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Abstract
We present symbol tuning—finetuning lan-
guage models on in-context input–label pairs
where natural language labels (e.g., “posi-
tive/negative sentiment”) are replaced with arbi-
trary symbols (e.g., “foo/bar”). Symbol tuning
leverages the intuition that when a model can-
not use instructions or natural language labels
to figure out a task, it must instead do so by
learning the input–label mappings.

We experiment with symbol tuning across
PaLM models up to 540B parameters and ob-
serve benefits across various settings. First,
symbol tuning boosts performance on unseen
in-context learning tasks and is much more ro-
bust to underspecified prompts, such as those
without instructions or without natural lan-
guage labels. Second, symbol-tuned models
are much stronger at algorithmic reasoning
tasks, with up to 18.2% better performance
on the List Functions benchmark and up to
15.3% better performance on the Simple Turing
Concepts benchmark. Finally, symbol-tuned
models show large improvements in following
flipped-labels presented in-context, meaning
that they are more capable of using in-context
information to override prior knowledge.

1 Introduction

A key feature of human intelligence is that humans
can learn to perform new tasks by reasoning us-
ing only a few examples. Scaling up language
models has unlocked a range of new applications
and paradigms in machine learning, including the
ability to perform challenging reasoning tasks via
few-shot examples given in-context (Brown et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023, inter
alia). Language models, however, are still sen-
sitive to the way that prompts are given, indicat-
ing that they are not reasoning in a robust manner.
For instance, language models often require heavy
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†Work done as a Visiting Researcher at Google.

prompt engineering (Brown et al., 2020; Reynolds
and McDonell, 2021) or phrasing tasks as instruc-
tions (Wei et al., 2022a; Ouyang et al., 2022; Sanh
et al., 2022, inter alia), and they exhibit unexpected
behaviors such as performance on tasks being un-
affected even when shown exemplars with random
labels (Min et al., 2022b) or flipped labels (Wei
et al., 2023).

In this paper, we propose a simple finetuning
procedure that we call symbol tuning, which signif-
icantly improves the ability of language models to
reason with and learn from input–label mappings
presented in-context. In the symbol-tuning proce-
dure, we finetune language models on input–label
pairs presented in-context where natural language
labels are remapped to arbitrary symbols.1 The in-
tuition is that when models cannot rely on instruc-
tions or relevant natural language labels to figure
out a given task, they must instead do so by reason-
ing with input–label mappings presented in-context
in order to learn the mappings that reveal the task.
We perform symbol tuning using a mixture of 22
NLP datasets with various arbitrary symbols as la-
bels and experiment using instruction-tuned PaLM
models (Flan-PaLM) with several sizes (8B, 62B,
62B-cont, 540B).

First, symbol tuning improves performance of
baseline models on unseen in-context learning
tasks across various settings (with/without instruc-
tions, with/without relevant labels), with larger per-
formance gains when instructions or natural lan-
guage labels are not given in the prompt. For ex-
ample, when prompts do not contain instructions
or relevant labels, symbol tuning yields a +11.1%
average performance improvement across eleven
evaluation tasks for Flan-PaLM-62B-cont.

1We call our method symbol tuning because arbitrary desig-
nation is a key property of symbols (Newell and Simon, 1976)
and using symbols is a crucial part of intelligence (Newell,
1980; Santoro et al., 2021).
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Figure 1: We tune models on tasks where natural language labels are replaced with arbitrary symbols (symbol
tuning). Symbol tuning relies on the intuition that when instructions and relevant labels are not available, models
must use in-context exemplars to learn the task.

Second, symbol-tuned models are better at algo-
rithmic reasoning tasks, a striking result since sym-
bol tuning only includes natural language data and
did not have any numerical or algorithmic data. On
a set of reasoning evaluation suites for list functions
(e.g., remove the last element in a list), symbol-
tuned models experience performance improve-
ments of +18.2% for Flan-PaLM-8B, +11.1% for
Flan-PaLM-62B, and +3.6% for Flan-PaLM-540B.
On a set of turing concept tasks (e.g., swapping
0s and 1s in a string), symbol-tuned models also
improve by +15.3% for Flan-PaLM-8B and Flan-
PaLM-62B and +4.7% for Flan-PaLM-540B.

