
reported in the respective original papers. Addition-
ally, we train each PET method on 11 tasks using
3 different random seeds and report their average
performance. Further details regarding the training
configurations can be found in appendix B.

4.2 Model Scaling Impact on PET Methods

To investigate the impact of model scaling on PET
methods, we arrange the Pre-trained Language
Models (PLMs) in ascending order based on their
model scale, and we report the performance of PET
methods on each type of PLM.

Results are reported in Figure 2. First, we
can observe that the PET methods exhibit notice-
able performance differences (standard deviation
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Figure 2: We investigate the average performance of
the tuning methods, including Prompt, BitFit, LoRA,
Adapter, and full-parameter fine-tuning, on three series
of models. As the model scaling increases, the perfor-
mance differences (standard deviation (S.D.)) among
tuning methods become smaller.

(S.D.)) from each other on the general-scale models
(BERTSMALL and BERTBASE in the sub-figure [a];
BLOOM560M and BLOOM1.1B in the sub-figure
[b]; T5SMALL and T5BASE in the sub-figure [c]).
This phenomenon is intuitive and demonstrates the
critical impact of design differences (the position
and quantity of parameters in the tunable module)
on the performance of PET methods. This find-
ing has been consistently found in numerous prior
works (Ding et al., 2023; Hu et al., 2022c).

However, we find that as the model scaling in-
creases (from BERTSMALL to BERTLARGE in the sub-
figure [a]; from BLOOM560M to BLOOM7.1B
in the sub-figure [b]; from T5SMALL to T5XXL in
the sub-figure [c]), the performance discrepancies
among PET methods diminish across all types of
models, as evidenced by the decreasing standard
deviation (S.D.) (from 5.08 to 2.65 on [a] BERT;
from 3.46 to 2.50 on [b] BLOOM; from 2.75 to
1.72 on [c] T5). This finding implies that the
larger model scaling can mitigate the impact of
the design differences among the PET methods on
performance.
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5 Ablation Analyses

The design differences among the PET methods
mainly lie in the tunable module’s parameter po-
sition and parameter quantity. To further verify
whether the model scaling will respectively remove
the effects of the above differences on PET meth-
ods, we conducted two ablations to investigate
whether model scaling can mitigate (1) the impact
of tunable parameter position and (2) the impact of
tunable parameter quantity.

However, only investigating the above four re-
spective PET methods is insufficient to cover
enough variations of parameter position for abla-
tion study (1). This limitation makes us hard to
preciously control the number of tunable parame-
ters at the fine-grained (parameter level) in abla-
tion study (2). Hence, we develop a more flexible
PET method, Arbitrary Parameter-Efficient Tuning
(APET) method. Its tunable module can be arbi-
trary structure (§ 5.1) that facilitates us to explore
various parameter positions in the ablation study
(§ 5.2) and easier control the number of tunable
parameters in the ablation study (§ 5.3).

5.1 Arbitrarily Parameter-Efficient Tuning
(APET)

Similar to PET methods, the APET method is
equipped with arbitrary module θ which is com-
posed of L tunable weights W distributed in any
position of a model. Here, APET have three op-
erations to insert the tunable weight W into any
position of the PLM, thereby modify the specific
layers and their corresponding transformations as
follows:

ADD The tunable weight W will be into the
PLM layer. The corresponding transformation of a
PLM layer can be denoted as:

hout = f(hin) +W1. (4)

CONCAT The tunable weight W will be con-
catenated with the hidden state or the layer in the
PLM. The corresponding transformation of a PLM
layer can be denoted as:

hout = f(hin) +

{
f(W2)

αhinW3W4
(5)

PLUG The tunable weight W will be plugged
between PLM layers. The corresponding transfor-
mation of a PLM layer can be denoted as:

hout = f(hin) + σ(f(hin)W5)W6. (6)

Arbitrary Parameter
E!cient Tuning (APET) 

Add & 
Layer Norm

Feed Forward
Network

Multi-Head 
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Figure 3: The tunable modules of APET methods (θ =
{W1,W2, ...,WL}) are composed L tunable weights
W with arbitrary structures. There are three operations
(ADD, CONCAT, PLUG) for inserting these tunable
weights W into a PLM.

