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Abstract

Large Language Models (LLMs) are proficient
in natural language processing tasks, but their
deployment is often restricted by extensive
parameter sizes and computational demands.
This paper focuses on post-training quantiza-
tion (PTQ) in LLMs, specifically 4-bit weight
and 8-bit activation (W4A8) quantization, to
enhance computational efficiency—a topic less
explored compared to weight-only quantiza-
tion. We present two innovative techniques:
activation-quantization-aware scaling (AQAS)
and sequence-length-aware calibration (SLAC)
to enhance PTQ by considering the combined
effects on weights and activations and align-
ing calibration sequence lengths to target tasks.
Moreover, we introduce dINT, a hybrid data
format combining integer and denormal repre-
sentations, to address the underflow issue in
W4A8 quantization, where small values are
rounded to zero. Through rigorous evalua-
tions of LLMs, including OPT and LLaMA, we
demonstrate that our techniques significantly
boost task accuracies to levels comparable with
full-precision models. By developing arith-
metic units compatible with dINT, we further
confirm that our methods yield a 2× hardware
efficiency improvement compared to 8-bit inte-
ger MAC unit.

1 Introduction

Large language models (LLMs) have achieved
breakthroughs in many natural language processing
tasks such as translation, summarization, reason-
ing, and conversation, often matching or exceeding
human performance (Zhang et al., 2022; Touvron
et al., 2023; Chowdhery et al., 2022; Brown et al.,
2020; OpenAI, 2023). However, the extensive pa-
rameters of LLMs present deployment challenges
due to the high memory bandwidth needed for high
throughput inference. Post-training quantization
(PTQ) addresses this by "compressing" weight pa-
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rameters, significantly reducing memory require-
ments and enhancing GPU performance by alle-
viating memory bandwidth bottlenecks (Frantar
et al., 2023; Lin et al., 2023; Lee et al., 2023a).
Nevertheless, LLMs’ computational complexity re-
mains a concern. For example, GPT-3 (Brown
et al., 2020) requires at least 350 GFLOPs of com-
putation for a single token, but PTQ methods of-
ten revert compressed weights to higher precisions
like 16-bit floating-point (FP16) for computation,
which is inefficient given the resource demands of
multiply-accumulate (MAC) operations. With com-
puting platforms evolving through high-bandwidth
memory (Gurumurthi et al., 2021) and processing-
in-memory (Kim et al., 2021; He et al., 2020) to
resolve the memory bandwidth bottleneck, address-
ing LLMs’ computational needs becomes more
imperative.

A PTQ strategy that effectively quantizes both
weights and activations is thus appealing as it
reduces the hardware complexity of MAC units,
enhancing computational throughput (Sun et al.,
2019; Dettmers et al., 2022; Xiao et al., 2022). PTQ
research specific to LLM’s computation efficiency
is growing, focusing on utilizing INT8-INT8 MAC
units, common in GPUs (Andersch et al., 2022).
LLM.Int8 (Dettmers et al., 2022), for instance, used
INT8 quantization for weights and activations, but
directed activation outliers through an FP16 dat-
apath, isolating them. SmoothQuant (Xiao et al.,
2022) extended this by employing activation chan-
nel scaling to target outliers and adjusting corre-
sponding weights for balanced quantization. How-
ever, these studies do not address challenges faced
when weights are reduced to 4 bits, revealing an
unexplored area for combined effects on weight
and activation quantization.

This paper delves into the challenges of post-
training quantization (PTQ) for both weights and
activations in large language models (LLMs). We
pinpoint two primary hurdles in achieving efficient
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4-bit weight and 8-bit activation (W4A8) quantiza-
tion. First, LLMs like OPT (Zhang et al., 2022) and
LLaMA (Touvron et al., 2023) have distinct weight
and activation range characteristics, making exist-
ing PTQ methods unsuitable for universal use. For
example, AWQ’s (Lin et al., 2023) activation-aware
scaling makes activations prone to quantization er-
rors, while OPTQ’s (Frantar et al., 2023) weight
calibration struggles with varying activation ranges.
We propose two novel solutions for this first hurdle:
activation-quantization-aware scaling (AQAS) and
sequence-length-aware calibration (SLAC). AQAS
optimizes quantization scales by jointly consid-
ering weights and activations, yielding balanced
quantization. SLAC aligns the sequence length of
the application task with that of the PTQ calibra-
tion dataset, mitigating the impact of variations in
activation diversity, which significantly affects the
PTQ calibration process.

Second, we observe that underflow, where small-
magnitude values round to zero, severely impacts
W4A8 quantization in LLMs because the quan-
tization error associated with values rounding to
zero constitutes a significant portion of the out-
put error. While underflow is a well-known issue
in reduced-precision formats for deep neural net-
works (DNNs) (Sun et al., 2019, 2020; Chmiel
et al., 2022; Jin et al., 2022), previous PTQ research
in LLMs mainly focuses on outliers, neglecting
underflow. We discover that standard INT4 repre-
sentation discards crucial small-magnitude weights
when multiplied with activations. As existing data
formats like integer, floating-point, or logarithmic
formats are inadequate for this underflow issue,
we introduce dINT, a new integer format with de-
normal representation. dINT merges the uniform
coverage of integers with the denormal of floating-
points, effectively mitigating underflow and im-
proving accuracy. We also propose a MAC unit
supporting dINT to ensure hardware efficiency.

We evaluate AQAS, SLAC, and dINT on OPT
and LLaMA, focusing on language modeling, zero-
shot reasoning, and 5-shot in-context learning. The
results show that integrating these methods for
W4A8 PTQ significantly improves task accuracies
for both OPT and LLaMA across a diverse set
of benchmarks (Wikitext, Common Sense Ques-
tion Answering (CSQA), and Massive Multitask
Language Understanding (MMLU)) and the model
sizes ranging from 125M to 65B parameters.

