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Abstract

While large language models (LLMs) are pro-
ficient at question-answering (QA), it is not
always clear how (or even if) an answer fol-
lows from their latent “beliefs”. This lack
of interpretability is a growing impediment to
widespread use of LLMs. To address this, our
goals are to make model beliefs and their in-
ferential relationships explicit, and to resolve
inconsistencies that may exist, so that answers
are supported by interpretable chains of reason-
ing drawn from a consistent network of beliefs.
Our approach, which we call REFLEX, is to add
a rational, self-reflecting layer on top of the
LLM. First, given a question, we construct a be-
lief graph using a backward-chaining process
to materialize relevant model beliefs (includ-
ing beliefs about answer candidates) and their
inferential relationships. Second, we identify
and minimize contradictions in that graph us-
ing a formal constraint reasoner. We find that
REFLEX significantly improves consistency (by
8%-11% absolute) without harming overall an-
swer accuracy, resulting in answers supported
by faithful chains of reasoning drawn from a
more consistent belief system. This suggests
a new style of system architecture in which an
LLM extended with a rational layer can provide
an interpretable window into system beliefs,
add a systematic reasoning capability, and re-
pair latent inconsistencies present in the LLM.

1 Introduction
While large language models (LLMs) are impres-
sive at question-answering (QA), it is not always
clear how (or even if) an answer follows from their
latent “beliefs”1 about the world, or whether the
LLM even has a coherent internal belief system.
This general opacity is a growing impediment to
widespread use of LLMs, e.g., in critical applica-
tions such as medicine, law, and hiring decisions,

1 We adopt a simple definition of belief, namely that a
model believes X if it answers "yes" to the question "Is X
true?". Other definitions could also be used; see Section 2.

Figure 1: (Top) When queried about each answer option
independently, the model incorrectly believes both are
true, and is more confident in the wrong answer (S2).
(Bottom) REFLEX adds a "rational" layer above the
LLM layer, in which a belief graph is constructed (by
iteratively querying the LLM, up/down arrows), contain-
ing relevant model-believed facts (white/grey = believed
T/F) and their inferential relationships. Inconsistencies
are then identified (red) and minimized by a constraint
reasoner that flips T/F labels on beliefs (green ✓/X),
here resulting in the correct answer (S1, green box) +
explanation (graph) by the overall system (blue).

where properties of explainability, interpretability,
and trust are paramount. Our goal is to help alle-
viate such opacity by constructing an explicit rep-
resentation of system beliefs and their inferential
relationships (including to answer candidates), so
that answers are supported by interpretable chains
of reasoning. These constructed belief graphs,
e.g., Figures 1 and 2, form a rational layer above
the LLM explaining how answers follow from be-
liefs, and provide a window into some of the latent
contents of the model, potentially helping users
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understand and trust model answers.

In addition, when we do this, we find such graphs
expose latent inconsistencies in the model’s beliefs.
We show how such inconsistencies can be resolved
using constraint satisfaction techniques. When we
do this, the rational layer becomes not just a win-
dow onto the model, but an active reasoning com-
ponent in its own right in a larger, overall system,
comprising the (frozen) LLM plus rational layer
(blue box, Figure 1). We show this results in a
more consistent set of beliefs in the overall system,
without harming overall answer accuracy (although
some individual answers may change). The result
is answers supported by faithful, system-believed
chains of reasoning drawn from a consistent belief
system.

Our approach, called REFLEX, introduces a ra-
tional layer consisting of two parts. First, to pro-
duce a belief graph, we recursively ask the LLM
to explain why each candidate answer might be
true, expressed as a set of sentences that entail
the answer. This builds on earlier work on generat-
ing entailment-based and chain-of-thought explana-
tions (Tafjord et al., 2022; Weir and Durme, 2022;
Wei et al., 2022). We then add a self-verification
step to check that the model itself believes those
generations (i.e., that the model believes what it
says), allowing us to identify sentences reflecting
the model’s own internal knowledge. For example,
in Figure 1, when asked to explain S1 (“giraffes
give live birth”), the model generates S7 ([because]
“mammals give live birth”) and S4 ([and] “a giraffe
is a mammal”). Self-querying then checks if the
model actually believes its generations (“Do mam-
mals give live birth?”). The answer (“yes”/”no”)
assigns a true/false (T/F) value to each generation,
indicated in Figure 1 by white/grey nodes. This
procedure is then applied recursively to the gener-
ated, supporting sentences. The resulting network
of model beliefs and their dependencies provides a
a window into the model.