Note that the inserted tunable weights W are not
limited to the aforementioned structure as shown
in Figure 3; they can be arbitrary structures. Ac-
cording to the inserted tunable weights and the
corresponding modifications, the transformations
of a PLM layer for APET method can be expressed
as:

hout =f(hin) +





W1

f(W2)
αhinW3W4

σ(f(hin)W5)W6
...

(7)

By comparing Equation 7 with the equations of pre-
viously introduced Equation 2, it is obvious that the
PET methods are special cases of APET method.

The module θ of APET are composed of arbitrar-
ily inserted weights W, which can be expressed as
θ = {Ŵ1,Ŵ2, ...,ŴL}. In the training process,
we follow Equation (3) only to optimize θ while
freezing the rest of the parameters (Φ) in a PLM.

5.2 The Impact of Differences in Parameter
Position on Performance

To investigate whether model scaling can mitigate
the impact of parameter position in PET, we ini-
tially freeze other significant factors, i.e., the num-
ber of tunable parameters, that could potentially
affect the performance. Given that the tunable pa-
rameters of the four aforementioned PET methods
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Figure 4: The parameter quantity in each group (bar: h ) corresponds to the aforementioned four PET methods’.
We denote the APET methods with the coresponding numbers of parameters as APETPrompt, APETBitFit, APETLoRA,
and APETAdapter, respectively. Each APET method will arbitrarily select tunable parameters with different random
seeds, each random seed representing a different parameter distribution. Here, S.D. means the standard deviation.
As the model scaling increases, the impact caused by the parameter position on the performance becomes minor.

are fixed in the same positions, it is challenging
for us to precisely conduct an experiment to as-
sess the impact of position. Under this limitation,
we then employ the APET method to arbitrarily
select tunable parameters with different random
seeds, each random seed representing a different
parameter distribution, and train them on the tasks.

In the experiments, we set the number of tun-
able parameters for the APET methods in four
groups. The parameter quantity in each group
(bar: h ) corresponds to that of the aforemen-
tioned four PET methods’ (Prompt, BitFit, LoRA,
Adapter). We denote these APET methods with
varying numbers of parameters3 as APETPrompt,
APETBitFit, APETLoRA, and APETAdapter, respec-
tively. Besides, we conduct the ablation study on
three series of models (BERT, BLOOM, and T5)
and report task (SST, RTE, and MRPC) average
performance.

Performance Comparison As shown in Figure
4, there are four groups of comparisons in each
sub-graph. We can observe that as a PLM size
scales (BERT: from [a.1] to [a.2]; BLOOM:

3The number of tunable parameters are left in appendix D.

from [b.1] to [b.2]; T5: from [c.1] to [c.2]),
the performance differences (standard deviation
(S.D)) of APET methods within each group de-
crease. Based on this findings, we argue that larger
models demonstrate greater effectiveness in miti-
gating the impact of differences in parameter posi-
tion on performance.

In addition, we have observed that despite the dif-
ferent number of tunable parameters in four differ-
ent groups (bar: h ) of APET methods, they have
fewer performance differences on the larger model.
We will delve into this finding further and provide
an explanation for this phenomenon in § 5.3.

5.3 The Impact of Differences in The Number
of Tunable Parameters on Performance

In this section, given the APET method under dif-
ferent numbers of tunable parameters, we observe
their performance to conduct an ablation study.

From the reported results in Figure 5, we can find
that (1) on the smaller models, e.g., BERTSMALL (-
- -), BLOOM560M (- - -), T5SMALL (- - -) when the
tunable parameters of tuning methods are fewer
than a certain number, the performance will drop
to randomly guess performance; (2) similarly,
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Figure 5: Given the different numbers of tunable parameters, we observe APET performance on three series of
models and tasks. We find that (1) the model scaling can make tuning methods optimize fewer necessarily tuned
parameters to reach full-parameter fine-tuning performance (- - - and —–); (2) APET methods require the similiar
number of tunable parameters (low parameter thresholds lie the similiar range) to exceed random guess performance
on the same models.

this phenomenon still holds on the larger models,
BERTLARGE (—–), BLOOM7.1B (—–), T5XXL (—–
). Based on these findings, we can argue that that
model scaling cannot adequately eliminate the im-
pact of the number of tunable parameters on the
performance of PET methods.