2 Background

2.1 Weight-only PTQ for LLMs

Various weight-only PTQ techniques have emerged
to alleviate memory-bandwidth constraints in LLM
inference by compressing weights to 4 bits while
maintaining accuracy (Park et al., 2023; Kwon
et al., 2022; Frantar et al., 2023; Lin et al., 2023;
Lee et al., 2023a). For example, OPTQ (Fran-
tar et al., 2023) reduces output distortion from
column-wise weight quantization by sequentially
updating unquantized weights using activation Hes-
sians. AWQ (Lin et al., 2023) scales weights
according to activation magnitudes for improved
quantization, while OWQ (Lee et al., 2023a) and
SPQR (Dettmers et al., 2023) isolate sensitive
weights, retaining them at higher precision. How-
ever, these approaches entail high-precision com-
putations and complex arithmetic units. We demon-
strate that these weight compression methods are
sub-optimal for activation quantization in common
LLMs, often exacerbating challenges by ignoring
activation dynamics. Consequently, we introduce
advanced techniques specifically designed to ad-
dress these intricacies, enhancing weight quantiza-
tion accuracy when the activation is also quantized.

2.2 Weight and Activation PTQ for LLMs

Quantizing both weights and activations enables
the use of lower-precision MAC units, signif-
icantly saving logic area and power consump-
tion (Horowitz, 2014). As such, many studies
aim to reduce DNN’s computational burden (Sun
et al., 2019; Lee et al., 2023b), especially in
LLMs (Dettmers et al., 2022; Xiao et al., 2022;
Liu et al., 2023; Bondarenko et al., 2021). For
instance, LLM.Int8 (Dettmers et al., 2022) and
SmoothQuant (Xiao et al., 2022) employ GPU-
supported INT8-INT8 MAC operations for effi-
ciency, with LLM.Int8 processing outliers sepa-
rately and SmoothQuant adjusting activations and
weights. Additionally, (Liu et al., 2023; Bon-
darenko et al., 2021) employ quantization-aware
fine-tuning for further reductions to W4A8 or
W4A4, but face noticeable accuracy losses despite
expensive fine-tuning. This paper proposes novel
solutions that address the accuracy drop in com-
bined weight and activation quantization with bit-
precision down to W4A8, achieving superior re-
sults compared to prior works without fine-tuning.
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Figure 1: (a) Illustration of fused-layernorm (fused-LN) in OPT (top) and layernorm (LN) in LLaMA (bottom)
computation patterns within a Transformer layer. Note that two computation patterns yield ths same output if
computed in full-precision, but they deviate when activation and weight are quantized. (b) Min-Max range of input
activations (left) and weight (right) as operands of matrix multiplication. (c) Min-Max range of input activation
varying sequence length from 128 to 2048 (Orange: OPT-6.7B, Blue: LLaMA-7B). (d) Max values of per-channel
input activation for OPT-6.7B (left) and LLaMA-7B (right) for different input sequence lengths (32 and 2048).

2.3 Underflow for Reduced-Precision LLMs
Underflow, the numerical error from small values
rounding to zero due to limited bit-precision, has
been actively studied as a critical issue in reduced-
precision DNN training. For instance, (Sun et al.,
2019) counters underflow in 8-bit floating-point by
adjusting the exponent bias, (Sun et al., 2020) uti-
lizes a radix-4 format to represent wider magnitude
ranges in 4-bit floating-point (FP4), and (Chmiel
et al., 2022) uses stochastic underflow to address
biased quantization in FP4 gradients. In fixed-point
representation, (Jin et al., 2022) explores optimal
formats by analyzing underflow and overflow trade-
offs based on fractional length. Contrary to these
studies focusing on the training phase, our paper in-
vestigates underflow’s impact on PTQ of LLMs for
the first time and introduces an enhanced integer
format to combat it.

3 Improving PTQ for Weight and
Activation Quantization

We aim to advance LLM quantization beyond the
realms of 4-bit weight-only PTQ or W8A8 PTQ by
investigating the combined effects of weight and ac-
tivation quantization. When quantizing both weight
and activation, it is important to note that LLMs dis-
play distinct weight and activation characteristics.
For example, OPT has been found to have 0.1% ac-
tivation outliers by (Dettmers et al., 2022), whereas
GLM-130B (Zeng et al., 2023) reported 30% of
outliers in its model. In the context of weight, due

to varied weight distributions across models, OPT-
66B experiences a substantial perplexity increase
in the wikitext benchmark with INT4 weights, soar-
ing from 9.34 to 110 (Frantar et al., 2023), whereas
GLM-130B shows no performance degradation on
the MMLU benchmark when INT4 weights are
applied (Zeng et al., 2023). We posit that these
discrepancies arise from variances in pre-training
configurations such as datasets, learning rates, layer
structures, and self-attention directionality, as well
as options designed for efficient inference, such
as operation fusion techniques like layernorm fu-
sion. Significantly, existing PTQ research has over-
looked these unique traits intrinsic to each model
that are pivotal for the combined optimization of
activation and weight quantization. Therefore, we
delve into the weight and activation distributions of
widely-used OPT and LLaMA models during quan-
tization to understand PTQ limitations and develop
novel methods to address them.

3.1 Model Analysis: OPT vs. LLaMA

To understand the adverse effects of quantization
on restricting dynamic range, we examine the
minimum and maximum values (Min-Max range)
across the layers of LLMs. Fig. 1(a) illustrates
the computation patterns within a layer of LLMs
and Fig. 1(b) displays Min-Max range of activa-
tions (left) and weights (right) as operands of ma-
trix multiplication for each FC layer in OPT and
LLaMA. Notably, there are contrasting trends in
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Min-Max ranges; OPT has a broad activation range
but a narrow weight range, while LLaMA exhibits
the opposite. This distinction stems from the way
these LLMs process activations at layernorm. As
depicted in Fig. 1(a), in OPT, the layernorm pa-
rameters are fused to the subsequent FC layer’s
weights (Fig. 1(a) top), allowing only normalized
activation to enter the FC layer. Conversely, lay-
ernorm is not fused in LLaMA (Fig. 1(a) below),
resulting in scaled activation as input to FC layers.
Although layernorm fusion preserves functionality
in full-precision computation, this presence or ab-
sence of layernorm fusion in activation processing
contributes to significantly distinct behaviors under
quantization, as will be discussed in the following
sections.

