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Abstract

Weakly-supervised text classification trains a
classifier using the label name of each target
class as the only supervision, which largely
reduces human annotation efforts. Most exist-
ing methods first use the label names as static
keyword-based features to generate pseudo la-
bels, which are then used for final classifier
training. While reasonable, such a commonly
adopted framework suffers from two limita-
tions: (1) keywords can have different mean-
ings in different contexts and some texts may
not explicitly contain any keyword, so key-
word matching can induce noisy and inade-
quate pseudo labels; (2) the errors made in
the pseudo label generation stage will directly
propagate to the classifier training stage with-
out a chance of being corrected. In this paper,
we propose a new method, PIEClass, consist-
ing of two modules: (1) a pseudo label ac-
quisition module that uses zero-shot prompt-
ing of pre-trained language models (PLM) to
get pseudo labels based on contextualized text
understanding beyond static keyword match-
ing, and (2) a noise-robust iterative ensemble
training module that iteratively trains classi-
fiers and updates pseudo labels by utilizing
two PLM fine-tuning methods that regularize
each other. Extensive experiments show that
PIEClass achieves overall better performance
than existing strong baselines on seven bench-
mark datasets and even achieves similar perfor-
mance to fully-supervised classifiers on senti-
ment classification tasks.'

1 Introduction

Text classification is a fundamental NLP task with
a wide range of downstream applications, such as
question answering (Rajpurkar et al., 2016), sen-
timent analysis (Tang et al., 2015), and event de-
tection (Zhang et al., 2022c¢). Earlier studies train

'Code can be found at https://github.com/yzhan238/
PIEClass.

text classifiers in a fully-supervised manner that re-
quires a substantial amount of training data (Zhang
et al., 2015; Yang et al., 2016), which are generally
costly to obtain. To eliminate the need for labeled
training samples, weakly-supervised text classifica-
tion settings (Meng et al., 2018, 2020; Wang et al.,
2021) are proposed, which aim to train text clas-
sifiers using the label names of target classes as
the only supervision. Such settings are intriguing
especially when obtaining high-quality labels is
prohibitively expensive.

Recent advancements in large generative lan-
guage models (LLMs) (e.g., ChatGPT, GPT-4 (Ope-
nAl, 2023)) make it a valid approach to directly
prompt them in a zero-shot manner for text classifi-
cation without labeled data. For example, people
may provide a restaurant review and ask an LLM
“What is the sentiment of this document?”’, and the
model will generate an answer according to its un-
derstanding. However, there are certain limitations
of this method for the weakly-supervised text clas-
sification setting. First, directly prompting LLMs
cannot utilize any domain-specific information hid-
den in the unlabeled data, because it is intractable
to fine-tune such a large model and the prompts
can hardly incorporate any corpus-level informa-
tion, especially for corpora not appearing in LLMs’
pre-training data (e.g., private domains). Second,
deploying LLMs is expensive, while many text
classification applications require fast real-time in-
ference (e.g., email and review classification).

Another line of studies tailored for weakly-
supervised text classification aims to train a
moderate-size classifier with a task-specific unla-
beled corpus. Given the label names, these meth-
ods first acquire class-indicative keywords using
PLMs (Meng et al., 2020; Wang et al., 2021) or
corpus-level co-occurrence features (Zhang et al.,
2021, 2022b). The keywords are then used as
static features to generate pseudo-labeled docu-
ments for fine-tuning the final classifier. De-
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spite their promising performance, the aforemen-
tioned weakly-supervised methods may suffer from
two major limitations. First, these methods are
keyword-driven by using class-indicative keywords
as static context-free features to generate pseudo
labels with different forms of string matching.
However, some texts may not contain such class-
indicative keywords and keywords may have differ-
ent meanings in different contexts, so using them
as static features can lead to noisy and inadequate
pseudo labels. Such an issue is more serious for
abstract classes like sentiments that require under-
standing rhetoric. For example, a food review “It
is to die for!” contains the keyword “die” which
itself is negative, but the entire review expresses
a strong positive sentiment, and keyword-driven
methods will likely struggle in these cases. Second,
most existing methods are two-stage by conducting
pseudo label acquisition and text classifier train-
ing in two successive steps. Although different
pseudo label acquisition methods are explored to
improve their quality (e.g., masked language mod-
eling (Meng et al., 2020), clustering of PLM em-
beddings (Wang et al., 2021), or large textual entail-
ment models trained with external data (Park and
Lee, 2022)), there is still a large performance gap
between weakly-supervised and fully-supervised
settings, because erroneous pseudo labels in the
first stage will propagate to and harm the classifier
training stage without a chance to be corrected.

To address the limitations of existing works,
in this paper, we propose PIEClass: Prompting
and Iterative Ensemble Training for Weakly-
Supervised Text Classification. PIEClass consists
of two modules. (1) Pseudo label acquisition via
PLM prompting. By designing a task-specific
prompt, we can apply a moderate-size PLM to
infer the class label of documents based on the
entire input sequence, which is thus contextualized
and beyond static keyword features. In this work,
besides the well-studied prompting method using
PLMs pre-trained with the masked language mod-
eling task (MLM) (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)), we also explore a dif-
ferent prompting method for a discriminative pre-
trained language model, ELECTRA (Clark et al.,
2020), and compare them in the experiments. (2)
Noise-robust training with iterative ensemble. In
each iteration, we train text classifiers using the
current pseudo labels and then use the confident
predictions to re-select the pseudo labels. In this

way, we can gradually expand the pseudo labels
which can be used to train better text classifiers.
To avoid erroneous pseudo labels accumulated dur-
ing the iterative process, we propose to utilize two
PLM fine-tuning strategies, head token fine-tuning
and prompt-based fine-tuning, as two complemen-
tary views of the data: One captures the semantics
of the entire sequence while the other interprets
the contexts based on the prompts. We use the two
views to regularize each other and further apply
model ensemble to improve the noise robustness of
the pseudo label expansion process.

To summarize, the contributions of this paper
are as follows: (1) We propose to use the contextu-
alization power of PLM prompting to get pseudo
labels for the weakly-supervised text classification
task instead of static keyword-based features. (2)
We explore the prompting method of a discrimina-
tive PLM on the text classification task and com-
pare it with prompting methods for MLM. (3) We
propose a noise-robust iterative ensemble training
method. To deal with noisy pseudo labels, we uti-
lize two PLM fine-tuning strategies that regular-
ize each other and apply model ensemble to en-
hance the pseudo label quality. (4) On seven bench-
mark datasets, PIEClass overall performs better
than strong baselines and even achieves similar
performance to fully-supervised methods.