Interestingly, we find two parameter thresholds
for tunable parameters in all models and name
them as low parameter threshold (Low, Low, Low,
Low, Low, Low) for necessary tuned parameters
and the high parameter threshold (High, High,
High, High, High, High) for necessary tuned pa-
rameters, respectively in Figure 5. When tunable
parameters are more than low parameter thresh-
old, the APET method can exceed random per-
formance (e.g., 1×100

Number of label types% on BERT, 0%
on BLOOM, and 0% on T5); when the tunable
parameters are more than high parameter thresh-
old, the APET method can almost achieve the full-
parameter fine-tuning (FT) performance. Further-
more, we find that the model scaling affects the
two parameter thresholds. Hence, we explore this
phenomenon in the following paragraphs.

High Threshold of Necessary Tuned Parameters
Based on the experimental results in the sub-graph
[c.1] (SST2) of Figure 5, we find that the high
threshold of the larger model is consistently lower

than the high threshold of the smaller model. This
phenomenon holds true across all tasks (SST2, RTE,
MRPC), and for all series of models, as depicted
in all sub-graphs. Therefore, we can conclude
that model scaling enables tuning methods to train
fewer necessary parameters while achieving the
similar performance of full-parameter fine-tuning.

This conclusion can intuitively explain why
APET methods can achieve relatively similar per-
formance on larger models, especially on T5XXL,
as illustrated in the aforementioned [c.2] in Figure
2. This is due to the fact that the number of tun-
able parameters in each group of APET methods
surpasses the high parameter thresholds on T5XXL;
hence, they all achieve the similar performance of
full-parameter fine-tuning.

Low Threshold of Necessary Tuned Parameters
From the above results, we find that APET methods
will exceed the random guess performance (0% on
T5; 0% on BLOOM; 50% on BERT) and immedi-
ately reach the 80~90% full-parameter fine-tuning
performance when the tunable parameters are more
than low thresholds. However, the low thresholds
are relatively higher on larger models (BERTLARGE,
BLOOM7.1B, T5XXL). Namely, APET methods
require more tunable parameters to exceed the ran-
dom guess performance. This phenomenon is con-
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sistent over all tasks on all series of models. Hence,
we can infer that the model scaling cannot reduce
the number of necessary tuned parameters to drive
PLMs to perform downstream tasks.

Furthermore, it is worth noting that the low
parameter thresholds of the APET methods al-
most lie in the same range on the same models.
Specifically, the range of low thresholds are in
[8.0e+2, 3.2e+3] on BERTLARGE, and [4.0e+2,
1.6e+3] on BERTSMALL; [8.2e+3, 4.1e+4] on
BLOOM7.1B, [8.2e+3, 4.1e+3] on BLOOM560M;
[7.9e+3, 8.5e+3] on T5XXL, [8.0e+2, 7.9e+3] on
T5SMALL. We will explain this phenomenon from
the optimization perspective in § 6.

6 Discussing the Ablation Results from
the Optimization Perspectives

The objectives of all parameter-efficient tun-
ing methods (PET, APET) can be expressed as
minθ L(M(Φ,θ)(X), Y ) as introduced in Equation
(3), where θ is a tunable module. The module
θ of different PET methods consists of different
structures and varying numbers of tunable param-
eters. In this paper, we investigate the impact of
model scaling on different modules, which possess
varying numbers of tunable parameters distributed
across multiple positions. We find that the larger
model scaling can (1) mitigate the effects caused
by the difference positions of tunable parameters
(§ 5.2) and (2) make PET methods optimize fewer
tunable parameters to achieve full-parameter fine-
tuning performance (§ 5.3). To further fathom these
phenomena, we will investigate the underlying rea-
sons from an optimization perspective. (3) Besides,
we also observe that PET methods can optimize
almost the similar number of necessarily tuned pa-
rameters to exceed random guess performance on
the same backbone models (§ 5.3). Although phe-
nomenon (3) is not caused by model scaling, we
can also explain it from the optimization perspec-
tive. Next, we together discuss it and the above two
findings (1) and (2) in the following paragraphs.