Second, we apply a formal constraint reasoner
to this graph to resolve inconsistencies, by find-
ing the optimal (minimal cost, Section 3.3) way
of flipping T/F values. For example, on the left in
Figure 1, S2 and S3 (“spiders do/don’t give live
birth”) are in an XOR relationship (i.e., exactly
one must be false), but both are believed as true
(white) by the LLM - a latent contradiction within
the LLM. Constraint reasoning then seeks to re-
move such inconsistencies, here flipping the belief

value on S2 from T to F (Figure 1, right), repairing
the contradiction. This builds on earlier techniques
(Kassner et al., 2021; Mitchell et al., 2022; Jung
et al., 2022), though in a notably richer setting with
over 350 nodes and 80 constraints per question,
joint inference across answer candidates, and a va-
riety of constraint types. The overall result is a fully
autonomous, self-reflective system that is able to
deliberate (and if necessary change) its answers,
thereby resolving latent inconsistencies that would
otherwise go unnoticed, and provide faithful expla-
nations drawn from a consistent belief system.

We evaluate our implementation of REFLEX

on three datasets: EntailmentBank (Dalvi et al.,
2021), OBQA (Mihaylov et al., 2018), and QuaRTz
(Tafjord et al., 2019). We find that REFLEX is
able to construct belief graphs with significantly
improved consistency (by 8%-11% absolute) with-
out harming overall answer accuracy. In addition,
answers are now supported by a more consistent,
system-believed chain of reasoning, providing a
window into the previously latent beliefs of the
model. Our contributions are thus:

1. A new style of system architecture in which
an LLM is extended with a rational layer
in which an explicit representation of system
beliefs and relationships is constructed and
which can be reasoned over. This layer pro-
vides an interpretable window into system
beliefs, adds a systematic reasoning capablity,
and allows latent inconsistencies present in
the LLM to be repaired.

2. An implementation of this architecture demon-
strating that the consistency of the overall
system’s network of beliefs can be signif-
icantly improved without harming answer
accuracy. Answers are now supported by ex-
plicit, interpretable chains of reasoning drawn
from a more consistent network of beliefs.

2 Related Work
Materializing a Model’s Internal Knowledge: It
is now well recognized that LLMs contain exten-
sive world knowledge (Petroni et al., 2019, 2020;
Davison et al., 2019; Peters et al., 2019; Jiang et al.,
2020; Roberts et al., 2020) that somehow enables
them to perform well. Recent work has attempted
to expose that knowledge in various ways, both
to justify answers and improve performance, and
our work falls into this genre. Standard explana-
tion generation methods (Wiegreffe and Marasović,
2021) can produce compelling explanations, but
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Figure 2: Given a question, each answer choice is first converted to a hypothesis statement (A). The belief graph
is then constructed in stages, first generating rules that conclude the hypotheses (B), then backward-chaining to
generate rules concluding the premises of those first rules, etc., and adding in negated versions of graph statements
connected with the originals via XOR links (e.g., nodes 11 and 12), until the stopping criterion is met (C). Statements
are then labeled with the model’s belief in them (true/false), found via self-querying (white = believed true, grey =
believed false). Finally, logical conflicts are identified (colored red), and constraint satisfaction techniques are used
to resolve them. In this case, as there is strong evidence that node 2 is actually true (7 & 6 → 2, not(19) → 2), the
solver finds that the minimum cost repair is to flip node 2’s label from FALSE to TRUE. Here, node 2 ends up being
selected as the final answer, thus correctly answering the original question.

with no guarantee that the generated sequence of
tokens expresses the model’s internal knowledge,
nor entails the actual answer. Similarly, chain-of-
thought (CoT) (Wei et al., 2022) and Least-to-Most
(Zhou et al., 2023) prompting generate (in different
ways) a step-by-step reasoning chain along with
an answer, but again with no claim that the chain
reflects the model’s internal knowledge nor is valid
reasoning (Subramanian et al., 2020).

To add semantics to generations, several systems
have used self-querying to verify that generations

reflect model-believed facts (by self-querying “Is
p true?”) (e.g., Kassner et al., 2021; Jung et al.,
2022), or model-believed rules (by self-querying
“Does p imply q?”) (e.g., Tafjord et al., 2022). We
build on these to construct a belief graph, namely
a network of model-believed facts and their infer-
ential relationships, which can then be reflected
on.

Beliefs: We refer to the model’s factual opin-
ions as “beliefs” rather than “knowledge” because
those opinions may be wrong. In general, an agent
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can be said to believe p if it acts as if p was true
(Schwitzgebel, 2019). Following Kassner et al.
(2021) and Richardson et al. (2022), we take a sim-
ple, syntactic operationalization of this, namely the
agent answers “yes” to the question “p?”, but also
note that more semantic versions could be used,
e.g., the agent also answers “yes” to paraphrases
and implications of p.