2 Problem Definition

The weakly-supervised text classification task aims
to train a text classifier using label names as the
only supervision. Formally, given a set of doc-
uments D = {d,...,d,} and m target classes
C = {ci,...,cn} with their associated label
names [(c), our goal is to train a text classifier F’
that can classify a document into one of the classes.
For example, we may classify a collection of news
articles using the label names “politics”, “sports”,
and “technology”. Notice that, there are previous
studies using more than one topic-indicative key-
word or a few labeled documents as supervision,
whereas here, we follow the extremely weak super-
vision setting (Wang et al., 2021) and only use the
sole surface name of each class as supervision.

3 Methodology

To address the limitations of existing methods for
weakly-supervised text classification, we introduce
our method, PIEClIass, in this section, which con-
tains two major modules: (1) zero-shot prompting
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Figure 1: Examples of different fine-tuning strategies on the text classification task. (left) Head token fine-tuning
randomly initializes a linear classification head and directly predicts class distribution using the [CLS] token, which
needs a substantial amount of training data. (middle) Prompt-based fine-tuning for MLM-based PLM converts the
document into the masked token prediction problem by reusing the pre-trained MLM head. (right) Prompt-based
fine-tuning for ELECTRA-style PLM converts documents into the replaced token detection problem by reusing the
pre-trained discriminative head. Given a document, one input sequence is constructed for each label name.

for pseudo label acquisition and (2) noise-robust
training with iterative ensemble. Figure 2 shows
an overview of PIEClass.

3.1 Zero-Shot Prompting for Pseudo Label
Acquisition

Most existing weakly-supervised text classification
methods use a set of static class-indicative key-
words to assign pseudo labels to unlabeled docu-
ments based on either direct string matching (Meng
et al., 2018) or static class embeddings (Wang
et al., 2021). However, keywords can only pro-
vide limited supervision with low coverage, given
that most of the documents do not contain any class-
indicative keywords. Also, a document containing
keywords does not necessarily indicate that it be-
longs to the corresponding class because the key-
words can mean differently in different contexts.
Such issues are more serious for abstract classes
that involve more rhetoric, such as sentiment clas-
sification. For example, a food review “It is to die
for!” does not have any single keyword indicating
the positive sentiment and even contains the word
“die” that seems negative, but we can still infer its
strong positive sentiment based on our contextual-
ized text understanding beyond static keywords.
To tackle the problem of existing methods and
acquire pseudo labels beyond context-free keyword
features, we propose to apply zero-shot prompting
of PLMs. The prompt-based method aims to close
the gap between the pre-training task of PLM and
its downstream applications, so we can directly use
a pre-trained but not fine-tuned PLM with prompts
to get high-quality pseudo labels for the text classi-
fication task. Also, prompting the PLM guides it to
understand the entire context, and thus its predic-
tions are contextualized. Figure 1 (left and middle)

shows examples of standard head token fine-tuning
and the popular prompting method for MLM.

Besides utilizing the MLM-based prompting
method, in this work, we propose to exploit a dis-
criminative PLM, ELECTRA (Clark et al., 2020),
for zero-shot prompting. During pre-training,
ELECTRA uses an auxiliary model to generate
training signals and trains the main model to de-
noise it. More specifically, a small Transformer
model called a “generator” is trained with masked
language modeling to replace the randomly masked
tokens of the input text, and then the main Trans-
former model called a “discriminator” is trained to
predict whether each token in the corrupted exam-
ple is original or replaced by the generator (Clark
et al., 2020).

Recent studies have shown the potential of
ELECTRA in prompt-based methods (Xia et al.,
2022; Yao et al., 2022; Li et al., 2022). Figure 1
(right) shows an example. To generalize the us-
age of ELECTRA-based prompting to weakly-
supervised text classification, we can fill in a tem-
plate 7ELECTRA with a document d and one of the
label names [(c). The template is designed in a way
that the correct label name should be the “original”
token of this constructed input while the wrong
ones are “replaced”. Take the sentiment classifica-
tion task as an example. If we want to classify
whether a restaurant review d expresses a posi-
tive or negative sentiment given their label names
“good” and “bad”, we can construct the following
two input sequences to ELECTRA,

TEECTRA(d, good) = d It was good.
TELECTRA (4 bad) = d It was bad.

The constructed inputs are individually fed into a
pre-trained ELECTRA discriminator and its dis-
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Figure 2: Overview of the PIEClass framework.

criminative classification head f to get the proba-
bility of being original for each label name,
p(i(c)\d) = Sigmoid(f (b)), )
where h'(°) is the contextualized representation of
the label name [(c) in this context. The confidence
of document d belonging to a class c is the normal-
ized probability,
p((0)]d)
D= S eI
After getting the predictions for all the documents
in D, we take the top t° percentage of the docu-
ments with the highest confidence scores as our
initial pseudo label pool PV.

2

3.2 Noise-Robust Training with Iterative
Ensemble

With the initial pseudo labels, existing methods di-
rectly fine-tune (using the head token) a text classi-
fier with such labels to get the final classifier. How-
ever, since the pseudo labels are noisy with typical
noise ratios ranging from 15% to 50% (Mekala
et al., 2022), the performance of the final classifier
is limited by the quality of pseudo labels, lead-
ing to a large performance gap between weakly-
supervised and fully-supervised settings. There-
fore, inspired by the self-training method for semi-
supervised learning, we propose to iteratively train
a text classifier and use its confident predictions to
find more high-quality pseudo labels, which can
help to train an even better classifier.