Why model scaling mitigates the effects caused
by the differences in positions of tunable param-
eters on the PET performance? From the op-
timal control perspective, a tunable module (θ) of
a tuning method can be seen as a controller (Yang
and Liu, 2022; Ding et al., 2023) to drive PLMs
towards downstream tasks. As the model scale
increases, the larger model has higher parameter
redundancy (Aghajanyan et al., 2021), allowing

arbitrary selection of tunable parameters for tun-
ing without greatly degrading performance (Desai
et al., 2019; Chen et al., 2020; Prasanna et al., 2020;
Evci et al., 2020); thus, controllers (modules) might
have higher degrees of freedom.

This might explain why the aribitray positions of
the tunable parameters have less impact such that
all PET methods can achieve the similar perfor-
mance on the larger models. It is worth noting that
even though the distribution of tunable parameters
have less impact on the performance, it still affects
converge speeds. Thus, finding a better parame-
ter distribution to improve the converge speeds for
PET methods is a direction worthy of exploring.

Why model scaling leverages the fewer tun-
able parameters to achieve full-parameter fine-
tuning performance? Tuning θ to steer a PLM
towards downstream NLP tasks can be seen as
adaptations. From the perspective of representa-
tion space, the adaptations of PET methods can be
re-parameterized into a unified low dimensional
subspace (Qin et al., 2021; Aghajanyan et al., 2021;
Yi et al., 2022). Aghajanyan et al. (2021) further
demonstrate that adaptation on a larger PLM can be
re-parameterized into the lower dimensional space;
this implicitly explains why PET methods can op-
timize fewer parameters on larger-scale models,
e.g., T5XXL, to meet the full-parameter fine-tuning
performance on tasks.

Why can PET methods optimize the similar
numbers of tunable parameters to exceed ran-
dom guessing? As stated above, the adaptations
of the PET methods can be re-parameterized into
a unified subspace. Qin et al. (2021) show that
this low dimensional subspace is shared among all
NLP tasks for the same PET methods. Yi et al.
(2022) further suggest that this subspace is also
shared among various PET methods. This might
implicitly explain why all PET methods can tune
the similar numbers of necessary tuned parameters
to exceed the random guessing performance on the
same models, even for the different tasks (§ 5.3).

7 Conclusion

The realm of model scaling for LLMs presents
important and intriguing directions for the LLM
community. The increasing of model scale unveils
numerous emerging capabilities and advantages. In
this work, our primary emphasis is on the impact
of model scaling as it pertains to PET methods.
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Through our comprehensive observation studies
and in-depth discussions from optimization per-
spectives, we gain deeper insights into the effects
of model scaling on PET and the reasons behind the
observed phenomena. We believe that our findings
will serve as a catalyst, inspiring further meticulous
research and exploration in this area.