Finally, we experiment on an in-context learn-
ing setting where inputs have flipped labels, which
forces the model to override its prior knowledge
when presented with contradictory information in-
context. Pretrained language models have the abil-
ity to somewhat follow flipped labels—this ability
is lost during instruction tuning but can be restored
via symbol tuning. Overall, we hope that the strong
empirical results from symbol tuning encourage
further work in allowing language models to rea-
son over arbitrary symbols given in-context.

2 Symbol tuning

Despite their ability to perform some reason-
ing tasks after being shown in-context exemplars
(Chowdhery et al., 2022; OpenAI, 2023), language
models are still sensitive to the way in which these
tasks are presented in prompts (Brown et al., 2020;

Reynolds and McDonell, 2021; Wei et al., 2022a),
suggesting that they are not reasoning in a robust
way. Instruction tuning has been shown to improve
performance and allow models to better follow in-
context exemplars (Mishra et al., 2022; Min et al.,
2022a; Wei et al., 2022a; Ye et al., 2021; Chung
et al., 2022). One shortcoming, however, is that
models are not forced to learn to use the exemplars
because the task is redundantly defined in the evalu-
ation example via instructions and natural language
labels. For example, in the left-hand side of Fig-
ure 1, although the exemplars can help the model
understand the task, they are not strictly necessary
since the model could ignore the exemplars and
just read the instruction.

To make the model better at in-context learning,
we propose symbol tuning, in which the model
is finetuned on exemplars where the instructions
are removed and natural language labels are re-
placed with semantically-unrelated labels (e.g.,
“Foo,” “Bar,” etc.). In this setup, the task is un-
clear without looking at the in-context exemplars.
For example, if the prompt from the previous para-
graph was changed to “<sentence>. Answer: {Foo,
Bar}” (as shown in the right-hand side of Figure 1),
multiple in-context exemplars would be needed in
order to figure out the task. Because symbol tuning
teaches the model to reason over in-context ex-
emplars, symbol-tuned models should have better
performance on unseen tasks that require reasoning
between in-context exemplars and their labels.
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Figure 2: Datasets and task types used for symbol tuning. See Appendix D.1 for dataset details.
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Figure 3: We use a set of ∼300k arbitrary symbols from three categories (integers, character combinations, and
words). ∼30k symbols are used during tuning and the rest are held out for evaluation. See Appendix E.1 for more
details on the symbols that we used.

3 Experimental setup

3.1 Tuning tasks & prompt formatting

Figure 2 shows the 22 publicly-available NLP
datasets from HuggingFace (Lhoest et al., 2021)
(see Appendix D.1 for dataset details) that we use
for our symbol-tuning procedure (we ablate the
number of datasets used for symbol tuning in Ap-
pendix B.4). We selected NLP tasks that have been
widely used in the literature (Wang et al., 2018,
2019). Each dataset is categorized into one of
seven task types—we only selected classification-
type tasks because symbol tuning requires dis-
crete labels. For each dataset, we use examples
from the training split to compose prompts that
we use for tuning. Each prompt uses a randomly-
selected input–label format (formats are shown in
Appendix E.2) and contains a randomly-selected
number between 2 and 10 of in-context exem-
plars per class. We remap labels to a randomly-
selected label from a set of ∼30k labels from three
label types as shown in Figure 3 (we ablate the
number of labels in Appendix B.5 and the label
types in Appendix B.6). Examples of generated
tuning prompts for each task are shown in Ap-
pendix G.1. Code for generating arbitrary sym-
bols can be found at https://github.com/
JerryWeiAI/symbol-tuning.