Reducing Inconsistency: LLMs are known to
be inconsistent in their answers (Ettinger, 2020;
Kassner and Schütze, 2020; Davison et al., 2019;
Ravichander et al., 2020; Elazar et al., 2021; Sub-
ramanian et al., 2020; Gu et al., 2023), and several
recent works have used constraint reasoners to iden-
tify and reduce inconsistency. BeliefBank used a
MaxSAT solver to resolve inconsistencies between
model beliefs, but required a hand-provided set of
constraint rules (Kassner et al., 2021). ConCoRD
(Mitchell et al., 2022) similarly used MaxSAT to
ensure model answers were consistent with NLI-
derived entailment constraints between them, but
did not introduce additional model-believed facts
and rules. Maieutic Prompting (Jung et al., 2022)
also used MaxSAT to resolve inconsistencies be-
tween facts in prompt-induced explanation chains.
However, those chains were not validated as re-
flecting model-believed constraint rules2, and did
not support conjunction. REFLEX extends these
reasoning chains to provide a full semantic account
of how answers are supported by the model’s in-
ternal knowledge. Additionally, it performs joint
reasoning across answer candidates and operates
at a much larger scale (e.g., over 350 nodes on
average for each question) and with a variety of
constraint types.

3 REFLEX: Our Approach

3.1 Belief Graphs

Our belief graphs are defined over a set of natu-
ral language true/false statements and represent a
set of rules that constrain the truth values of these
statements. We refer to statements that are fac-
tually true in the world as facts. The truth value
assigned by a model M to a statement is referred
to as M ’s belief in that statement (cf. Footnote 1).
A model’s internal beliefs may not always align

2REFLEX checks whether both the statements si, and the
rules (si → h), are believed by the model via self-querying,
e.g., by asking “Does si → h?”, and also scores the strength
of those beliefs. In maieutic prompting, the generated rules
are not checked against the model, resulting in rules that the
model itself may not believe, if queried about them.

with facts. Our goal is to extract a model’s ini-
tial beliefs about statements inferentially related
to all top-level hypotheses of interest, and perform
reasoning to update these beliefs so as to make
them more consistent with respect to the rules, and
ideally also factually more accurate.

A belief graph is a type of factor graph com-
monly used in the probabilistic inference litera-
ture (Loeliger, 2004). Formally, it is defined as
an undirected graph G = (N,E) with nodes N
and edges E. Nodes are of two types: A state-
ment node (referred to as a "variable node" in
a factor graph) is a triple (s, l, cs) containing a
natural language statement s, an associated value
l ∈ {T, F} initially denoting M ’s belief that s is
true or false, and a confidence cs ∈ [0, 1] denoting
a confidence in that label. A rule node (referred
to as a "factor node" in a factor graph) is a pair
(r, cr) denoting a disjunctive rule or constraint over
statements, with confidence cr. It takes the form
r = (−s1 ∨ . . . ∨ −sℓ ∨ sℓ+1 ∨ . . . ∨ sk). For
ease of interpretation, we view this constraint as
r = p → h where p = s1∧ . . .∧sℓ is a conjunctive
premise and h = sℓ+1 ∨ . . . ∨ sk is a disjunctive
hypothesis. The rule says that if p is true, so must
be h; and the contrapositive of this.

Edges E connect rule nodes to the statements
they constrain, denoting their dependence. For leg-
ibility, we draw edges directionally to depict the
way the rule reads: the statements in p point to r,
which in turn points to h. Mathematically, the influ-
ence is bidirectional and the depicted directionality
is irrelevant during reasoning (Section 3.3), just as
in a standard factor graph.

We adopt the standard probabilistic semantics
of factor graphs, thereby associating a belief graph
with a well-defined probability distribution over
any set of statement beliefs. For a statement node
(s, l, cs), the cost costs for setting it to l is 0, and
that for setting it against l is cs; the corresponding
weight of this node is ws = exp(−costs). Costs
and weights for a rule node (r, cr) are defined
similarly, based on whether the beliefs satisfy r or
not. Finally, the overall weight of a T/F assign-
ment to all statements is

∏
sws ·

∏
r wr, which,

when normalized by the total weight across all pos-
sible assignments, yields a probability distribution
over such assignments. We will be interested in
finding the most consistent set of beliefs, i.e., a
T/F assignment to statements with the minimum
overall weight, which is equivalent to minimizing
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∑
s costs +

∑
r costr. This is referred to as the

MPE (most probable explanation) problem in the
graphical models literature, which we later solve
exactly using a MaxSAT constraint solver based
on a standard translation of MPE into weighted
MaxSAT (Park, 2002; Sang et al., 2007).