However, unlike semi-supervised settings where
the initial labels are perfect, here we only have
noisy pseudo labels P° from the last step. When
we train a text classifier with noisy data as su-
pervision, the classifier will likely predict those

wrongly labeled samples wrong with high confi-
dence again. Therefore, if we strictly follow the
standard self-training method, the noise will stay
and accumulate in the pseudo label pool. To tackle
such a challenge, we propose an iterative ensem-
ble training method with two types of ensemble
to ensure the quality of pseudo labels. First, we
utilize two PLM fine-tuning methods, head token
and prompt-based fine-tuning, to train classifiers
individually in each iteration. Here, the head to-
ken fine-tuning behaves like a sequence-level view
of documents by capturing the information of the
entire input document, while prompt-based fine-
tuning serves as a foken-level view by focusing
more on the context surrounding the label name (or
masked token if using MLM) in the prompt. The
two views can complement each other to better ex-
ploit the power of PLMs. Second, since the prompt-
based method converts the downstream task into
the same form as the pre-training task and reuses
the pre-trained classification head, it only requires
a small amount of data to achieve competitive per-
formance with head token fine-tuning. This al-
lows us to further apply model ensemble by fine-
tuning multiple individual prompt-based classifiers
to further improve the noise-robust (Laine and Aila,
2017; Meng et al., 2021). Finally, in each iteration,
we freshly initialize the classifiers with pre-trained
weights, re-select all the pseudo labels, and only
keep the top predictions agreed upon by all the
classifiers to ensure the quality. Our idea shares
a similar spirit as co-training (Blum and Mitchell,
1998). The major difference is that standard co-
training learns from initial clean data and utilizes
two data views to progressively label unlabeled
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data, whereas our method does not have access to
annotated training data but instead uses two data
views as regularization along with model ensem-
ble to improve model’s noise-robustness trained on
pseudo-labeled data.

Specifically, for iteration ¢, we first use the head
token to fine-tune a text classifier, Fé : D — C,
using the current pseudo labels P*~! in a fully-
supervised way. After training, we use the classi-
fier to make a prediction on each document to get
(dj, Fi(d;)) and a confidence score cf(d;) which
is the normalized probability of prediction F{i(d;).
Then, we will rank the predictions based on their
confidence scores and select the top ¢; percentage
of them whose confidence scores are greater than
a threshold p as candidate pseudo labels 778. The
threshold ¢; is linearly increasing with iteration
numbers, t; = ¢ - s, where s is a hyperparameter.
We use an increasing threshold because if we keep
the threshold constant, the pseudo samples in the
last iteration will be predicted confidently again,
making the pseudo samples almost the same in the
iterative process and the classifiers overfit more to
the limited number of pseudo samples 2.

Because 738 can be noisy, we then utilize prompt-
based fine-tuning as a second view to improve the
quality of pseudo labels. We randomly sample r
subsets of P, Sy, each of size ¢ - |Pg|, ¢ € (0,1)
and fine-tune r classifiers F{, k € {1,...,r},
using prompt-based fine-tuning. With a small
sampling ratio g, the noisy labels are unlikely to
be sampled repeatedly into different subsets, so
this sampling process will further improve the
noise robustness of model ensemble. To fine-tune
ELECTRA-style PLMs using prompts, each data
sample d will have |C| individual input sequences
{TELECTRA (4 1(c)) }eec, and the target class Fi(d)
should be predicted as “original” while all the oth-
ers “replaced”. The model is trained with binary
cross entropy loss

£ = = S (log p(Fo (d)d) +
de Sy
3)
Z log (1 — p(c’|d)) )
o AT (d)

After training, we follow the same process as the
classifier F{; to select the top ¢; percentage of most
confident predictions by each classifier F; ,g as can-
didate pseudo labels P,i. Finally, we take the in-
tersection of all the candidate pseudo labels as the
final pseudo label pool for this iteration,

2See Appx C.4 for some empirical results.

Algorithm 1: PIEClass

Input: A corpus D; a set of classes C and their label
names [(c), ¢ € C; a pre-trained language
model E; a template 7 for prompting.

Output: A text classifier F' for classes C.

1 // Zero-Shot Prompting for Pseudo Label Acquisition;

2 ford € Ddo

3 for c € C do

4 T(d,l(c)) < Construct input with the
template;

5 p(l(c)|d) < Prompt E with Eq. (1);

6 | pleld) - Eq. 2);

7 P « top t° percentage of predictions;

8 // Noise-Robust Training with Iterative Ensemble;

9 fori < 1107 do

10 F¢ + Head token fine-tuning using P*~1;

1 P¢ <« Select top t; predictions by Fy;

12 S + Randomly sample r subsets of P¢;

13 for S, € Sdo

14 F} « Prompt-based fine-tuning using Si;

15 P « Select top t; percentage by Fy;

16 P « Eq. (4);
17 F < Head token fine-tuning using P7;

18 Return F;
Table 1: Datasets overview.
Dataset Classification Type #Docs  # Classes
AGNews News Topic 120,000 4
20News News Topic 17,871 5
NYT-Topics News Topic 31,997 9
NYT-Fine News Topic 13,081 26
Yelp Business Review Sentiment 38,000 2
IMDB Movie Review Sentiment 50,000 2
Amazon Product Review Sentiment 3,600,000 2
r
Pl =) Pi. )
k=0

The intersection operation can be interpreted as
follows: a document and its assigned class belong
to P? only when it is consistently predicted as the
same class and its confidence is ranked top ¢;% by
all the classifiers F{. Therefore, we can ensure
to include only those most confident ones into the
pseudo label pool to alleviate the error accumula-
tion problem. The less confident predictions of the
current iteration will only be left out for the current
iteration, but will be re-examined in later iterations
and added to pseudo labels if it is qualified.

Finally, we will repeat this iterative process by T'
full iterations to get the last pseudo label pool PT.
It will then be used for head token fine-tuning of the
classifier at iteration 7' + 1 which will be the final
classifier of PIEClass. Algorithm 1 summarizes
the entire framework.

4 Experiments

4.1 Experiment Setup
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Table 2: Performance of all compared methods measured by Micro-F1/Macro-F1, with the best score boldfaced
and the second best score underlined. T We re-run ClassKG with its official implementation using only the label
names for a fair comparison. Other baseline results come from (Meng et al., 2020) and (Wang et al., 2021) with
missing values marked as -. ¥ The results are influenced by RoOBERTa’s tokenizer.