3.2 Evaluation tasks

We want to evaluate a model’s ability to perform
on unseen tasks, so we cannot evaluate on tasks

used in symbol tuning (22 datasets) or used during
instruction tuning (1.8k tasks). Hence, we choose
11 NLP datasets from HuggingFace (Lhoest et al.,
2021) that were not used in either stage of fine-
tuning (details are shown in Appendix D.2): (Con-
neau and Kiela, 2018, SUBJ); (Basile et al., 2019,
TEH); (Mohammad et al., 2016, TEAB); (Moham-
mad et al., 2016, TEAT); (Mohammad et al., 2016,
TEFE); (Mohammad et al., 2016, TEHI); (Alex
et al., 2021, ADEC); (Alex et al., 2021, OR); (Alex
et al., 2021, SOT); (Alex et al., 2021, TOS); and
(Alex et al., 2021, TC). We use the validation split
of each dataset to generate evaluation prompts. For
each dataset, we randomly select a maximum of
100 examples to use during evaluation. Each evalu-
ation prompt uses a randomly-selected input–label
format following Section 3.1, though we fix the
number of in-context exemplars per class at k = 4
(we ablate this parameter in Appendix C.4).

We generate prompts for the four different in-
context learning (ICL) settings described in Fig-
ure 4; each setting either contains or does not
contain instructions describing the task (see Ap-
pendix D.2 for the instructions we use for each
task) and does or does not contain relevant natural
language labels. For settings that do not use rel-
evant natural language labels, we remap original
labels to a randomly-selected label from a set of
∼270k semantically-unrelated labels as shown in
Figure 3 (we removed labels that were seen during
symbol tuning). Examples of generated evaluation
prompts for each task are shown in Appendix G.2.
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Figure 4: Depending on the availability of instructions and relevant natural language labels, models may need to do
varying amounts of reasoning with in-context exemplars. When these features are not available, models must reason
with the given in-context exemplars in order to successfully perform the task. When they are available, reasoning
with exemplars can help but is not necessary.

3.3 Models & finetuning procedure

For our experiments, we tune Flan-PaLM, the
instruction-tuned variants of PaLM. We use the
instruction-tuned variants in order to reduce the
number of steps needed for tuning, since symbol
tuning an instruction-tuned model does not require
relearning the information learned during the origi-
nal round of instruction tuning. We use three dif-
ferent sizes of Flan-PaLM models: Flan-PaLM-8B,
Flan-PaLM-62B, and Flan-PaLM-540B. We also
tested Flan-PaLM-62B-cont (PaLM-62B at 1.3T
tokens instead of 780B tokens); we abbreviate this
model size as 62B-c.

Our symbol-tuning pipeline mixes all datasets
and randomly samples from each dataset. To ensure
that the dataset sizes are balanced (i.e., no dataset
gets completely overshadowed), we limit the num-
ber of training examples per dataset to a maximum
of 25k randomly-selected examples. Training ex-
amples are combined into a single sequence using
packing (Raffel et al., 2020), and inputs are sepa-
rated from labels using an end-of-sequence (EOS)
token. We tune all models using a batch size of
32 and the Adafactor optimizer (Shazeer and Stern,
2018). For 8B and 62B models, we tune with a
learning rate of 3× 10−3, and we tune Flan-PaLM-
540B with a learning rate of 1 × 10−3. We use
2048 and 512, respectively, as the input and target
sequence lengths during tuning.

For 8B and 62B model evaluations, we report re-
sults from the checkpoint after tuning for 4k steps,

and for 540B model evaluations, we report results
from the checkpoint after tuning for 1k steps (we
ablate the number of tuning steps in Appendix B.2).
See Appendix E.3 for the number of finetuning
steps, learning rate, batch size, and dropout used
for each model. As a baseline, we compare symbol-
tuned models against Flan-PaLM models, and we
also compare symbol tuning against continued in-
struction tuning in Appendix B.1.

4 Symbol-tuned models are better
in-context learners

During symbol tuning, models must learn to rea-
son with in-context exemplars in order to success-
fully perform tasks because prompts are modified
to ensure that tasks cannot be learned from natu-
ral language labels or instructions. Symbol-tuned
models should thus perform better in settings where
tasks are unclear and require reasoning between in-
context exemplars and their labels. Additionally,
since symbol tuning is meant to improve the abil-
ity to follow in-context exemplars, it should not
modify prior knowledge and should thus retain the
same performance in settings where exemplars are
not as necessary to complete the task.