3.2 Constructing Belief Graphs

Given an initial node (statement) s, a belief graph
G is produced by a backward-chaining process de-
scribed below, in which G is recursively expanded
to add statements that together may entail s.

3.2.1 Basic Operations
Let h denote a hypothesis (language statement s)
of interest and p a premise—a set of statements
{s1,. . . ,sn} that together may entail h. Given these,
there are three basic operations required to gener-
ate belief graphs:
1. h ⇒ p: Given h, generate a p that may entail h.
2. s ⇒ (l, cs): Given a statement s, output a

true/false value l and a confidence in the belief
that s has truth value l (as assessed via yes/no
question-answering).

3. (p, h) ⇒ cr: Given p and h, output a confidence
that the candidate rule r = p → h holds.

The most important of these is the first operation,
in which the model self-generates conjunctive rules
concluding h (i.e., reason p for believing h), thus
adding new nodes to the graph.

There are several ways of implementing these
basic functions, and our algorithm is agnostic to
the method used. In our work here, we use Entailer,
an off-the-shelf T5-11B trained model with these
functionalities (Tafjord et al., 2022). Further, since
the raw score produced by the model tends to be
skewed towards 0 or 1, when computing cs and cr
in practice, we re-scale the raw model score using
a set of hyperparameters (cf. Appendix B).

One may use alternative ways to implement
these operators, such as chain-of-thought prompt-
ing a model like GPT3 (Wei et al., 2022) or Chat-
GPT (OpenAI, 2022). For example, to generate
a rule concluding a hypothesis h such as “Plants
require CO2 to make their food.”, the model could
be prompted with h followed by “Explain the last
statement with a 2-step reasoning chain.”, the num-
bered generations forming the premise p. Similarly,
generated statements and rules can be validated as
reflecting the model’s beliefs by self-querying (“Is
s true?”, “Does p imply h?”), and then using the
generated yes/no answer token probabilities as the

Algorithm 1 The recursive algorithm for construct-
ing a belief graph of max depth dmax for a hypoth-
esis set H. The subroutine EXTEND-GRAPH takes
a partial graph G as an input and extends it in place
with one statement and its subgraph.

1: procedure GENERATE-GRAPH(hypotheses H, max
depth dmax):

2: let G = empty graph
3: foreach h ∈ H
4: call EXTEND-GRAPH(h, 0, dmax, G)
5: add MC rule node

(∨
h∈H h,∞

)
to G

6: foreach pair (hi, hj) of hypotheses in H
7: add MC rule node (¬hi ∨ ¬hj , cmc) to G
8: return G

9: procedure EXTEND-GRAPH(statement s, current depth
d, max depth dmax, partial graph G):

10: call operator s ⇒ (l, cs) to score statement s
11: add statement node (s, l, cs) to G
12: gen. the negation sentence negs = neg(s)
13: add rule node (XOR(s,negs), cxor) to G
14: call EXTEND-GRAPH(negs, d+ 1, dmax, G)
15: if d < dmax do:
16: let h = s
17: call operator h ⇒ p to generate p
18: call operator (p, h) ⇒ cr to score rule p → h
19: add rule node (p → h, cr) to G
20: foreach si ∈ p
21: call EXTEND-GRAPH(si, d+ 1, dmax, G)

model’s confidence (Kadavath et al., 2022).

3.2.2 Initial Hypothesis Generation
Given a question, we first generate a set H of hy-
pothesis sentences (e.g., “Is the sky (A) blue (B)
yellow” → { h1 = “The sky is blue.”, h2 = “The sky
is yellow.”).3 An N -way multiple choice question
yields N hypotheses in H. A true/false question
yields 2 hypotheses. To handle open-ended ques-
tions, candidate answers can be generated, e.g.,
using nucleus sampling (Holtzman et al., 2019).

3.2.3 Belief Graph Generation
The belief graph generation process is shown in
Algorithm 1. An example of (part of) a generated
belief graph is shown in Figure 2.

Given a set H of hypotheses, we generate a sin-
gle belief graph G by using our basic operations
(Section 3.2.1) to recursively generate rules that
conclude each hi ∈ H up to a fixed maximum
depth dmax. (Each original hi is at depth d = 0.)