8 Limitations

This paper might have some possible limitations
as follows: (1) we only explore the effects of the
scaling law on performance. There might be other
research points worth exploring, such as the power
of model scale to convergence speed; (2) we study
the power of model scale with comprehensive em-
pirical experiments and explain the findings from
the optimization perspective. There might be more
theoretical proofs to explain these exciting findings.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, Dragomir Radev, Ed-
uardo González Ponferrada, Efrat Levkovizh, Ethan
Kim, Eyal Bar Natan, Francesco De Toni, Gérard
Dupont, Germán Kruszewski, Giada Pistilli, Hady
Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris
Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios,
Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joy-
deep Bhattacharjee, Khalid Almubarak, Kimbo Chen,
Kyle Lo, Leandro Von Werra, Leon Weber, Long
Phan, Loubna Ben allal, Ludovic Tanguy, Manan
Dey, Manuel Romero Muñoz, Maraim Masoud,
María Grandury, Mario Šaško, Max Huang, Max-
imin Coavoux, Mayank Singh, Mike Tian-Jian Jiang,
Minh Chien Vu, Mohammad A. Jauhar, Mustafa
Ghaleb, Nishant Subramani, Nora Kassner, Nuru-
laqilla Khamis, Olivier Nguyen, Omar Espejel, Ona
de Gibert, Paulo Villegas, Peter Henderson, Pierre
Colombo, Priscilla Amuok, Quentin Lhoest, Rheza
Harliman, Rishi Bommasani, Roberto Luis López,
Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Se-
bastian Nagel, Shamik Bose, Shamsuddeen Hassan
Muhammad, Shanya Sharma, Shayne Longpre, So-
maieh Nikpoor, Stanislav Silberberg, Suhas Pai, Syd-
ney Zink, Tiago Timponi Torrent, Timo Schick, Tris-
tan Thrush, Valentin Danchev, Vassilina Nikoulina,
Veronika Laippala, Violette Lepercq, Vrinda Prabhu,
Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin
Heinzerling, Chenglei Si, Davut Emre Taşar, Eliz-
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A Task and Dataset

We use various NLP tasks to evaluate the APET
methods, which can be divided into the following
5 categories:

Sentiment Analysis (SA) SA tasks evaluate if a
model can correctly predict the sentiment labels of
an input sentence. In this paper, we choose SST-2
(Socher et al., 2013), IMDB (Maas et al., 2011),
and Rotten Tomatoes (Pang and Lee, 2005).

Natural Language Inference (NLI) NLI tasks
evaluate a model’s ability to correctly classify if a
hypothesis can be entailed or not given a premise.
In this paper, we choose MNLI (Williams et al.,
2018), QNLI (Wang et al., 2019), and RTE (Bos
and Markert, 2005).

Paraphrase Identification (PI) PI tasks evalu-
ate if a model can correctly identify paraphrases,
which means two sentences are identical in se-
mantic meaning. In this paper, we choose MRPC
(Dolan and Brockett, 2005), and QQP (Sharma
et al., 2019).

Question Answering (QA) QA tasks evaluate a
model’s ability to answer questions. Context may
be present. In this paper, we choose NQ-Open (Lee
et al., 2019), an open-world QA dataset without
context.

Summarization (SUM) SUM tasks evaluate a
model’s ability to summarize a long paragraph into
a shorter abstract without loosing the semantics of
the original text. In this paper, we choose SamSUM
(Gliwa et al., 2019), and Multi-News (Fabbri et al.,
2019) in our experiments.

B Parameter-efficient Tuning (PET)
Methods

Here, we first recap the PLM (transformer) layer.
Then, we describe the detail and training configu-
rations of the PET methods shown in Figure 1.

B.1 Transformer Architecture
A PLM is generally a stack of multiple Transformer
layers, each composed of a multi-headed attention
and a feed-forward network. The multi-headed
attention contains h attention heads working in
parallel. Specifically, given an input X ∈ Rn×d,
the i-th attention head works as follows:

hi = softmax(
(XWi

q)(XWi
k)

T

√
d/h

(XWi
v)), (8)

where n is sequence length, d is the hidden di-
mension, Wi

q ∈ Rn×d is query, Wi
k ∈ Rn×d is

key, and Wi
v ∈ Rn×d is value. The output from

each attention head will be concatenated and fur-
ther transformed by Wo ∈ Rd×d and be denoted
as:

hMHA = concat(h1,h2, ...,hh)Wo, (9)

where hMHA ∈ Rn×d is the output hidden state of
multi-headed attention layer. After that, h will be
fed into a two-layer feed-forward network

hFFN = σ(hW1 + b1)W2 + b2, (10)

where W1 ∈ Rd×dm , W2 ∈ Rdm×d, b1 ∈ Rdm ,
b2 ∈ Rd, and dm > d is an integer.