Another insightful finding from our model anal-
ysis is the variation in activation diversity based on
sequence lengths. Fig. 1(c) displays the Min-Max
range as sequence length varies from 128 to 2048
(Orange: OPT-6.7B, Blue: LLaMA-7B). Notably,
OPT’s activation range remains stable across se-
quence lengths, while LLaMA’s activation range
expands, suggesting challenges in range calibration
for quantization. Fig. 1(d) contrasts maximum val-
ues per channel for OPT and LLaMA at varying
sequence lengths. OPT displays consistent out-
liers at the same channels, dominating its activa-
tion dynamic ranges. In contrast, LLaMA’s outliers
increase in magnitude and shift across channels,
indicating varied activation dynamic ranges. This
distinction in activation diversity is significant for
quantization. While PTQ generally presumes con-
sistent dynamic ranges for calibrating quantization
ranges "offline", these findings emphasize the ne-
cessity of considering distinct activation dynamic
range and incorporating sequence length into cali-
bration. The following sections discuss methods to
optimize weight and activation quantization, build-
ing on these model-specific insights.

3.2 Activation-Quantization-Aware Scaling

The distinct properties of outliers in weights and ac-
tivations illustrated in Fig. 1(b) pose challenges of
applying prior scaling techniques. Fig. 2 illustrates
the absolute maximum of (a) input activations and
(b) weights at the "Key" layers (for self-attention)
in OPT-6.7B when different scaling methods are
applied. Specifically, SmoothQuant (Xiao et al.,
2022) (SQ) scales activation for 8-bit quantization,
but descales weights, resulting in a more diverse

Figure 2: Absolute max value of (a) input activation and
(b) weight after scaling by each method (OPT-6.7B).
We observed that these trends were significantly pro-
nounced in OPT models due to large outliers. (See
Fig. 6 for the same plot for LLaMA.)

and quantization-sensitive range for weight. On the
other hand, AWQ (Lin et al., 2023) scales weights
for 4-bit quantization but significantly increases
activation diversity, making activation quantization
problematic. In other words, the existing scaling-
based PTQ techniques such as SQ and AWQ cannot
resolve the issue of conflicting trends in activation
and weight outliers. To address this, we introduce
activation-quantization-aware scaling (AQAS), a
hybrid of SQ and AWQ. AQAS aims to find scal-
ing values that minimize the output error caused by
quantized weights and activations. We use mean
squared error (MSE) loss as the objective function,
aligning with previous studies on layer-wise opti-
mization (Nagel et al., 2020; Frantar et al., 2022).
Our objective function is as follows:

argmin
s

||Q(W ·diag(s))Q(diag(s)−1 ·X)−WX||22
(1)

We define the weight W ∈ RM×C , scale factor
s ∈ RC , and activation X ∈ RC×T , where M rep-
resents the output feature dimension, C represents
the input feature dimension, and T denotes the
number of tokens. Fig. 2 demonstrates that AQAS
considers activation quantization’s impact to adjust
activation magnitudes, easing activation quantiza-
tion. Additionally, as compared to SQ, AQAS ad-
justs weight magnitudes more moderately, making
4-bit weight quantization feasible.

3.3 Sequence-Length-Aware Calibration
As shown in Fig. 1(c), variation in activation di-
versity depending on the sequence length affects
the quantization performance. Specifically, weight-
update-based quantization like OPTQ (Frantar
et al., 2023) struggles with models like LLaMA
that have increasing activation diversity during cal-
ibration. To delve deeper into this phenomenon,
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Sequence Length 64 128 512 2048 std

FP (LLaMA-7B) 70.92 -

INT4 69.37 -
INT4 OPTQ 68.14 69.89 65.96 65.19 2.54

INT4 AQAS+OPTQ 69.99 70.48 68.92 70.20 0.68

Table 1: W4A8 Quantization zero-shot evaluation of
CommonSenseQA (average score of PIQA, Winogrande
and Arc_easy, default calibration sequence length is
2048)

we analyze the approach adopted by OPTQ, which
employs weight adjustments in response to quan-
tization error using activation Hessian, formulated
as follows (Frantar et al., 2023):

δF = −wq − quant(wq)

[H−1
F ]qq

· (H−1
F ):,q (2)

Hi =
∂2E

∂W2
i,:

= 2XXT , (3)

where X denotes the layer input activation, W
is weights of linear layer, wq is weight element
to quantize, and δ denotes optimal weight update
recovering quantization error. We examine the
weight update ratio, (H−1

F ):,q/[H−1
F ]qq, represent-

ing the second derivative of quantization error (E),
to assess changes in weights due to OPTQ. Fig. 3(a)
shows the weight update ratio for OPT and LLaMA
with varying calibration sequence lengths. OPT
remains relatively consistent, while LLaMA dis-
plays varying weight update ratios for varying se-
quence length, suggesting activation diversity af-
fects OPTQ’s weight updates.

This sensitivity of OPTQ updates prompts us to
further explore its implications for performance.
We evaluate the zero-shot performance of OPTQ
for W4A8 quantization by varying the calibra-
tion sequence length on PIQA, Winogrande, and
Arc_easy tasks from CSQA (Bisk et al., 2019; Sak-
aguchi et al., 2019; Clark et al., 2018), which have
sequence lengths ranging from tens to hundreds
(note that the type of calibration dataset was kept
consistent). Table 1 reveals that when the cali-
bration sequence length (e.g., 512 or 2048) sig-
nificantly deviates from task’s sequence lengths,
OPTQ’s performance suffers (up to 4% degrada-
tion), even falling below basic nearest-rounding
quantization. However, when the sequence lengths
are aligned (e.g., 64 or 128), OPTQ performs ex-
ceptionally well.

Figure 3: (a) Comparison of weight update ratio in Eq. 2
in OPT-6.7B, LLaMA-7B, and LLaMA-7B with AQAS
scaling. (b) Minimum input activation range for the
query layer in three models: W4A8 (calibrated with 128
and 2048 sequence lengths) and full-precision (FP), all
evaluated under an input sequence length of 128.