For each statement s, we also generate nodes
negs (and their recursive subgraphs) expressing its
negation, e.g., “The sky is not blue.” from “The

3Conversion of a QA pair to a declarative hypothesis D
uses a custom T5-11B model trained on the QA2D dataset
(Demszky et al., 2018).
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sky is blue.”.4 Each pair s and negs is connected
with an XOR rule, indicating a (soft) preference
for setting exactly one of them to true; this is repre-
sented as two disjunctive constraints (s∨negs) and
(−s ∨ −negs) whose weight cxor is a fixed hyper-
parameter. Lastly, we add a multiple-choice (MC)
constraint which has two parts: a hard constraint
(with infinite cost) that at least one hypothesis must
be chosen, and a soft constraint5 that no more than
one should be chosen. The soft constraint is associ-
ated with a fixed hyperparameter weight cmc.

3.3 Reasoning Over Belief Graphs

Belief graphs provide a window into the model’s
beliefs about some of the relevant statements and
their (believed) inferential relationships to candi-
date answers to a question. As others have shown
(Kassner et al., 2021; Mitchell et al., 2022), such
beliefs can be inconsistent, and materializing those
inconsistencies provides one the opportunity to re-
move or reduce them.

In a similar vein, and as discussed in Section 3.1,
REFLEX performs inference over belief graphs in
order to compute an updated set of beliefs that is
as consistent as possible with the rules. To this
end, it converts belief graphs into an equivalent
weighted MaxSAT problem and uses an off-the-
shelf MaxSAT solver (RC2, (Ignatiev, 2019)) to
compute the optimal flips of initial true/false beliefs
that minimize global inconsistency. It then discards
all rules that are in conflict with the updated state-
ment beliefs, obtaining a smaller, updated belief
graph. This smaller belief graph produced by
REFLEX is self-consistent and provides inferential
support for the top-level hypotheses.

3.4 Generating Faithful Explanations

Notably, the smaller updated belief graph produced
by REFLEX provides a faithful explanation of the
answer it predicts, in the sense that it accurately
represents the reasoning process behind the overall
system’s prediction (Lyu et al., 2022). This is true
as the MaxSAT reasoning process results precisely
in a self-consistent set of beliefs from which RE-
FLEX determines whether to believe a candidate
answer or not, and produces its final prediction
based on this (rather than on the raw LLM output
alone; note that we do not make any claims about

4We use a simple, custom-built utility for this, namely a
T5-base model trained on 9k Turk-generated examples.

5soft, to allow for cases with multiple valid answers, e.g.,
open-ended questions or those asking for the best answer.

how the internal reasoning of the LLM component
operates.) Thus, REFLEX provides the user with an
interpretable reasoning trace, allowing the user to
understand how it derived the answer from more
rudimentary facts (Subramanian et al., 2020).

We note that the original belief graph (before
reasoning) may reveal that the model’s original ex-
planation is, in fact, not faithful to its own beliefs.
For example, in Figure 2, the model believes state-
ments 6, 7, and that 6 & 7 entail 2, but does not
believe 2 (colored grey). Thus, the global reason-
ing layer of REFLEX plays a critical role in arriving
at faithful explanations.

4 Experiments and Results

The goal of our experiments is to evaluate the ex-
tent to which our overall system, namely an LLM
plus a self-reflecting, rational layer, helps expose
and resolve inconsistencies in the LLM’s beliefs
without harming accuracy. Importantly, REFLEX is
evaluated in a zero-shot setting, without relying on
training instances of the target datasets.

Datasets. We use the test partitions of three ex-
isting multiple-choice datasets: EntailmentBank
(Dalvi et al., 2021), OBQA (Mihaylov et al., 2018),
and QuaRTz (Tafjord et al., 2019). We chose our
datasets as they contain inferentially rich questions
(typically) requiring reasoning. The partitions con-
tain 339, 500, and 784 examples, respectively.

Models. The baseline LLM we use is an LLM
that has been trained to perform QA and also sup-
ports the basic operations discussed in Sec. 3.2.1,
enabling us to assess how much it can be improved
by adding a REFLEX layer. To this end, we use
a publicly available, frozen, off-the-shelf T5-11B
LLM called Entailer (Tafjord et al., 2022). To an-
swer an MC question with this LLM, we score each
answer hypothesis (cs, Section 3.2.1) and select the
one with the highest truth confidence. If Entailer
assigns false values to all answer choices, we select
the hypothesis with the lowest false confidence.