During the forward pass through each (trans-
former) block, the input hidden state is applied
with the sequence of layers. For simplicity, we
formalize the transformation of each layer as

hout = f(hin). (11)

Under the layer as the operator f , the input hidden
state hin ∈ Rn×d is transformed into the output
hidden state hout ∈ Rn×d, where s is the input
length, and d is the dimension.

B.2 Implementation Details of PET Methods

Prompt Prompt-tuning (Lester et al., 2021)
prepends Np tunable soft tokens, i.e. embeddings,
to the input sentences and asks the model to predict
the probability of the next word. During training,
only the newly added embeddings are optimized
and the backbone model is frozen.

BitFit BitFit (Ben Zaken et al., 2022) is a method
that only tunes all the bias terms Wb ∈ Rd in the
PLM, which lie in the self-attention and layer norm
layers.

LoRA LoRA (Hu et al., 2022b) is a method that
adapts a PLM in a low-rank space. It down-projects
the attention weights into a lower dimension and
up-projects it back to the original dimension. Only
these projection weights are optimized.

Adapter Adapter (Houlsby et al., 2019b) is
a method that only tunes the inserted adapter
modules, which consist of down projection, non-
linear transformation, up projection, and a skip-
connection. For each existing Transformer layer
in a PLM, the adapter modules are inserted at two
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Figure 6: The tunable modules of APET methods are
composed p tunable weights W, which can be ex-
pressed as θ = {W1,W2, ...,WL}. We introduce
three operations to insert the tunable weight W into the
PLM and the corresponding transformation.

locations: (1) after the first feed-forward layer, and
(2) after the two consecutive feed-forward layers.
During training, only the adapter modules are opti-
mized and the rest of the PLM is frozen.

B.3 Training Configurations of PET Methods

The tunable module of a PET method θ is com-
posed of L tunable weights W (all tunable weights)
of the specific PET method, which can be expressed
as θ = {W1,W2, ...,WL}. We also follow Equa-
tion (3) to train the PET method. During training,
we only optimize θ while freezing the rest of the
parameters in the PLM. We adopt a batch size of
32 and have no warm-up for most of the PET mod-
els and tasks. The maximum input length is 128
for single sentence tasks (SA) and 256 for multi-
sentence tasks (NLI, PI, QA, SUM). The maximum
generation length is 1 for classification tasks (SA,
NLI, PI), 64 for Multi-News, and 128 for SAM-
Sum. On the BERT, BLOOM, T5 models, we set
their learning rates as {3e-4}, {3e-4, 5e-5}, {1e-4,
1e-3, 1e-2} respectively. Then, we choose the best
performance to report.

C Arbitrary Parameter-Efficient Tuning
(APET) Methods

We introduce a more flexible PET method,
Arbitrary Parameter-Efficient Tuning (APET)
method. Its tunable module can be arbitrary struc-
ture that facilitates us to explore various module
structures (parameter position) and easier control
the number of tunable parameters.

C.1 Implementation Details of APET
Methods

As we previously introduced in § 5.1, the tunable
module of the APET method is composed of tun-
able weights. Each tunable weight can be expressed
as W. Here, we have three operations to insert the
tunable weight W into the PLM to modify the spe-
cific layers and their corresponding transformations
as follows:

ADD We will add the tunable weight W into the
PLM layer. The corresponding transformation can
be denoted as hout:

f(hin) +W1. (12)

CONCAT We will concatenate the tunable
weight W and the hidden state or the layer in the
PLM. The corresponding transformation can be
denoted as hout:

f(hin) +

{
f(W2)

αhinW3W4
(13)

PLUG We will plug the tunable weight W be-
tween PLM layers. The corresponding transforma-
tion can be denoted as hout:

f(hin) + σ(f(hin)W5W6). (14)

According to these operations and the corre-
sponding transformations, we can express the
APET methods as hout:

f(hin) +





W1

f(W2)
αhinW3W4

σ(f(hin)W5)W6
...