The large standard deviation in accuracies for
matching versus non-matching sequence lengths
suggests that LLaMA’s activation diversity substan-
tially impacts OPTQ’s accuracy. To mitigate this,
we propose the sequence-length-aware calibration
(SLAC) method. This approach involves determin-
ing the expected sequence length during the target
task’s inference phase and aligning the sequence
length of the calibration dataset accordingly. Such
a task-specific PTQ calibration process enhances
the robustness and accuracy of the model’s infer-
ence. The efficacy of SLAC, particularly in the
CSQA benchmark, is substantiated by experiments
detailed in Sec. 5.3.

The effectiveness of the SLAC method is evi-
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dent when comparing the dynamic range of quan-
tized models with their full-precision counterparts.
Fig. 3 (b) demonstrates that using calibration data
aligned with the input sequence length (calib-128)
results in a dynamic range more consistent with
that of the full-precision model (FP), unlike mod-
els calibrated with mismatched sequence lengths
(calib-2048).

Integrating SLAC with AQAS effectively en-
hances weight and activation quantization. As il-
lustrated in Fig. 3(a), AQAS efficiently mitigates
the sensitivity to input sequence length regarding
weight updates. Moreover, Table 1 shows that
the standard deviation related to the calibration
dataset’s length is significantly reduced from 2.54
to 0.68 through AQAS. Consequently, combining
AQAS with OPTQ proves advantageous for infer-
ences across diverse sequence lengths, and employ-
ing the SLAC method for calibration according to
the target dataset’s sequence length further bolsters
performance.

4 Overcoming PTQ Underflow for LLMs

By employing AQAS to address activation quanti-
zation errors in weight scaling, and utilizing SLAC
to align the sequence length of the calibration
dataset with that of the target inference, we achieve
a substantial improvement in the performance of
our W4A8 models. However, we encounter persis-
tent performance degradation issues. In this sec-
tion, we unveil "underflow" issues as a previously
overlooked cause of accuracy degradation in PTQ
applied to LLMs and propose a new numerical for-
mat to mitigate this problem.

4.1 Observations

We identify underflow as a main contributor to per-
formance degradation. To dissect the causes of
degradation when converting the weights of the
scaled model to 4-bit, we split the quantization
error into two parts: rounding error (∆r) and un-
derflow error (∆u). The rounding error accounts
for the error when the quantized value is non-zero,
whereas the underflow error represents the error
occurring when the quantized value rounds to zero.
By considering the total error (∆) induced by quan-
tization as a combination of ∆u and ∆r, we can
express the expected output quantization error as

follows:

E[(WX − (W +∆u +∆r)X)2] (4)

= E[(∆uX)2] +E[(∆rX)2] +E[2(∆uX∆rX)].

Fig. 4(a) exemplifies the underflow issues, illustrat-
ing the distinct impacts of quantization errors on
final model accuracy, measured as perplexity. The
figure highlights that setting small values near zero
to exactly zero, while leaving other values unquan-
tized, impairs performance. In contrast, quantizing
larger values and precisely representing those near
zero significantly improve accuracy. Fig. 4(b) pro-
vides a breakdown of error terms across layers in
OPT W4A8, indicating a correlation between high
total error and substantial underflow error. This un-
derlines the necessity for a method that effectively
addresses underflow errors.

4.2 Integer with Denormal Representation
Inspired by our observations and the denormal num-
bers in floating-point representation, we introduce
a new integer format called integer with denormal
representation (dINT). As illustrated by Fig. 4(c),
dINT uses two bins around zero to ensure lower
magnitudes are effectively represented. In b-bit
quantization, two values are reserved for special
cases, so the quantization range represents integers
from 0 to 2b−3. These special values in dINT have
magnitudes equal to half of the chosen step size,
which is a power of two to enable computation by
simple bit-shift operations. Our experimental find-
ings have confirmed that this choice of half-step
size consistently delivers the most robust perfor-
mance, surpassing other special values designed
for bit shifting, as elaborated in Appendix A.5.
The quantization and dequantization procedures
for dINT are detailed below:

Xint =





c1, for s
4 < n ≤ 3s

4

c2, for −3s
4 ≤ n < −s

4

clamp
(
⌈Xs ⌋+ z, 0, p

)
, else

(5)

Xq =





s
2 , for Xint = c1
−s
2 , for Xint = c2

(Xint − z) · s, else

(6)

where p represents the number of uniform steps,
calculated as p = 2b − 3 for a given bit number b.
The step size s is obtained by dividing the quanti-
zation range by p, and z is the zero-point for asym-
metric quantization. c1 and c2 denote the positive
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Figure 4: (a) INT4 without rounding sets small values near zero to zero, preserving the rest and causing performance
degradation. INT4 without underflow preserves only values near zero, improving performance. (b) Impact of
underflow error and rounding error on the output error. Significant impact of underflow error on the output error in
INT4. (c) Proposed dINT4 preserves two small values near zero, preventing performance degradation. (d) Using the
proposed dINT4 to reduce underflow error leads to a significant reduction in output error.

Figure 5: (Blue) Values to be quantized. (Orange) INT4
quantized values, evenly spaced. (Green) FP4 quantized
values, dense resolution for small values but coarse
resolution for large magnitudes. (Red) Proposed dINT4
format, balanced quantization range with a separate
special value for small values.

and negative special values in dINT that represent
small magnitudes. These values are encoded with
distinct bits, analogous to encoding inf or NaN.
During dequantization, if the value corresponds to
c1 or c2, it is represented as a special value; other-
wise, dequantization proceeds as in standard integer
formats. Fig. 5 shows that dINT4 strikes a balance
between INT4, which has uniform dynamic range
coverage but underflow issues, and FP4, which
densely represents small values to avoid underflow
but coarsely covers the dynamic range.

4.3 Advantages
Fig. 4(d) showcases the benefits of dINT in reduc-
ing output quantization error. By plotting each term
of Eq. 4, we observe that dINT primarily mitigates
underflow error, which substantially lowers the out-
put error. Although in instances like layer 9, the
output error slightly increases due to a widened
step size causing a rise in rounding error, the mag-
nitude of this increment is minimal. On the whole,

HW Performance MAC Input Formats

Precision INT8 × INT8 dINT4 × INT8 (Savings)

Area (µm2) 86.33 44.57 (1.93×)

Power (mW) 0.1595 0.0624 (2.56×)

Table 2: Evaluation of hardware performance of MAC
units (7nm, 1GHz).

dINT is effective in most scenarios. Furthermore,
we design and synthesize a MAC unit using dINT
and compare it to a traditional 8-bit integer MAC
unit using Synopsys Design Compiler and a com-
mercial 7nm technology (1GHz) for area efficiency
evaluation. As shown in Table 2, dINT achieves
1.93× and 2.56× savings in area and power con-
sumption, respectively. This underscores dINT’s
effectiveness in tackling underflow issues with min-
imal output errors and its hardware implementation
efficiency.