REFLEX then adds a rational layer to this LLM,
creating a new system that is also able to self-reflect
and modify its beliefs. To ensure the different be-
lief graph scores in REFLEX are appropriately cali-
brated, we use nine hyperparameters, tuned once
on the dev partition of EntailmentBank (Dalvi et al.,
2021) and then kept fixed for all experiments. De-
tails are in Appendix B. Note the LLM itself re-
mains frozen, with belief revision occurring in the
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rational (belief graph) layer above it.

Metrics. For measuring self-consistency, we fol-
low Li et al. (2019) and report the conditional con-
straint violation (τ ) metric, defined as follows: the
fraction of rules whose premises p are believed true,
but whose hypothesis h is not. In other words, over
all rules of the form p → h, τ is:

τ =
|{p → h | p = T, h = F}|

|{p → h | p = T}|
where s = T denotes the system believes statement
s to be true (similarly for s = F ). The numerator
of τ thus captures the number of constraints the
system violates. The denominator captures the
number of applicable constraints. We then report
the following metric: consistency = 1 - τ .

For QA performance, we report standard
multiple-choice accuracy: 1 point for predicting
the correct answer, 1/N points for predicting N
answers including the correct one, 1/k points for
no prediction (k = # answer options), 0 otherwise.

4.1 Results
Consistency. Table 1 shows consistency results
on the test partitions of our datasets. We observe
significant consistency gains (by 8%-11% abso-
lute), showing REFLEX’s effectiveness at creating a
consistent belief network within the overall system.

Entail-
System mentBank OBQA Quartz
LLM 87.0 88.2 85.7
LLM + rational layer 96.1 95.9 96.6

(REFLEX)

Table 1: Consistency: By adding a rational layer to the
baseline LLM, REFLEX significantly improves consis-
tency among beliefs by resolving uncovered conflicts.

Accuracy. Table 2 shows overall performance on
our three datasets (test partitions). As can be seen,
we observe stable accuracy, as well as the answers
now being faithful to the reasoning chains in the
belief graph. This is significant, as it allows users
to understand how answers follow from system
beliefs (and in cases where an LLM belief was
flipped, why that belief is untenable in the broader
system).

Ablations. To study the impact of the three dif-
ferent types of rules on consistency improvement,
we using the EntilmentBank dataset (dev partition).

Entail-
System mentBank OBQA Quartz
LLM 79.4 74.0 80.2
LLM + rational layer

79.9 75.0 80.0
(REFLEX)

Table 2: QA accuracy: REFLEX’s belief revision in the
rational layer preserves overall QA accuracy.

To do this, given the belief graph for a question,
we mask out (separately, rather than cumulatively)
each type of rule in turn when providing the graph
to the MaxSAT solver. We then run the constraint
solver and measure the resulting self-consistency
of beliefs on the original graph.

System EntailmentBank
REFLEX (our system): 96.1

- without p → h rules 93.8
- without XOR rules 90.4
- without MC rule 95.8

Table 3: Consistency: Ablations on EntailmentBank
(Dev) suggest that all three types of rules contribute to
improving self-consistency.

The results are shown in Table 3 (the MC rule
is the constraint that exactly one multiple-choice
option should be chosen, Section 3.2.3). The results
indicate that all three types of rules contribute to
the system’s consistency improvements.

4.2 Success Analysis

We identify three classes of successful reasoning
by the constraint reasoner: (a) latent model beliefs
correct an initially wrong answer (Figure 3); (b) the
system corrects an initially erroneous, latent model
belief (Figure 4); and (c) strong model beliefs iden-
tify and reject a bad rule (Figure 5). These types of
system corrections help to improve accuracy and
produce answers supported by valid chains of rea-
soning, allowing users insight into why an answer
follows from the model’s knowledge.

4.3 Failure Analysis

Reasoning can also make mistakes. From a man-
ual analysis of 50 random questions from Entail-
mentBank that REFLEX answered incorrectly, we
identified five main causes of failure and their ap-
proximate frequency (Note that multiple categories
can apply, hence total is > 100%):
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Figure 3: Example of good reasoning: The model’s
beliefs in 1 and 2, and the rule 1 & 2 → 3, as well as
the xor constraint, causes it to (desirably) flip its belief
in 3 from false (grey, before) to true (white, after).

1. Missing Rules (≈30%): In some cases, the
system generates irrelevant rules but misses an im-
portant one needed to support the correct answer,
resulting in incorrect conclusions. While somewhat
subjective, this is a notable error category that we
observe. For example for the question:

A human cannot survive the loss of (A) The liver
[correct] (B) A lung (C) A kidney

the system incorrectly concludes (B) is true, ignor-
ing the commonsense rule that with two lungs, a
person can survive without one of them.