Methods AGNews 20News NYT-Topics NYT-Fine Yelp IMDB Amazon
WeSTClass 0.823/0.821 0.713/0.699  0.683/0.570  0.739/0.651 0.816/0.816 0.774/- 0.753/-
ConWea 0.746/0.742  0.757/0.733  0.817/0.715  0.762/0.698 0.714/0.712 /- /-
LOTClass 0.869/0.868  0.738/0.725  0.671/0.436  0.150/0.202 0.878/0.877  0.865/- 0.916/-
XClass 0.857/0.857  0.786/0.778  0.790/0.686  0.857/0.674 0.900/0.900 -/- -/-
ClassKG' 0.881/0.881 0.811/0.820  0.721/0.658 0.889/0.705 0.918/0.918 0.888/0.888  0.926/-
RoBERTa (0-shot) 0.581/0.529  0.507/0.445%  0.544/0.382 -4 0.812/0.808  0.784/0.780  0.788/0.783
ELECTRA (0-shot) 0.810/0.806  0.558/0.529  0.739/0.613  0.765/0.619 0.820/0.820 0.803/0.802 0.802/0.801
PIEClass
ELECTRA+BERT 0.884/0.884  0.789/0.791  0.807/0.710  0.898/0.732 0.919/0.919 0.905/0.905 0.858/0.858
RoBERTa+RoBERTa 0.895/0.895  0.755/0.760%  0.760/0.694 - 0.920/0.920 0.906/0.906 0.912/0.912
ELECTRA+ELECTRA 0.884/0.884 0.816/0.817  0.832/0.763 0.910/0.776 0.957/0.957 0.931/0.931 0.937/0.937
Fully-Supervised 0.940/0.940  0.965/0.964  0.943/0.899  0.980/0.966 0.957/0.957  0.945/- 0.972/-
Datasets We use 7 publicly available benchmark Run Time on 20News
datasets for the weakly-supervised text classifica- XClass [10.7hr
tion task. Four for news topic classification: AG- LSIEE:E‘SS 1h'3h
ass r
News (Zhang .et al.., 2015), 20News (Lang: 1995), ClassKG 30hr
and NYT-Topics (imbalanced) and NYT-Fine (im- 0 10 20 30

balanced and fine-grained) (Sandhaus, 2008); three
for sentiment classification: Yelp (Zhang et al.,
2015), IMDB (Maas et al., 2011), and Ama-
zon (McAuley and Leskovec, 2013). Table 1 shows
the data statistics, and Table 4 in the Appendix
shows the label names and prompt used for each
dataset. We follow previous works to use Micro-
F1/Macro-F1 as the evaluation metrics.

Compared Methods We compare the following
methods on the weakly-supervised text classifica-
tion task: seed-driven methods WeSTClass (Meng
et al., 2018) and ConWea (Mekala and Shang,
2020), which take at least three keywords for each
class as input; LOTClass (Meng et al., 2020),
XClass (Wang et al., 2021), and ClassKG (Zhang
et al., 2021) that only take label names as supervi-
sion; two zero-shot prompting baselines ROBERTa
(0-shot) and ELECTRA (0-shot); and a Fully-
Supervised BERT baseline as a reference. See
more details of compared methods in Appx B.2.
We include three versions of PIEClass with differ-
ent combinations of backbone PLMs:

* ELECTRA+BERT uses ELECTRA for prompt-
ing and BERT for head token fine-tuning for a
fair comparison with baselines using BERT for
final classifier training.

* RoBERTa+RoBERTa uses RoBERTa as back-
bone models for the entire framework to compare
with baselines using only MLM-based PLM.

Figure 3: Run time (in hours) on 20News. ClassKG
takes much longer time than other methods.

e ELECTRA+ELECTRA uses ELECTRA as
backbone models for the entire framework.

The implementation details of PIEClass are in
Appx B.3.

4.2 Experimental Results

Table 2 shows the evaluation results of all methods.
PIEClass overall achieves better performance than
the compared baselines. It even achieves similar
results to the fully-supervised baseline on Yelp and
IMDB. We can observe that: (1) ELECTRA+BERT
model already outperforms most of the baselines
that also use BERT to fine-tune their final clas-
sifiers, which shows the effectiveness of our pro-
posed method. (2) ClassKG as an iterative method
is the strongest keyword-driven baseline and even
achieves better results on 20News than PIEClass.
However, it takes a drastically longer time to run.
Figure 3 shows the run time on 20News. ClassKG
takes more than 30 hours while PIEClass takes
only 3 hours to achieve similar results. (3) ELEC-
TRA (0-shot) already achieves comparable results
to some simple baselines, confirming our idea that
using contextualized text understanding can lead
to high-quality pseudo labels. Although RoBERTa
(0-shot) does not perform well on AGNews, af-
ter the iterative classifier training process, the full
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Table 3: Performance of PIEClass (ELECTRA+ELECTRA) and its ablations measured by Micro-F1/Macro-F1.

Methods AGNews 20News NYT-Topics NYT-Fine Yelp IMDB Amazon

Two-Stage 0.847/0.847 0.739/0.733  0.776/0.664 0.838/0.678 0.913/0.913 0.870/0.870 0.836/0.835
Single-View ST 0.871/0.871 0.736/0.737  0.757/0.668  0.853/0.695 0.912/0.912 0.846/0.846 0.892/0.892
Co-Training 0.877/0.877 0.795/0.791 0.818/0.715 0.877/0.744 0.948/0.948 0.925/0.925 0.930/0.930
PIEClass 0.884/0.884 0.816/0.817 0.832/0.763 0.910/0.776 0.957/0.957 0.931/0.931 0.937/0.937

model achieves the best performance, demonstrat-
ing the effectiveness of the iterative process of
PIEClass. (4) ELECTRA overall performs better
than RoBERTa, especially on the sentiment classi-
fication task. Also, ROBERTa’s performance can
be affected by its tokenizer: in 20News, the label
name “religion” is separated into two tokens, so
we have to use a sub-optimal label name; half of
NYT-Fine’s label names are tokenized into multi-
ple pieces, so we do not report the performance.
To explain why PIEClass can achieve similar
performance to the fully-supervised method, we
find that there are some errors in the ground truth
labels which could affect the performance of fully-
supervised model if used as training data. For
example, the following review in Yelp is labeled
as negative but predicted as positive by PIEClass:
“My husband had an omelette that was good. I had
a BLT, a little on the small side for $10, but bacon
was great. Our server was awesome!”. Because
PIEClass only includes the most confident predic-
tions as pseudo labels, it can ensure the quality of
its training samples to make the correct prediction.