5 Experimental Results

5.1 Experimental Settings

In our experimental settings, we implement a com-
prehensive evaluation to assess the effectiveness
of our AQAS, SLAC, and dINT4 techniques in
LLMs. This involves conducting quantized in-
ference with 8-bit activations and 4-bit weights
across a spectrum of tasks, encompassing language
modeling, reasoning, and the MMLU benchmark.
To enhance both computational and memory ef-
ficiency in activation quantization, we broaden
our approach to incorporate the quantization of
"Value (for attention map calculation)", which are
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Weight OPTQ A-bits W/V-bits OPT Family LLaMA Family

Scaling 125M 1.3B 2.7B 6.7B 13B 30B 7B 13B 30B

Baseline 31.95 16.41 14.32 12.29 11.50 10.67 5.68 5.09 4.10

- -

INT8 INT4

42.78 35.17 24.03 15.52 36.43 150.94 6.87 6.14 5.52
✓ 36.04 19.35 15.61 15.16 15.82 25.23 7.57 5.85 5.13

SQ - 41.31 23.48 33.86 1,596.83 897.25 19.43 7.08 6.27 6.17
✓ 36.22 17.70 15.22 12.82 11.93 11.06 8.26 5.91 5.11

AWQ - 44.17 25.04 15.88 322.85 670.00 4,246.25 6.75 5.84 5.26
✓ 39.10 19.35 16.00 432.74 183.83 4,848.16 6.52 5.78 5.02

AQAS
- 36.57 17.68 15.34 13.42 12.19 11.08 6.69 5.81 5.14
✓ 35.62 17.48 15.08 12.97 12.08 11.04 6.60 5.71 5.07

✓ dINT4 34.92 17.28 15.03 12.89 11.98 11.04 6.48 5.67 4.72

Table 3: PPL results of W4A8V4 (Weight-4bit, Activation-8bit, Value-4bit) at standard language modeling evaluation
with OPT and LLaMA family models, applying OPTQ (Frantar et al., 2023) with various weight scaling techniques
and two numerical formats.

specifically cached to expedite the inference stage
during generation (Kwon et al., 2023). We com-
pare our methods against baseline techniques, in-
cluding weight scaling of SQ (Xiao et al., 2022),
AWQ (Lin et al., 2023), and weight update based
method, OPTQ (Frantar et al., 2023). Task details,
models, calibration methods, and quantization tech-
niques used in the experiments are outlined in Ap-
pendix A.1, and an ablation study exploring aspects
such as reducing precision to 3-bit, weight-only
quantization with dINT, and other 4-bit formats is
detailed in Appendix A.6.

5.2 Evaluation on Language Modeling Task

We first evaluate perplexity (PPL) as the language
modeling performance for various PTQ methods.
Table 3 presents W4A8 quantization results with
different PTQ combinations. For OPT models,
OPTQ generally reduces perplexity. However,
when combined with weight scaling methods like
SQ and AWQ for 4-bit weight quantization, there’s
a significant accuracy drop (i.e., spikes in PPL),
which OPTQ cannot fully mitigate in most OPT
models (except 6.7B and 13B). AQAS effectively
curtails the accuracy drop of 4-bit weight quan-
tization, and combining it with OPTQ enhances
accuracy. Utilizing dINT4 for 4-bit quantization
further lowers perplexity, maintaining a gap of less
than 1.0 compared to the full-precision baseline,
with the exception of OPT-125M, which is sensi-
tive to quantization. For LLaMA models, OPTQ
with 4-bit weight quantization raises perplexity due
to increased activation diversity, as discussed in
Sec. 3.3. Weight scaling methods like AWQ and
AQAS aid in performance recovery, and dINT4

Weight
OPTQ W/V-bits

OPT LLaMA

Scaling 6.7B 13B 7B 13B

Baseline 69.11 69.38 70.92 74.48

-
-

INT4

63.23 48.67 69.37 72.22
✓ 64.42 56.62 64.94 71.69

SQ ✓ 67.80 68.96 68.23 72.63

AQAS
✓ 67.79 68.80 69.04 73.50

✓ dINT4 68.19 68.96 68.74 73.31

AQAS*
✓ INT4 67.48 68.24 70.48 73.50

✓ dINT4 67.92 68.80 71.01 73.64

Table 4: Average accuracy for CommonSense QA
(CSQA) tasks including PIQA, Winogrande, and
ARC_easy. AQAS* denotes the AQAS method with
the SLAC approach (calibrating the dataset’s sequence
length to 128).

further minimizes perplexity, keeping it within 1.0
of the baseline. We detail the results of applying
our proposed AQAS and dINT4 strategies to mod-
els with over 60 billion parameters, specifically
OPT-66B and LLaMA-65B, in Appendix A.2.

5.3 Evaluation on Zero-shot Reasoning Tasks
We carry out experiments for the zero-shot Com-
monSense QA (CSQA) (Bisk et al., 2019; Sak-
aguchi et al., 2019; Clark et al., 2018) benchmark
by comparing different quantization options, akin
to prior tests. As noted in Sec. 3.3, LLaMA models
undergo performance decline with OPTQ without
weight scaling, whereas OPT models, less affected
by activation diversity, show performance gains us-
ing OPTQ even without scaling. Among weight
scaling techniques, AQAS exhibits superior perfor-
mance, and employing the dINT4 format further
enhances results.
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Weight
OPTQ A-bits W/V-bits

LLaMA Family

Scaling 7B 13B 30B 65B

Baseline 35.20 47.15 58.50 63.60

-
-

INT8
INT4

28.05 40.82 48.40 57.20
✓ 27.05 42.95 53.30 58.50

SQ ✓ 29.32 43.12 52.83 59.30

AQAS
✓ 30.81 44.23 53.67 59.60

✓ dINT4 31.00 44.73 55.50 61.40

Table 5: Average MMLU accuracy. The detailed accu-
racy for each item can be found in Table 7.