To explore these settings, we define four ICL
settings that vary the amount of reasoning required
between inputs and labels in order to learn the task
(based on the availability of instructions/relevant
labels), as shown in Figure 4. The easiest of these
settings uses prompts where both instructions and
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Average performance on eleven tasks

Relevant labels: 3 3 7 7

Task instructions: 3 7 3 7

Random Guessing 42.4 42.4 42.4 42.4

Flan-PaLM-8B 63.9 61.6 42.4 44.2
+ Symbol tuning (ours) 57.6 (-6.3) 54.3 (-7.3) 58.2 (+15.8) 52.8 (+8.6)

Flan-PaLM-62B 74.3 70.0 57.0 50.5
+ Symbol tuning (ours) 75.5 (+1.2) 70.8 (+0.8) 71.4 (+14.4) 60.3 (+9.8)

Flan-PaLM-62B-cont 77.3 70.3 56.3 51.0
+ Symbol tuning (ours) 78.9 (+1.6) 74.5 (+4.2) 71.8 (+15.5) 62.1 (+11.1)

Flan-PaLM-540B 82.2 77.4 70.7 58.1
+ Symbol tuning (ours) 84.4 (+2.2) 78.8 (+1.4) 80.0 (+9.3) 63.6 (+5.5)

Table 1: Large-enough symbol-tuned models are better at in-context learning than baselines, especially in settings
where relevant labels are not available. Performance is shown as average model accuracy (%) across eleven tasks
(per-task results are shown in Appendix F.2).

relevant labels are available (as in-context exem-
plars are not necessary to learn the task), while the
hardest setting uses prompts where instructions and
relevant labels are both unavailable.

In Table 1, we evaluate model performance be-
fore and after symbol tuning in each of these set-
tings. We find that symbol tuning improves per-
formance across all ICL settings for models 62B
and larger, with small improvements in settings
with relevant natural language labels (+0.8% to
+4.2%) and substantial improvements in settings
without relevant natural language labels (+5.5%
to +15.5%). Strikingly, when relevant labels are
unavailable, symbol-tuned Flan-PaLM-8B outper-
forms Flan-PaLM-62B, and symbol-tuned Flan-
PaLM-62B outperforms Flan-PaLM-540B. This
performance difference suggests that symbol tun-
ing can allow much smaller models to perform as
well as large models on learning input-label map-
ping from exemplars (effectively saving ∼10x in-
ference compute).

Symbol-tuned models also perform somewhat-
comparably in settings with only relevant labels
or only instructions, unlike baseline models whose
performance in settings with only relevant labels
is always better than in settings with only instruc-
tions. Performance in settings with relevant labels
actually decreases for Flan-PaLM-8B after symbol-
tuning, however, which may suggest that symbol
tuning a small model can override its prior knowl-

edge due to overfitting. Overall, the improvements
demonstrate the strong potential of symbol tuning
to improve model performance, especially when
tasks require learning from in-context exemplars.

5 Symbol tuning improves algorithmic
reasoning

Symbol tuning is designed to force the model to
learn from input–label mappings in the in-context
exemplars because the symbols are unrelated to
the task and no instructions are provided (and thus
the model cannot rely on any other guidance to
determine the task). For this reason, we posit that
symbol tuning should not only improve the model’s
ability to map natural language inputs to arbitrary
symbols, but also its ability to learn other forms of
input–label mappings such as algorithms.

To test this, we experiment on algorithmic rea-
soning tasks from BIG-Bench (Srivastava et al.,
2022). We first experiment on a set of list func-
tion tasks (Rule et al., 2020; Srivastava et al., 2022)
where the model needs to identify a transforma-
tion function (e.g., remove the last element in a
list) between input and output lists containing non-
negative integers. These tasks were evaluated in a
four-shot setting, following our evaluation setup in
Section 3.2. Additionally, we test models on a set
of simple turing concepts (Telle et al., 2019; Sri-
vastava et al., 2022) where models need to reason
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Figure 5: Symbol-tuned models achieve higher performance on list function tasks and simple turing concept tasks.
(A–E): categories of list functions tasks (Rule et al., 2020; Srivastava et al., 2022). (F): simple turing concepts
task (Telle et al., 2019; Srivastava et al., 2022). Accuracy per list function category is averaged across all subtasks
(categories and per-task results are shown in Appendix F.1).

with binary strings to learn the concept that maps
an input to an output (e.g., swapping 0s and 1s in
a string). These tasks have predetermined shots
for each evaluation example. We selected these
algorithmic tasks because they test the model’s
ability to generalize to different task types (the
symbol-tuning tasks were classification problems
with discrete labels, while these tasks are more
open-ended generation problems2) and do not re-
quire world knowledge (symbol tuning does not
increase a model’s prior knowledge).