4.3 Ablation Study

To study the effects of each proposed component of
PIEClass, we further compare our full model with
its three ablations:

* Two-Stage is a two-stage version of PIEClass
which directly trains the final text classifier using
the pseudo labels from zero-shot prompting.

 Single-View ST (Self-Training) does not uti-
lize prompt-based fine-tuning as a second view
during the iterative process. It thus follows a
standard self-training method by using the con-
fident predictions of the head token classifier as
the updated pseudo labels for the next iteration.

* Co-Training uses the two views of data (i.e.,
two PLM fine-tuning strategies) to update the
pseudo labels in turn with their confident predic-
tions, while in PIEClass the two views are used
to regularize each other.

All the compared methods are based on the ELEC-

TRA+ELECTRA version of PIEClass with the

same hyperparameters as described in Appx B.3.

Table 3 shows the performance of PIEClass and
its ablations on seven datasets. We can observe
that: (1) our full model PIEClass consistently out-
performs all of its ablations, showing the effective-
ness of each ablated component. (2) By removing
the iterative pseudo label expansion process, the
Two-Stage model performs worse than PIEClass,
meaning that the erroneous pseudo labels in the first
stage will affect the final classifier training if not
corrected. However, the Two-Stage version already
achieves comparable results to strong keyword-
driven baselines, which shows the power of zero-
shot PLM prompting on the text classification task.
(3) The Single-View ST model performs similarly
to the Two-Stage model and sometimes even worse.
This proves that, with the noisy pseudo labels, the
standard self-training strategy can cause the error
accumulation problem and harm the classifier train-
ing. (4) The Co-Training model performs much
better than the previous two ablations, meaning
that utilizing two PLM fine-tuning methods as two
views of data can improve the pseudo label qual-
ity. However, it still performs worse than PIEClass,
showing that using two views to regularize each
other can further improve the noise robustness.

To show the effectiveness of our pseudo la-
bel generation and selection, we also compare
PIEClass with vanilla few-shot classifiers on AG-
News and IMDB. While PIEClass does not need
any label, we find that around 500 to 1,000 labels
are needed for the few-shot classifiers to achieve
similar performance as PIEClass. More details are
described in Appx C.1.

4.4 Study of the Iterative Process

To study the iterative process of PIEClass, we show
the performance of PIEClass and its Single-View
Self-Training ablation when varying the number
of full iterations from 1 to 5 in Figure 4. From
the figure, we can see that, although Single-View
Self-Training may perform better than PIEClass
when the quantity of pseudo labels is small at the
beginning, after five iterations, PIEClass consis-

12661



20News Yelp

—— PIEClass
Single-View ST

0.80 0.95 Single-View ST
= z /
vg 0.75 g 0.90 e———
= =
Ni 5

—— PIEClass

—

0.65 0.80
P 3 3 1 5 1 3 3 1 5

Number of full iterations Number of full iterations

Figure 4: Performance of PIEClass and Single-View ST
across varying numbers of full iterations.
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Figure 5: Quantities and qualities of the pseudo labels
at each iteration of PIEClass and Single-View ST on
Yelp. Each bar shows the portion of correct and wrong
pseudo labels to the entire corpus D, and the line shows
the quality (accuracy) of pseudo labels.

tently outperforms it. The reason is that the quality
of pseudo labels becomes more crucial when the
number of pseudo labels increases. Therefore, the
performance of Single-View Self-Training does not
increase much during the iterative process due to
its error accumulation problem, while the perfor-
mance of PIEClass is increasing much faster. For
efficiency, we set the number of iterations to 5 or
3 except for 20News, but running more iterations
may further improve the results.

Figure 5 shows the quantity and quality of the
pseudo labels at each iteration by PIEClass and
Single-View ST on Yelp. The bars represent the per-
centage of correct and wrong pseudo labels to the
entire corpus D, and the lines are their quality mea-
sured by accuracy (the number of correct pseudo
labels over the total number of pseudo labels). We
can observe that, Single-View ST progressively in-
creases the number of pseudo labels but the quality
of pseudo labels drops quickly, while PIEClass can
keep the quality of pseudo labels during the expan-
sion process. The number of pseudo labels does not
increase much in the last two iterations, because
PIEClass does not blindly expand the pseudo labels
with potential errors. By utilizing two PLM fine-
tuning methods and model ensemble, PIEClass
only includes the most confident pseudo labels to
ensure the quality, which contributes to its superior
performance. More results are in Appx C.5.

5 Related Work

Weakly-Supervised Text Classification
Weakly-supervised text classification aims
to train a classifier with very limited supervision.
Earlier studies utilize distant supervision from
knowledge bases such as Wikipedia to interpret the
document-label semantic relevance (Gabrilovich
and Markovitch, 2007; Chang et al., 2008; Song
and Roth, 2014). Some other supervision signals
such as keywords (Agichtein and Gravano, 2000;
Tao et al., 2018; Meng et al., 2018, 2020; Wang
et al., 2021; Zhang et al., 2021) and heuristic
rules (Ratner et al., 2016; Badene et al., 2019;
Shu et al., 2020) are also explored to reduce the
efforts of acquiring any labels or domain-specific
data. Recently, the extremely weakly-supervised
settings, where only the label name of each class
is utilized as supervision, are studied and achieve
inspiring results (Meng et al., 2020; Mekala and
Shang, 2020; Wang et al., 2021; Zhang et al.,
2021). LOTClass (Meng et al., 2020) fine-tunes
an MLM-based PLM for category prediction
and generalizes the model with self-training.
ConWea (Mekala and Shang, 2020) leverages
seed words and contextualized embeddings
to disambiguate the keywords for each class.
XClass (Wang et al., 2021) utilizes keywords
to obtain static representations of classes and
documents and generates pseudo labels by
clustering. ClassKG (Zhang et al., 2021) learns
the correlation between keywords by training
a GNN over a keyword co-occurrence graph.
However, these methods only depend on static
keyword features, leading to noisy pseudo-labeled
documents for classifier training. LOPS (Mekala
et al., 2022) studies the order of pseudo label
selection with learning-based confidence scores.
A concurrent work MEGClass (Kargupta et al.,
2023) studies how different text granularities can
mutually enhance each other for document-level
classification.