2. Incorrect Beliefs (≈30%): Sometimes the
reasoner fails to correct incorrect model beliefs,
either because the model’s confidence is high or
evidence against them is weak or missing. In the
example shown in Figure 7, the model’s strong,
incorrect beliefs that “river deltas are reservoirs”
and “reservoirs always provide freshwater” (untrue
of oceans, say) causes it to incorrectly conclude
that “deltas are freshwater reservoirs”.

3. Incorrect Rules (≈10%): Rule generation
can produce bad rules, e.g., in Figure 5), and in
some cases the constraint reasoner fails to reject
them if they are strongly believed. In particular,
confusion or ambiguity over quantifiers can result
in bad rules, e.g., (emphasis added) “Some animals
catch their prey with trickery.” & “A spider is a kind
of animal.” → “Spiders catch their prey with trick-
ery.”. Similarly the model generates the fallacy:
“Some people don’t mind not moving for an hour”
& “breathing is a kind of movement” → “Some

Figure 4: Example of good reasoning: Although the
model correctly believes option (A) is false (grey, node
3), this answer conflicts with other beliefs (red). Rea-
soning leads the system to realize that its weakest belief
(2) is actually false, correctly flipping its label from true
(white) to false (grey, right side) restoring consistency.

Figure 5: Example of good reasoning: Here the rea-
soner (desirably) chooses to reject the violated (bad)
rule rather than flip a belief, as the minimum cost way
to restore consistency.

people don’t mind not breathing for an hour.”

4. Ambiguous Statements, Unexpected Reason-
ing (≈10%): A common cause of error is the
surprising ambiguity of belief statements, which
can often be read in multiple ways. In several cases,
the model adopts a valid but unexpected interpre-
tation, resulting in “errors” compared to the gold
answer label. For example, in Figure 6, the model
takes the word “always” in a literal sense (“glaciers
will not always be there”), resulting in an answer
that differs from the gold label. Developing ways
to attach context to these statements to help disam-
biguate them would help alleviate such errors.

5. Multiple Valid Answers (≈10%): A final
cause of “error” - at least with respect to the gold
label - is that multiple answers may be valid, and
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Figure 6: Unexpected reasoning: Here the model unex-
pectedly pays particular attention to the world “always”.
Because it strongly believes that glaciers will not always
be there (1, white), the system prefers to flip its beliefs
in 3 and 4, rather than flipping 1, thus rejecting answer
option B (arguably correctly).

the question is asking for the best answer; eg. for
“What could fill a beach ball? (A) Oxygen (B) Wa-
ter ...”, A is labeled correct, while B is also a valid
answer. REFLEX (desirably) finds valid reasoning
chains for both, but the notion of highest-scoring
proof does not fully correlate with the notion of
“best answer” intended by the question author.

5 Future Work

There are several impactful ways this work could
be further extended. First, incorporating the ques-
tion’s context in the belief statements in our ratio-
nal layer could make the semantics of the beliefs
more precise, thus avoiding potential ambiguity in
their truth value. Second, one could use the belief
graph itself to identify the key reasoning pieces that
the LLM is most uncertain about. This could then
guide a human-in-the-loop mechanism to correct or
validate uncertain pieces via user interaction. Third,
maintaining a persistent belief graph over multiple
questions could help make the system more consis-
tent across questions. This, in turn, would make a
user’s conversational experience with the system
more coherent in a longer dialog setting. Lastly,
after resolving inconsistencies in the rational layer,
we could consider propagating information back to
the LLM layer in order to update it (via fine-tuning,
model editing, memory-based architectures, etc.),

Figure 7: Failure due to bad beliefs: The model
strongly believes both 1 and 2 (although both are factu-
ally incorrect), here causing 3’s label to undesirably flip
from false (correct) to true (incorrect).

helping avoid similar inconsistencies in the future.

6 Conclusion

While LLMs perform well, the interdependencies
between their answers and their other beliefs is
opaque, and may even be in conflict. This lack
of interpretability is a significant impediment to
widespread use of LLMs. To reduce this opac-
ity, and reduce these conflicts, we have proposed
REFLEX, a new system architecture in which an
explicit, interpretable representation of beliefs - the
belief graph - is added as a rational layer above
the LLM. This layer providing a window into sys-
tem beliefs, and allows latent inconsistencies in the
LLM alone to reasoned about and repaired. Our im-
plementation shows that belief consistency of the
overall system is significantly improved, without
harming answer accuracy, resulting in answers sup-
ported by interpretable chains of reasoning drawn
from a more consistent belief system. This new
architecture is an important step towards improv-
ing confidence in system behavior, and towards
trustable deployment of LLMs in practical applica-
tions.