In Figure 5, we show model performance on the
twenty list function tasks with the highest human
accuracy baselines3 (Rule, 2020) separated into
five categories (category details are described in
Appendix F.1) and the turing concepts containing 3
or fewer instructions in the AS II subset of the sim-
ple turing concepts task. On the list function tasks,
symbol tuning results in an average performance

2Although chain-of-thought (Wei et al., 2022b, CoT) can
be viewed as an open-ended generation problem, in Ap-
pendix C.2, we found that symbol-tuning did not significantly
affect a model’s CoT reasoning abilities, possibly because our
symbol-tuning data did not incorporate any CoT prompts.

3We do not directly compare with the human baselines
because our evaluation format was different.

improvement across all tasks of 18.2% for Flan-
PaLM-8B, 11.1% for Flan-PaLM-62B, 15.5% for
Flan-PaLM-62B-cont, and 3.6% for Flan-PaLM-
540B. On the turing concept tasks, symbol tuning
results in a performance improvement of 15.3%
for Flan-PaLM-8B and Flan-PaLM-62B, 14.1% for
Flan-PaLM-62B-cont, and 4.7% for Flan-PaLM-
540B. Flan-PaLM-62B-cont with symbol tuning
outperforms Flan-PaLM-540B on the list function
tasks (in terms of average accuracy across tasks),
which is equal to a ∼10x reduction in inference
compute. These improvements on an unseen task
type suggest that symbol tuning indeed strength-
ens the model’s ability to learn in-context, as the
symbol-tuning procedure did not have algorithmic
data and only used natural language data.

6 Symbol-tuned models can override
priors via flipped labels

Wei et al. (2023) showed that while pretrained lan-
guage models (without instruction tuning) could,
to some extent, follow flipped labels presented in-
context, instruction tuning degraded this ability.
Symbol tuning, on the other hand, forces models to
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Figure 6: Symbol-tuned models are much better at following flipped labels presented in-context than instruction-
tuned models are for all model sizes. Instruction-tuned models cannot flip predictions to follow flipped labels
(performance is well below random guessing), while symbol-tuned models can do this more often (performance
matches or is slightly above random guessing). Ground-truth labels for evaluation examples are flipped, so if a
model learns to follow flipped labels, its accuracy should be above random guessing (e.g., a perfect model that can
follow flipped labels should get 100% accuracy on our evaluations).

consider the label presented in-context as an arbi-
trary symbol, which should reduce the model’s us-
age of prior knowledge that contradicts the flipped
labels. For this reason, we expect that symbol tun-
ing would be able to improve and restore the ability
to follow flipped labels in-context.

To test this, we flip the labels of both in-context
exemplars and the evaluation example for the tasks
described in Section 3.2 (we remove tasks with
more than two labels from this experiment since it
is unclear how to best “flip” more than two labels).
For example, for the SST2 dataset, all exemplars
that are labeled as having “positive” sentiment will
now be labeled as having “negative” sentiment. A
perfect model that can follow these flipped labels
should achieve 100% accuracy on these tasks if its
accuracy in the standard ICL setting is also 100%.

As shown in Figure 6, symbol tuning restores
the ability to follow flipped labels that was lost
during instruction tuning. We see that there is a
similar trend across all model sizes—instruction-
tuned models are generally unable to follow flipped
labels (as demonstrated by their performance be-
ing far below random guessing), but symbol-tuned
models are much more capable of doing so. We
found that after symbol tuning, Flan-PaLM-8B
sees an average improvement across all datasets
of 26.5%, Flan-PaLM-62B sees an improvement
of 33.7%, and Flan-PaLM-540B sees an improve-

ment of 34.0%. For some datasets (e.g., OR, SUBJ,
TC), symbol-tuned models can now override pri-
ors and follow flipped labels (i.e., achieve much
better performance than random guessing), despite
instruction-tuned models not being able to do so for
any datasets. Additionally, symbol-tuned models
match or beat pretraining-only models in terms of
average performance, indicating that symbol tuning
has, to some extent, restored the model’s original
ability to follow flipped labels.