Due to the shorter input sentences in zero-shot
CSQA compared to the default OPTQ calibra-
tion dataset, employing SLAC, which considers
the LLaMA models’ activation diversity based on
sequence length, improves performance for both
INT4 and dINT4 formats. However, aligning the
calibration length with the target task’s sequence
length for the OPT models does not result in signif-
icant improvements. This can be attributed to the
OPT models’ lower sensitivity to weight updates
due to activation diversity during the calibration
process, as discussed in Section 3.3, which differs
from the behavior of the LLaMA models.

As a result, we attain performance within 1%
of full precision for both OPT and LLaMA mod-
els using 8-bit activation and 4-bit weight, notably
achieving full precision-equivalent performance in
LLaMA-7B by comprehensively accounting for the
model’s activation characteristics.

5.4 Evaluation on In-Context Learning Tasks

We evaluate the MMLU benchmark on several op-
tions that exhibited strong performance in language
modeling. To assess the efficacy of our proposed
method in in-context learning, we conduct 5-shot
inference. Given that OPT models are deemed
unsuitable for the MMLU benchmark (Lin et al.,
2023), we restrict the experiments to LLaMA mod-
els. Consistent with language modeling results,
AQAS, accounting for both weight and activation
quantization errors, delivers the best performance.
Moreover, effectively managing underflow error
bolsters performance across all models, with a no-
table 2% performance enhancement observed in the
LLaMA-30B model. To evaluate the efficacy of our
approach on large-scale models, we further expand
the experiment to LLaMA-65B. The results demon-
strate that dINT4 significantly enhances MMLU
accuracy by conserving small-magnitude values.
Detailed results for each category within MMLU
are provided in the Appendix A.3.

6 Conclusion

We address Post-training Quantization (PTQ) in
Large Language Models (LLMs), specifically tar-
geting 4-bit weight and 8-bit activation (W4A8)
quantization to boost computational efficiency.
We present Activation-Quantization-Aware Scal-
ing (AQAS) and Sequence-Length-Aware Calibra-
tion (SLAC), refining PTQ by taking into account
weights and activations, and aligning sequence
lengths. To combat the underflow issue in W4A8
quantization, where small magnitudes are rounded
down to zero, we introduce dINT, a hybrid for-
mat blending integer and denormal representations.
Through extensive evaluations on LLMs such as
OPT and LLaMA, we demonstrate marked im-
provements in task accuracy and adaptability. Addi-
tionally, with the development of MAC units com-
patible with dINT, we achieve a twofold increase
in hardware efficiency.

7 Limitation

We conducted a thorough analysis of model-
specific characteristics in LLMs and identified lim-
itations in current PTQ methods. However, fur-
ther investigation is needed to understand the spe-
cific phenomena observed in certain LLM mod-
els during the pre-training process. Additionally,
exploring more advanced collaborations of PTQ
techniques at lower bit precision for weights and
activations holds promise for future research.
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A Appendix

A.1 Experimental Details

Baseline Setup. As comparative baselines for
weight scaling, we employ SQ (Xiao et al.,
2022) as the scale method for 8-bit activation
quantization and AWQ (Lin et al., 2023) as the
scaling method for 4-bit weight quantization. In
terms of weight rounding, we evaluate both options
provided by OPTQ (Frantar et al., 2023), which
offers additional optimization, and the standard
nearest rounding method. As for numerical format,
we compare dINT with existing INT4 methods in
terms of performance.

Task and Models. We evaluate our proposed
approach on various tasks, including language mod-
eling using Wikitext (Merity et al., 2016)), CSQA
(PIQA (Bisk et al., 2019), WinoGrande (Sakaguchi
et al., 2019), and ARC easy (Clark et al., 2018)),
as well as MMLU (Hendrycks et al., 2021)
benchmarks. For benchmark models, we assess a
range of options across OPT and LLaMA models,
ranging from 125M to 66B, which are widely used
LLMs.

Quantization Settings. We apply quantiza-
tion to both the weights and activations of all
matrix multiplications in the Decoder layer. We
conduct our experiments by implementing the
quantizer within the PyTorch framework. For
activations, except for Value, we apply 8-bit
quantization, while for memory-intensive compo-
nents such as weights and Value, we utilize 4-bit
quantization. Similar to commonly used methods
for LLM quantization (Dettmers et al., 2022; Yao
et al., 2022), we apply token-wise quantization for
activations, and output channel-wise quantization
for weights. For Value, we apply channel-wise
quantization, taking into account the dimensions
where partial-sum accumulation occurs when
multiplied by the self-attention map. We apply
Min-Max asymmetric quantization determine the
step size and the zero-point for both activation and
weight.

Calibration Settings. During the calibra-
tion process to find the weight scale, we follow
the calibration setting from the AWQ repository1.
For the attention operation, we adjust the cali-

1https://github.com/mit-han-lab/llm-awq

Wikitext PPL OPT-66B LLaMA-65B

FP16 baseline 10.09 3.53

INT4 3,222.02 4.80

AQAS + dINT4 + OPTQ 10.32 4.13

Table 6: Wikitext perplexity for W4A8V4 inference on
OPT-66B and LLaMA-65B.

bration process by modifying the objective of
Eq. 1 to minimize the distortion of the attention
output. We use a randomly extracted dataset from
Pile (Gao et al., 2020) for AWQ (Lin et al., 2023),
SmoothQuant (Xiao et al., 2022), and AQAS
methods. When calibrating weights with OPTQ,
we follow the baseline calibration setting provided
in the OPTQ repository2. We use a subset of the
C4 dataset, randomly selecting 128 samples with a
sequence length of 2048.

A.2 Language modeling in >60B Models

Table 6 To assess the effectiveness of our approach
on large models, we conduct language modeling
experiments on OPT-66B and LLaMA-65B, with
the objective of determining whether our method
performs well even on models with over 60 billion
parameters. demonstrates that proposed scaling
method and numerical format can significantly re-
duce perplextiy in language modeling task.