Limitations

We have shown how an LLM can be extended with
a self-reflective component, allowing latent model
knowledge to be made explicit in the form of a
belief graph, providing a window into the model’s
system of beliefs. While exciting, there are several
limitations with the current work and opportunities
for the future.

First, the reasoning component in the rational
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layer can make mistakes, resulting in the overall
system rejecting true statements or accepting false
ones. A detailed analysis and classification of these
failure modes was presented in Section 4.3.

Second, for our experiments, we used the T5-
11B based Entailer system as the baseline LLM.
While there is every reason to expect our pro-
posed architecture to be effective in reducing in-
consistency with newer and larger LLMs such as
ChatGPT and LLaMA, this is still to be evalu-
ated. Doing so would require implementing the
basic operations needed to construct belief graphs
(Section 3.2.1) using instruction prompting and in-
context learning. Other work has demonstrated
such implementations (e.g., Wei et al., 2022; Jiang
et al., 2020), making the outlook promising, but
indeed their combination still needs to be demon-
strated at scale in an architecture like REFLEX.

Lastly, we found consistency-minimized belief
graphs to be highly valuable in understanding the
system’s successes and failures. We expect these
graphs to be a valuable starting point for provid-
ing explanations and gaining a user’s trust in the
system. However, we have not conducted a formal
user study to measure this.

Ethics Statement

Like any other project using LLMs, despite the
best intentions there is a risk of the model produc-
ing biased or offensive statements as part of its
explanations, and thus must be used with care and
appropriate guards and warnings.
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A Additional Results

We report results on the dev set of the Entailment-
Bank dataset in Table A1.

System EntailmentBank (dev)
Consistency Accuracy

LLM 87.5 78.6
LLM + rational layer 96.1 81.8

(REFLEX)

Table A1: Results on EntailmentBank (dev), used to
tune the system’s hyperparameters.

B Hyperparameters and Runtime

MaxSAT finds the optimal assignment of true/false
labels on statement nodes that minimizes the total
penalty of constraint violations. If the true/false la-
bel on a statement node is flipped, then the penalty
is the model confidence cs in the original label.
Similarly if a rule (constraint) is violated by the
true/false labels on its associated statements, then
the penalty is the model confidence cr in that rule.

We set a number of hyperparameters to ensure
that the various sources of confidence are appropri-
ately balanced, and tune these on a development set
(EntailmentBank (dev) which is separate from our
test sets). We use the same set of hyperparameters
for all test sets.

1. As raw model confidences cs are highly
skewed towards 0 and 1, we re-calibrate these
with ek.(cs−1), where k is a fixed hyperparam-
eter. Note, that for the MC and XOR rule, the
raw input score s is 1.0.

2. We calibrate rule confidences in the same way
as we calibrate belief confidences but use sep-
arate calibration parameters different types of
rules namely:

• Entailer rules p → h
• XOR rules
• MC rules

i.e., the raw rule score c is re-calibrated to
confidence ektype.(c−1) where ktype is the re-
spective hyperparameter per rule type.

3. We set three hyperparameters tuning the re-
spective importance of the three different
types of rules. Therefore, the final rule score
is computed by c = ttype ∗ ektype.(c−1) where
ttype is the respective hyperparameter constant
per rule type.

4. For xor rules between statements si and negsi,

Hyperparameter Value
k 9
kentailer 36
kxor 30
kmc 9
tentailer 1.02
txor 1.1
tmc 0.98
mxor 0.3
dmax 5

Table B1: Hyperparameters.

we remove (ignore) those where there is signif-
icant uncertainty, namely where |score(si)−
score(negsi)| ≤ mxor, where mxor is a
tuned hyperparmeter.

5. Additionally, we tune a damping parameter
that downscales rules on the boundary of the
graph. Belief nodes involved in these rules
are not supported by any premises and should
therefore have less influence than rules with
strong support.

6. Finally, we tune the maximum depth dmax of
the belief graph.

The performance on this dev set partition is
shown in Table A1 and the hyperparameter values
are shown in Table B1.

The runtime for MaxSAT constraint solving is
fast (<1 millisecond per question). However, con-
structing the belief graph is computationally in-
tensive: Each call to expand or score a node takes
∼2 seconds, and our graphs typically contain ∼600
nodes, so if these calls were maximally parallelized,
with each step growing the graph one level deeper,
the runtime would be the maximum graph depth
(5) x 2 seconds = ∼10 seconds total (or several
minutes if a naive sequential implementation were
used).
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