These results further indicate another type of
generalized in-context learning capability, as we
did not include any flipped labels during symbol
tuning. Although the performance improvement
from symbol tuning is large, we note that more
work should be done in this area since performance
on the flipped-labels settings is, on average, not
significantly better than random guessing.

7 Related work

7.1 In-context learning via semantic prior
knowledge

Recent studies on in-context learning suggest
that prior knowledge plays a significant role in
how models learn in-context. For example, Wei
et al. (2023) showed that some small models and
instruction-tuned models cannot follow flipped la-
bels presented in-context, suggesting that these
models primarily utilize prior knowledge for in-
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context learning. Min et al. (2022b) found a simi-
lar result that using random ground-truth labels in
in-context exemplars does not significantly affect
performance, meaning that performance may be
driven by other factors such as the label space.

Reynolds and McDonell (2021) also showed
that cleverly-constructed prompts in a zero-shot
setting could outperform prompts in a few-shot
setting, implying that, for some tasks, models can
achieve better performance by leveraging their ex-
isting knowledge than from attempting to learn the
task from in-context exemplars. Additionally, in
chain-of-thought prompting (Wei et al., 2022b),
Madaan and Yazdanbakhsh (2022) and Wang et al.
(2022) showed that performance on multi-step rea-
soning tasks does not decrease when models are
provided with logically-incorrect prompts. Raghu
et al. (2020) also demonstrated that systems such
as MAML can effectively “memorize” labels when
trained in a way where all labels can be memorized,
which further illustrates that, when possible, mod-
els may attempt to use prior knowledge rather than
adapt to each new task.

Our findings do not dispute the idea that seman-
tic prior knowledge can provide significant ben-
efits to in-context learning. Indeed, we showed
that instruction-tuned models cannot follow flipped
labels in-context, which is consistent with the find-
ings from Wei et al. (2023). We instead aim to
demonstrate that through symbol tuning, language
models can retain the benefits of utilizing prior
knowledge while also improving their ability to
learn from input–label pairs shown in-context.

7.2 In-context learning via in-context
exemplars

At the same time, however, other recent work has
suggested that language models can, in fact, learn
in-context using the given exemplars. This abil-
ity may be more useful than the ability to use se-
mantic prior knowledge because it would allow
models to perform tasks that are not seen in or
contradict pretraining data. Garg et al. (2022), for
instance, showed that transformers trained from
scratch can perform in-context learning on linear-
regression tasks at a similar performance level as
the least-squares estimator. This capability was
shown to result from transformers implementing
standard learning algorithms such as gradient de-
scent (Akyürek et al., 2023; von Oswald et al.,

2022; Dai et al., 2023). Furthermore, Webson and
Pavlick (2022) demonstrated that, in a natural lan-
guage setting, language models can learn at the
same rate during finetuning even when given irrel-
evant or misleading prompts. On a broader level,
Rajendran et al. (2020) and Yin et al. (2020) found
that adding noise to, shuffling, or regularizing the
label space can make systems better at learning and
adapting to new tasks.

In this paper, we attempt to improve the degree
to which language models are able to learn tasks via
input–label mappings. Our symbol-tuning method
can be seen as a form of label augmentation and
is thus similar to the proposed methods from Ra-
jendran et al. (2020) and Yin et al. (2020), though
it differs crucially in that we apply them to tune
large language models. Additionally, We found
that symbol-tuned models saw significant improve-
ments in their ability to learn in-context (e.g., on
algorithmic tasks or settings with underspecified
prompts), which supports the idea that langauge
models have the ability to learn in-context using
the given exemplars.