A.3 Few-shot MMLU Benchmarks

The results for the each category in the 5-shot
MMLU benchmark for LLaMA models are dis-
played in Table 7. As demonstrated in Table 7,
AQAS exhibits higher accuracy compared to other
scaling methods, emphasizing the importance of
considering both weight and activation quantiza-
tion. Furthermore, it’s noteworthy that the use
of dINT, which effectively mitigates underflow,
achieves the highest accuracy.

A.4 Finding Scales for AQAS

To automatically determine the channel-wise scale
factor in AQAS, it is necessary to select representa-
tive values for both activation and weight channels.
In SQ (Xiao et al., 2022), the maximum magni-
tude was used as the criterion, while in AWQ (Lin
et al., 2023), the absolute mean value was used
to explore the scale factor. As shown in Table 8,
we explore both cases and found that selecting the

2https://github.com/IST-DASLab/gptq
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LLaMA 7B

Scaling OPTQ A-bits W/V-bits Hums STEM Social Other Avg.

Baseline 33.90 30.50 38.20 38.20 35.20

-
-

INT8
INT4

28.65 25.75 26.13 31.15 28.05
✓ 26.99 24.88 25.71 30.41 27.05

SQ ✓ 27.80 29.66 27.40 33.04 29.32

AQAS
✓ 29.61 29.85 30.65 33.62 30.81

✓ dINT4 29.67 29.26 32.24 33.37 31.00

LLaMA 13B

Scaling OPTQ A-bits W/V-bits Hums STEM Social Other Avg.

Baseline 44.80 36.40 54.20 53.20 47.15

-
-

INT8
INT4

36.96 35.16 45.56 47.19 40.82
✓ 40.38 34.10 48.94 49.23 42.95

SQ ✓ 40.96 34.26 48.72 49.20 43.12

AQAS
✓ 40.74 35.02 51.51 50.96 44.23

✓ dINT4 42.64 35.79 50.83 50.31 44.73

LLaMA 30B

Scaling OPTQ A-bits W/V-bits Hums STEM Social Other Avg.

Baseline 56.40 46.70 67.30 63.60 58.50

-
-

INT8
INT4

46.00 39.40 54.50 54.50 48.40
✓ 50.20 42.60 61.90 59.70 53.30

SQ ✓ 49.65 43.31 59.86 59.65 52.83

AQAS
✓ 51.75 43.21 60.68 59.53 53.67

✓ dINT4 52.90 44.00 65.00 61.10 55.50

LLaMA 65B

Scaling OPTQ A-bits W/V-bits Hums STEM Social Other Avg.

Baseline 61.90 52.10 73.40 67.60 63.60

-
-

INT8
INT4

54.10 46.40 66.90 62.50 57.20
✓ 56.00 47.80 67.20 63.90 58.50

SQ ✓ 57.70 47.50 67.90 64.30 59.30

AQAS
✓ 57.20 47.80 69.50 64.80 59.60

✓ dINT4 59.50 50.40 70.70 65.80 61.40

Table 7: MMLU accuracy on LLaMA models.

maximum magnitude as the representative value of-
ten yielded better performance. Similar to previous
research (Lin et al., 2023), we use a grid search to
find the appropriate scale, and after determining the
scale factor, we make adjustments by additionally
clipping the weights.

A.5 Sweep of the Special Value in dINT
The dINT format defines the special value c as half
of the step size s. If we change this value, the
magnitude of the state representing small values
will differ. We conduct additional sweeps with
different power-of-two values (e.g., 0.25, 0.125)
to observe the impact in Table 9. In most cases,
setting c to 0.25 times the s proves to be a good
choice, but in the case of the OPT-125M model, it
shows a significant increase in perplexity. To select
a value that generally works well, we set c to be
half of s.

A.6 Ablation Study
Reducing Precision to 3 Bits. To achieve addi-
tional memory savings, we conduct experiments

Wikitext

AQAS OPTQ
OPT LLaMA

125M 1.3B 2.7B 6.7B 13B 30B 7B

Baseline 31.95 16.41 14.32 12.29 11.50 10.67 5.68

Mean
- 37.46 18.16 15.43 13.08 12.11 11.06 6.72
✓ 36.07 17.50 15.19 12.99 12.07 11.02 6.67

Max
- 36.57 17.68 15.34 13.42 12.19 11.08 6.69
✓ 35.62 17.48 15.08 12.97 12.08 11.04 6.60

PIQA

AQAS OPTQ
OPT LLaMA

125M 1.3B 2.7B 6.7B 13B 30B 7B

Baseline 63.00 71.71 73.78 76.28 75.90 77.58 78.35

Mean
- 61.86 70.78 72.91 75.57 74.86 76.66 77.42
✓ 61.81 71.22 72.85 75.14 74.97 77.20 77.37

Max
- 61.21 70.51 72.69 74.27 75.14 77.15 77.26
✓ 62.30 71.11 73.56 75.08 75.84 77.48 76.28

WinoGrande

AQAS OPTQ
OPT LLaMA

125M 1.3B 2.7B 6.7B 13B 30B 7B

Baseline 50.28 59.51 61.01 65.43 65.11 73.01 67.09

Mean
- 51.54 58.88 60.14 65.59 65.51 67.56 64.96
✓ 49.96 57.62 61.64 65.82 64.88 68.03 64.80

Max
- 52.41 60.62 61.64 65.27 64.88 67.40 63.77
✓ 49.72 58.17 60.14 63.77 65.27 68.11 65.59

Table 8: Comparing the performance of AQAS when
exploring channel-wise quantization using the criteria
of absolute mean and max values.

c1 / s
OPT LLaMA

Avg.
125M 1.3B 2.7B 6.7B 7B

Baseline 31.95 16.41 14.32 12.29 5.68 16.13

0.50 34.92 17.28 15.03 12.89 6.48 17.32
0.25 35.84 17.22 14.96 12.83 6.28 17.43
0.125 35.20 17.23 14.97 12.84 6.32 17.32

Table 9: dINT4’s special value sweep, W4A8V4 in-
ference with AQAS+OPTQ. Where c1 is the positive
special value, and s is the step size.