Data programming is another line of work on
weak supervision. These methods either require do-
main knowledge to provide heuristic rules (Chatter-
jee et al., 2018) or some labeled samples to induce
labeling functions (Varma and Ré, 2018; Pryzant
et al., 2022), or both (Maheshwari et al., 2021,
2022; Awasthi et al., 2020). In this paper, we fo-
cus on training text classifiers with extremely weak
supervision, i.e., using only the label names as su-
pervision, so we do not compare with data program-
ming methods that require additional knowledge
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like textual patterns and keyword lists (Ren et al.,
2020).

Prompt-Based Learning PLMs (Devlin et al.,
2019; Radford et al., 2019; Liu et al., 2019) have
shown superior performance on various down-
stream tasks through fine-tuning with task-specific
data. Some papers show that PLMs can learn
generic knowledge during the pre-training stage
and design cloze-style prompts to directly probe
its knowledge without fine-tuning (Petroni et al.,
2019; Davison et al., 2019; Zhang et al., 2020).
Later, task-specific prompts are used to guide PLM
fine-tuning and perform well in a low-resource
setting for several tasks, such as text classifica-
tion (Han et al., 2021; Hu et al., 2022), relation ex-
traction (Chen et al., 2022), and entity typing (Ding
et al., 2021; Huang et al., 2022). Recent works use
prompts for keyword or rule discovery (Zeng et al.,
2022; Zhang et al., 2022a) or directly prompt large
PLMs for weak supervision (Smith et al., 2022). To
mitigate the human efforts in prompt engineering,
researchers also study automatic methods includ-
ing prompt search (Shin et al., 2020; Gao et al.,
2021) and prompt generation (Guo et al., 2022;
Deng et al., 2022). Soft prompts are also proposed
by tuning some randomly initialized vectors to-
gether with the input (Zhong et al., 2021; Li and
Liang, 2021; Lester et al., 2021). Lang et al. (2022)
also shows that the co-training method can ben-
efit prompt-based learning in a few-shot setting.
Besides standard prompting methods for MLM-
based PLMs, prompting methods for discrimina-
tive PLMs are also studied on few-shot tasks (Xia
et al., 2022; Yao et al., 2022; Li et al., 2022).

6 Conclusion and Future Work

In this paper, we study the task of weakly-
supervised text classification that trains a classi-
fier using the label names of target classes as the
only supervision. To overcome the limitations
of existing keyword-driven methods, we propose
PIEClass which consists of two modules: (1) an
initial pseudo label acquisition module using zero-
shot PLM prompting that assigns pseudo labels
based on contextualized text understanding, and (2)
a noise-robust iterative ensemble training module
that utilizes two PLM fine-tuning methods with
model ensemble to expand pseudo labels while en-
suring the quality. Extensive experiments show that
PIEClass can achieve overall better performance
than strong baselines, especially on the sentiment

classification task where PIEClass achieves similar
performance to a fully-supervised baseline.

There are three future directions that can be ex-
plored. First, we can extend our method to other
forms of text data (e.g., social media) and other ab-
stract classes (e.g., stance detection, morality classi-
fication) that require deeper text understanding and
keyword-driven methods will likely fail. Second,
PIEClass can be integrated with keyword-based
methods as two types of training signals to further
improve the performance of weakly-supervised text
classification. Third, the idea of PIECIass is also
generalizable to other text mining tasks with lim-
ited supervision, such as named entity recognition
and relation extraction.

Limitations

In this paper, we propose PIEClass, a general
method for weakly-supervised text classification.
We introduce an iterative ensemble framework by
combining two standard PLM fine-tuning meth-
ods for noise robustness. Despite its effectiveness
shown in the experiments, there is still room for im-
provement. For example, our learning framework
can be integrated with other PLM fine-tuning meth-
ods and noise-robust training objectives (Zhang
and Sabuncu, 2018; Meng et al., 2021). Besides,
our method uses PLM prompting to acquire pseudo
labeled documents. As we only use several popu-
lar corpora, verbalizers, and prompts for this task,
it may require additional efforts to find verbaliz-
ers/prompts if working on other domains. Finally,
our iterative pseudo label expansion framework re-
quires access to a number of unlabeled documents,
so it may perform worse if the corpus is too small.
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A Preliminaries on PLM Fine-Tuning

Recently, Transformer-based large language mod-
els achieve remarkable performance on down-
stream tasks by first pre-training on large corpora
to capture generic knowledge and then fine-tuning
with task-specific data. There are generally two
fine-tuning strategies for the sequence classification
tasks: head token fine-tuning and prompt-based
fine-tuning. See Figure 1 for some examples.

Head Token Fine-Tuning. PLMs like BERT and
RoBERTa add an additional [CLS] token at the
beginning of the input sequence and it can be fine-
tuned for sequence classification tasks to capture
the information of the entire sequence. To fine-tune
for a downstream task, the contextualized represen-
tation of the [CLS] token h"S of a document d is
fed into a linear classification head g to get

p(c|d) = Softmax(g(h®S)). (5)

Then, given the training samples {(d;,¢;)}, the
PLM model and the randomly initialized classi-
fication head (normally a single linear layer) are
optimized with the cross-entropy loss:

Lchead — _ Z log p(ci|d;). 6)

Because the PLM is not pre-trained for any spe-
cific downstream task, the [CLS] token embedding
does not contain the necessary information if not
fine-tuned. Besides, the randomly initialized clas-
sification head also needs to be trained. Therefore,
normally the head token fine-tuning needs a sub-
stantial amount of labeled data for training. Other-
wise, the model can easily overfit the training data
given a large number of parameters to update. For
example, existing weakly-supervised text classifi-
cation methods use class-indicative keywords to
assign pseudo labels to documents which are then
used to fine-tune a PLM using its [CLS] token.

Prompt-Based Fine-Tuning. To close the gap be-
tween PLM’s pre-training task and the downstream
applications, prompt-based fine-tuning is proposed
to convert the input and output of the downstream
task to a similar form of the pre-training task. Be-
cause of the similarity between pre-training and
fine-tuning tasks, prompt-based fine-tuning only
needs a small set of samples to achieve competi-
tive performance with head token fine-tuning. For
common PLMs pre-trained with masked language
modeling (e.g., BERT, RoBERTa), prompt-based
fine-tuning uses a template to convert an input se-
quence into a cloze-style task. Each class also
associates with one or more verbalizers, and PLM
will predict the likelihood of each verbalizer for
the masked position. For example, for a sentiment
classification task, a template 7™M can transform
a document d as:

TMM () = d It was [MASK].