7.3 Tuning language models

Our work presented symbol tuning, a form of
finetuning on input–label pairs where labels are
remapped to arbitrary symbols. Symbol tuning
relates to a broader body of work showing that
finetuning language models can significantly alter
their behavior and performance in different settings.
For example, Wei et al. (2022a) first presented in-
struction tuning (finetuning on tasks phrased as
instructions) and showed that this finetuning pro-
cedure substantially improves model performance
in zero-shot settings. Chung et al. (2022) further
scaled this procedure by adding more tasks, in-
creasing model sizes, and adding chain-of-thought
data, demonstrating that, with these changes, tuned
models are significantly better at chain-of-thought
reasoning, open-ended generation, and several eval-
uation benchmarks.

Our experimental findings match these results
in terms of showing that finetuning can signifi-
cantly alter model performance. Our work differs,
however, by not only focusing on settings with
in-context exemplars and underspecified prompts,
but also by modifying the finetuning procedure to
make tasks harder to learn and require additional
reasoning with in-context exemplars.
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8 Limitations

While our study presents a simple yet effective
method of improving in-context learning for lan-
guage models, there are several limitations to our
work. An open question is how to apply symbol
tuning in a generative setting—we symbol tuned
models on a range of classification tasks with dis-
crete labels so that we can remap labels to arbitrary
symbols, but we did not tune on generation tasks
since it is unclear how to remap outputs to symbols
in those settings. Future work could thus explore
whether symbol tuning can be applied in a genera-
tive setting.

Additionally, our symbol-tuning procedure used
22 NLP datasets—while we ablated the number
of datasets in Appendix B.4 and saw that increas-
ing the number of datasets used for symbol tun-
ing generally improves performance, we did not
experiment with adding more tasks. Prior work,
however, has demonstrated that scaling up finetun-
ing methods can improve their impact on language
models (Chung et al., 2022), so a natural extension
would be to examine whether further scaling up the
symbol-tuning method would have a similar result.

Furthermore, we applied symbol tuning to a fam-
ily of instruction-tuned language models. It is un-
known, however, whether the effects of symbol
tuning that we showed may be affected by changes
to the pretraining objective, model architecture, or
training process. Similarly, symbol tuning may
have different effects on language models that are
not instruction tuned, as we did not specifically ex-
periment on this factor. For this reason, future work
may investigate how these factors impact the effec-
tiveness of symbol tuning for improving in-context
learning abilities in language models.

Because we only experimented with one fam-
ily of language models, it is still unclear whether
symbol tuning is effective for other models. Apply-
ing symbol tuning to other language models would
likely require adjustments to the finetuning proce-
dure to be successful (e.g., number of finetuning
steps, mixing with previous data, number datasets),
but a definitive conclusion about these factors can-
not be drawn without further experimentation. We
thus note that a crucial direction for future work
is to explore how well symbol tuning translates to
other language models.

9 Conclusions

In this paper, we presented symbol tuning, a new
method of tuning models on tasks where natural
language labels are remapped to arbitrary symbols.
Symbol tuning is based off of the intuition that
when models cannot use instructions or relevant
labels to determine a presented task, it must do
so by instead learning from in-context exemplars.
We tuned four language models (Flan-PaLM-8B,
Flan-PaLM-62B, Flan-PaLM-62B-cont, and Flan-
PaLM-540B) using our symbol-tuning procedure,
utilizing a tuning mixture of 22 datasets and ap-
proximately 30k arbitrary symbols as labels.

Experimentally, we showed that symbol tuning
can significantly improve a model’s ability to learn
from in-context exemplars in not only natural lan-
guage settings, but also on algorithmic tasks. First,
we showed that symbol tuning improves perfor-
mance on unseen in-context learning tasks, espe-
cially when prompts do not contain instructions or
relevant labels. We also found that symbol-tuned
models were much better at algorithmic reasoning
tasks, despite the lack of numerical or algorithmic
data in the symbol-tuning procedure. Finally, in
an in-context learning setting where inputs have
flipped labels, symbol tuning (for some datasets)
reunlocks the ability to follow flipped labels that
was lost during instruction tuning.

Through symbol tuning, we aim to have in-
creased the degree to which models can exam-
ine and learn from input–label mappings during
in-context learning. We hope that our results en-
courage further work towards improving language
models’ ability to reason over symbols presented
in-context.
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