(15)

By comparing the Equation (15) with the equations
of the previously introduced PET methods, we can
clearly find that the PET methods are special cases
of APET methods.
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Figure 7: Relative performance (zero-shot transfer performance / original performance) (%) on the target tasks
(columns) of the APET methods trained on the source tasks (rows). Colors of the task names indicate task types.

C.2 Training Configurations of APET
methods

The tunable module of a APET method θ is com-
posed of L tunable weights W, which can be ex-
pressed as θ = {W1,W2, ...,WL}. We also fol-
low Equation (3) to train the APET method. During
training, we only optimize θ while freezing the rest
of the parameters in the PLM.

Besides, we adopt a batch size of 32 and have
no warm-up for most of the APET models and
tasks. In addition, The maximum input length is
128 for single sentence tasks (SA) and 256 for
multi-sentence tasks (NLI, PI, QA, SUM). The
maximum generation length is 1 for classification
tasks (SA, NLI, PI), 64 for Multi-News, and 128
for SAMSum. On the BERT, BLOOM, T5 models,
we set their learning rates as {3e-4}, {3e-4, 5e-5},
{1e-4, 1e-3, 1e-2} respectively. Then, we choose
the best performance to report.

D Number of Tunable Parameters of
APET

Here, the Table 2 shows the number of tunable
parameters of APET for each group in Figure 4.

E Power of Model Scale to Transferability

Furthermore, to explore whether the power of
model scale can also facilitate generalization ability
of tuning methods, we explore the transferability

APETPrompt APETBitFit APETLoRA APETAdapter

BERTSMALL 5.1e+4 1.4e+4 6.6e+4 2.0e+5

BERTLARGE 1.0e+5 1.7e+5 7.9e+5 2.4e+6

BLOOM560M 1.0e+5 2.7e+5 7.9e+5 2.4e+6

BLOOM7.1B 4.1e+5 1.4e+6 3.9e+6 1.2e+7

T5SMALL 5.1e+4 1.2e+5 2.3e+5 8.0e+5

T5XXL 4.1e+5 2.5e+6 6.3e+6 1.9e+7

Table 2: The table shows the numbers of tunable param-
eters of tunable parameters in Figure 4 experiment.

between the NLP tasks in the zero-shot setting (Vu
et al., 2022; Su et al., 2022; Ding et al., 2023). In
the experiments, we first train the parameters of
APET methods on the source tasks and directly
reuse them on the target tasks in zero-shot set-
ting. We will investigate two series of PLMs T5
(T5SMALL and T5XXL) and BERT (BERTSMALL and
BERTLARGE) and report the relative performance.

Note that for different types of tasks, they are
expected to share different groups of label sets
(e.g. for task like SA, the labels are usually posi-
tive/negative, whereas, for tasks like NLI, the labels
are usually entailment/not entailment). Reusing the
parameters trained on the source task to test on
the target task will naturally fail since the model
is not able to generate the labels they have never
seen in the training stage. To this end, we gener-
ally map the original label sets to a unified label
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set (e.g. negative/not entailment/false –> 0, posi-
tive/entailment/true –> 1). Utilizing a unified label
set makes it feasible to evaluate the transferability
of the AFP method among different types of tasks
regardless of the divergence of original labels.

The results are shown in Figure 7, from which
we can find that the APET (APETDISCRETE and
APETADJACENT) methods can transfer to the same
type of tasks demonstrated by the darker color
alongside the diagonal of the matrix and generally
perform well both on small-scale PLMs (Figure
7 (a): BERTSMALL and T5SMALL) and large-scale
PLMs (Figure 7 (b): BERTLARGE and T5XXL). How-
ever, the lighter color indicates that APET meth-
ods have difficulty performing different types of
tasks overall, and both small-scale and large-scale
PLMs share this phenomenon. This finding indi-
cates that the power of scale does not necessarily
facilitate the generalization ability of AFP methods
which is in line with the prevalent assumption that
fewer parameters often cause underfitting, whereas
more parameters tend to cause overfitting. Never-
theless, the mechanism behind this phenomenon
still arouses our deep concern and is worth expand-
ing that we will systematically analyze it in our
future work.
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