Given TMIM(() as input, the pre-trained PLM and
its pre-trained MLM head f will generate a proba-
bility distribution over its vocabulary, indicating the
likelihood of each token appearing in the masked
position,

p(w|d) = Softmax (f(hMASK)). 7

The probability of predicting a class ¢, assuming
its label name [(c) as its only verbalizer, is the
probability of its verbalizer p(I(c)|d). During fine-
tuning, the PLM and its MLM head can be trained
with standard cross-entropy loss.
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B Experiment Setup
B.1 Datasets

Table 4 shows the label names and prompts used
for each dataset.

B.2 Compared Methods

* WeSTClass (Meng et al., 2018) trains a CNN
classifier with pseudo documents generated
based on keyword embeddings and then applies
self-training on the unlabeled documents.

* ConWea (Mekala and Shang, 2020) utilizes a
pre-trained language model to get pseudo labels
using contextualized representations of keywords.
It then trains a text classifier and uses the results
to further expand the keyword sets.

* LOTClass (Meng et al., 2020) uses a pre-trained
language model to discover class-indicative key-
words and then fine-tunes the PLM using self-
training with the soft labeling strategy.

* XClass (Wang et al., 2021) first expands the
class-indicative keyword sets to help estimate
class and document representations. Then, a clus-
tering algorithm is used to generate pseudo labels
for fine-tuning a text classifier.

* ClassKG (Zhang et al., 2021) constructs a key-
word graph with co-occurrence relations and self-
train a sub-graph annotator, from which pseudo
labels are generated for classifier training and the
predictions are used to update keywords itera-
tively.

B.3 Implementation Details

We use pre-trained ELECTRA-base-discriminator,
BERT-base-uncased, and RoBERTa-base as the
backbone models for the corresponding versions of
PIEClass. The classification head for head token
fine-tuning is a single linear layer. The training
batch size is 32 for both head token fine-tuning
and prompt-based fine-tuning. We train 5 epochs
and use AdamW (Loshchilov and Hutter, 2017)
as the optimizer for all the fine-tuning tasks. The
peak learning rate is 1le — 5 for prompt-based fine-
tuning of RoOBERTa and 2e — 5 for prompt-based
fine-tuning of ELECTRA and all head token fine-
tuning, with linear decay. For Yelp and IMDB that
have only two classes, to avoid overfitting when
the number of pseudo labels is small, we freeze
the first 11 layers of the PLM for fine-tuning in
the first several iterations and only fine-tune the
full model for the final classifier. The model is run
on one NVIDIA RTX A6000 GPU. The threshold

for initial pseudo label acquisition is t° = 10%.
During the iterative process, the coefficient for the
increasing size of pseudo labels is s = 20%, except
for NYT-Topics and NYT-Fine which are highly
imbalanced, for which we set s = 35% to ensure
enough pseudo samples for the rare classes. Notice
that this parameter can be decided by just observing
the model’s intermediate outputs instead of using
any labeled data. The threshold of confidence score
is p = 0.95. We randomly sample » = 3 subsets
of size ¢ = 1% of the candidate pseudo labels for
prompt-based fine-tuning and model ensemble. We
set the number of full iterations 7" = 1/s, which
is 5 for AGNews, Yelp, IMDB, and Amazon and
3 for NYT-Topics and NYT-Fine; for 20News that
is harder, we run until the number of pseudo labels
does not increase, which takes 8 full iterations.

C Additional Experiments

C.1 Comparison with Few-Shot Classifiers

We follow similar settings in Meng et al. (2020)
and Zhu et al. (2023) to see how many human
labeled samples are needed to achieve similar
performance as PIEClass. Here, an ELECTRA-
base is fine-tuned with a few labeled samples in a
fully-supervised way and compared with PIEClass
(ELECTRA+ELECTRA). Since PIEClass does not
use any annotated validation data under the weakly-
supervised setting, for a fair comparison, we do not
provide validation sets for the few-shot classifiers
as well. Instead, we directly report the results of
the last checkpoint in the training process and we
do not see obvious model overfitting on the train-
ing set. The results in Macro-F1 on AGNews and
IMDB are shown in Table 5. We can see that it
needs around 150 labels per class on AGNews (to-
tally 600) and 500 labels per class on IMDB (totally
1000) to achieve similar results to PIEClass, which
requires a non-trivial amount of labeling efforts.
In contrast, PIEClass only needs one label name
for each class as supervision and thus drastically
reduces the needs of human efforts.

C.2 Impact of Backbone PLMs

We include the ELECTRA+BERT version to com-
pare with baselines that also use BERT as the back-
bone model for classifier training, and also the
RoBERTa+RoBERTa version which only uses one
single MLM-based model without access to ELEC-
TRA. Also, ELECTRA is pre-trained with the same
data as BERT, so using it does not give the model
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Table 4: Label names and prompts used for each dataset.

Dataset Label Names Prompt
AGNews politics, sports, business, technology [MASK] News: <doc>
20News computer, sports, science, politics, religion [MASK] News: <doc>
NYT-Topics business, politics, sports, health, education, [MASK] News: <doc>
estate, arts, science, technology
music, baseball, business, abortion, military, football,

NYT-Fine television, economy, dance, socce.r, cosmos, surveillance, [MASK] News: <doc>

golf, law, basketball, budget, movies, stocks, gun, energy,

environment, hockey, healthcare, immigration, tennis, gay
Yelp good, bad <doc> It was [MASK].
IMDB good, bad <doc> It was [MASK].
Amazon good, bad <doc> It was [MASK].

Table 5: Macro-F1 of vanilla few-shot classifiers with different numbers of labels per class compared with PIEClass
(ELECTRA+ELECTRA).

# labels per class 100 150 250 500 PIEClass
AGNews 0.875 0.885 - - 0.884
IMDB 0.900 0915 0925 0.933 0.931

Table 6: Performance of original XClass, XClass with ELECTRA as the final classifier, and two versions of
PIEClass measured by Micro/Macro-F1.