Weight
OPTQ W/V-bits

OPT LLaMA

scaling 125M 2.7B 6.7B 7B

Baseline 31.95 14.32 12.29 5.68

- -
INT3 1.7e3 4.3e4 1.2e4 94.97
dINT3 127.94 8.7e3 55.24 10.99

AQAS ✓ INT3 54.84 36.38 69.45 24.85
dINT3 46.34 20.67 17.42 10.04

Table 10: Perplexity is assessed using standard language
modeling on the Wikitext dataset, with activations quan-
tized to 8 bits and weights and values to 3 bits. We em-
ploy AQAS and OPTQ and compare the performance of
INT3 and dINT3. Notably, dINT3 considerably reduces
performance degradation.

in which we retain 8-bit activation while reducing
weight and Value precision to 3 bits. As shown
in Table 10, as bit precision decreases and the
impact of underflow becomes more significant, the
effectiveness of dINT becomes more pronounced.
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Precision Format Method
OPT

125M 1.3B 2.7B 6.7B 13B

FP16 baseline 31.95 16.41 14.32 12.29 11.50

W3A16 g=128

INT3
RTN 58.37 195.10 499.39 39.18 29.37

OPTQ 41.93 18.53 15.79 13.13 12.01
AWQ 41.45 18.56 15.63 12.99 12.03

dINT3
RTN 54.53 21.70 24.15 15.80 13.14

OPTQ 39.60 18.26 15.52 12.99 11.91
AWQ 39.46 18.29 15.47 12.97 12.03

Table 11: Performance comparison of W3A16 infer-
ence results with various state-of-the-art methods when
applying group-wise quantization (group size: 128).

Precision Format Method
OPT

125M 1.3B 2.7B 6.7B 13B

FP16 baseline 31.95 16.41 14.32 12.29 11.50

W4A16 g=128

INT4
RTN 35.52 17.69 15.12 13.02 11.89

OPTQ 34.23 16.92 14.69 12.51 11.60
AWQ 33.96 16.85 14.61 12.44 11.60

FP4
RTN 39.13 18.25 15.54 13.35 12.14

OPTQ 37.42 18.06 15.19 12.84 11.91

dINT4
RTN 34.40 17.06 14.83 12.75 11.79

OPTQ 34.04 16.82 14.64 12.47 11.59
AWQ 33.66 16.78 14.56 12.44 11.61

Table 12: Performance comparison of W4A16 infer-
ence results with various state-of-the-art methods when
applying group-wise quantization (group size: 128).

By solely changing the numerical format without
applying weight scaling, we are able to signifi-
cantly reduce the perplexity of the LLaMA-7B
model from 94.97 to 10.99. This underscores the
influence of underflow on model performance.

Weight-Only Quantization Method with dINT.
dINT, as a numerical format, can be integrated
with existing PTQ methods. We combine the
dINT format with state-of-the-art PTQ methods
for LLMs, namely OPTQ and AWQ, and compare
their performance with the integer format. As
shown in Table 11 and Table 12, dINT outperforms
the traditional integer format in both 3-bit and
4-bit quantization. This indicates that underflow
significantly affects the performance of weight
quantization in LLMs.

Other 4-Bit Formats. To compare the perfor-
mance of 4-bit quantization formats, we evaluate
performance by applying integer, floating-point,
and dINT4 to the weights, without considering ac-
tivation quantization. We employ a 4-bit floating-
point (FP4), consisting of a single sign bit and
three exponent bits. While alternative configura-
tions with different exponent and mantissa bits are
available, we experimentally determine the neces-
sity of a 3-bit exponent for the FP4. Additional

Model Precision W4 format Wikitext PIQA MMLU

LLaMA-7B

FP16 baseline 5.68 78.29 35.20

W4A16

FP4 (1-1-2) 165582.55 51.69 26.88
FP4 (1-2-1) 26.52 62.84 27.31
FP4 (1-3-0) 6.30 76.77 31.46

dINT4 6.07 77.91 32.53

LLaMA-13B

FP16 baseline 5.09 78.78 47.15

W4A16

FP4 (1-1-2) 74763.98 52.29 24.72
FP4 (1-2-1) 7.95 74.65 31.54
FP4 (1-3-0) 5.56 78.62 40.76

dINT4 5.38 79.05 44.35

LLaMA-30B

FP16 baseline 4.10 80.96 58.50

W4A16

FP4 (1-1-2) 34027.07 51.52 25.32
FP4 (1-2-1) 9.10 71.22 32.05
FP4 (1-3-0) 4.57 79.71 53.50

dINT4 4.36 80.41 55.87

Table 13: Experiments on various configurations of 4-
bit floating-point: FP4 (1-e-m) represents floating-point
format with a 1-bit sign bit, e-bit exponent, and m-bit
mantissa. We conduct experiments on Wikitext PPL,
PIQA accuracy, and MMLU average accuracy. Among
FP4 configurations, a 3-bit exponent exhibits the best
performance, while dINT surpassing it.

Precision Format OPTQ
OPT

125M 1.3B 2.7B 6.7B 13B

FP16 baseline 31.95 16.41 14.32 12.29 11.50

W4A16

INT4
- 43.15 29.90 19.70 14.18 12.89
✓ 36.29 17.68 15.15 12.88 11.73

FP4
- 42.17 18.52 16.01 13.38 12.33
✓ 37.52 18.31 15.39 13.18 11.89

dINT4
- 37.16 18.10 15.53 13.75 12.06
✓ 35.10 17.30 14.94 12.65 11.68

Table 14: Comparing the performance of various for-
mats in weight-only quantization for the language mod-
eling task, using both dINT and OPTQ together shows
the best performance.

Figure 6: The variation in the absolute max values of
weights and activations when applying weight scaling
in LLaMA-7B.

details can be found in Table 13. As shown in
Table 14, FP4 achieves some performance improve-
ment compared to uniform quantization due to its
wider dynamic range. However, dINT4 outper-
forms the other two formats by effectively repre-
senting a wide range of values with uniform inter-
vals while accurately representing small values. It
demonstrates better performance and good compat-
ibility with existing optimization techniques such
as OPTQ.
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