Methods AGNews 20News NYT-Topics Yelp
XClass 0.857/0.857 0.786/0.778  0.790/0.686  0.900/0.900
XClass-ELECTRA 0.838/0.837 0.792/0.784  0.787/0.685  0.903/0.903
PIEClass
ELECTRA+BERT 0.884/0.884 0.789/0.791 0.807/0.710  0.919/0.919
ELECTRA+ELECTRA 0.884/0.884 0.816/0.817 0.832/0.763 0.957/0.957

explicit advantages. Both versions achieve strong
enough performance on all datasets, especially on
sentiment classification, which demonstrates the
effectiveness of PIEClass. We did not include a
BERT+BERT version because RoOBERTa, as a pow-
erful variant of BERT, is used more popularly for
prompting with MLM.

We also run XClass by using ELECTRA as the
backbone of its final classifier to study the effects.
Also note that we only change the backbone of the
final classifier of XClass and still use BERT for its
pseudo label assignment step, because we empiri-
cally find that switching to ELECTRA for its entire
framework drastically decreases its performance:
we get 0.77 on Yelp and only 0.43 on AGNews.
This also shows that XClass is not generalizable
to different types of PLMs while PIEClass is ap-
plicable to various types of PLMs as shown in our

experiments. Table 6 shows the Micro/Macro-F1
scores, with ELECTRA bringing small improve-
ments to XClass’s performance on two datasets and
PIEClass (ELECTRA+ELECTRA) consistently
outperforms XClass and XClass-ELECTRA.

C.3 Parameter Sensitivity

We study the parameter sensitivity of PIEClass by
varying the following parameters on IMDB: the
threshold ¢° for the initial pseudo labels, the mini-
mum probability threshold p during the iterations,
and the number of prompt-based classifiers r. Fig-
ure 6 shows performance measured by Micro-F1.
We find that overall PIEClass is not sensitive to
these parameters.
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Figure 6: Performance of PIEClass on IMDB when varying different parameters.

Table 7: Macro-F1 on AGNews with a constant thresh-
old t; =20% for pseudo label selection.

Iteration 1 2 3 4 5
Macro-F1 0.847 0.815 0.775 0.780 0.780

C.4 Effects of Using a Constant Threshold ¢;

We increase the threshold ¢; in each iteration to
gradually increase the number of selected confident
pseudo labels during the iterative process. Because
using a constant threshold can make the pseudo
samples almost the same in the iterative process and
the classifiers overfit more to the limited number of
pseudo samples. We tried on AGNews by keeping
the threshold constantly equal to 20%. The perfor-
mance of the classifier in each iteration is shown
in Table 7, where we can see the performance first
drops and then stays almost constant. In this work,
we simply use a linearly increasing threshold. In
fact, more advanced curriculum learning strategies
can be applied to better fit the distribution of predic-
tion scores, e.g., a self-pacing function (Pei et al.,
2022).

C.5 Additional Results on the Study of
Iterative Process

Figure 7 and Figure 8 show more results for study-
ing the iterative process of PIEClass (c.f. Sec 4.4).
We can observe similarly that PIEClass can ensure
higher quality pseudo labels during the iterative
process compared with Single-View ST.

D Discussions on PLM Prompting

Handling Multi-Token Label Names As shown
in the experiment results (Table 2), the perfor-
mance of prompting with MLM-based PLMs such
as RoBERTa is affected by the tokenizer, because
the MM classification head cannot naturally han-
dle verbalizers (i.e., label names) with multiple

Table 8: Performance of PIEClass and zero-shot prompt-
ing of ELECTRA with different sets of verbalizers, mea-
sured by Micro-F1/Macro-F1.

Verbalizers Methods Yelp IMDB
ood/bad ELECTRA (0-shot) 0.820/0.820 0.803/0.802
& PIEClass 0.957/0.957 0.931/0.931
great/ ELECTRA (0-shot) 0.880/0.880 0.844/0.844
terrible PIEClass 0.959/0.959  0.933/0.933

tokens. For example, the label name “religion” of
20News is tokenized by RoBERTa into two tokens,
“rel” and “igion”. Therefore, prompting ROBERTa
for multi-token label names requires substantially
more work by inserting multiple [MASK] tokens
into the template and iteratively predicting the
masked tokens. On the other hand, prompting
ELECTRA can easily handle multi-token label
names (Xia et al., 2022), because the label names
are directly encoded in the input. Assume that
a label name [(c) is tokenized into several pieces
I(c) = {w1, ..., wy()}. We can estimate the prob-
ability of its being original by taking the average
of the probabilities of each token,

1
()]

[L(c)]
p(l(c)|d) = S p(wild)  ®)
=1

Templates for PLM Prompting One limitation
of PLM prompting is that its performance is re-
lated to the quality of the templates and verbal-
izers. In this work, we directly use the prompts
for sentiment classification and news topic classi-
fication from previous studies (Gao et al., 2021;
Xia et al., 2022) without any further tuning. To
mitigate the human efforts on prompt engineering,
some automatic methods are proposed to optimize
the prompts, including prompt search (Shin et al.,
2020; Gao et al., 2021) and prompt generation (Guo
et al., 2022; Deng et al., 2022).

The selection of verbalizers can also affect the
performance of prompt-based methods for PLMs.
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Figure 7: Performance of PIEClass and Single-View ST by varying the number of full iterations.
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Figure 8: Quantities and qualities of the pseudo labels at each iteration of PIEClass (top) and the Single-View ST

ablation (bottom).

In this paper, we directly use the label names from
previous works on weakly-supervised text classi-
fication as our main results. Here, we also try a
different set of verbalizers for sentiment classifica-
tion, “great” and “terrible”, that are used in previ-
ous papers studying prompt-based methods (Gao
et al., 2021; Xia et al., 2022). Table 8 shows the
performance of ELECTRA (0-shot) and PIEClass
with the two sets of verbalizers. We can see that,
by changing the verbalizers, the zero-shot prompt-
ing performance increases by a large amount and
even achieves comparable results to the keyword-
driven baselines on Yelp. PIEClass also performs
better with the new verbalizers. Therefore, opti-
mizing verbalizers could be a promising next step
for prompt-based text classification by verbalizer
search (Gao et al., 2021; Schick et al., 2020) or
learning verbalizer-class correlation (Huang et al.,
2022).
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