@inproceedings{tang-etal-2023-improving,
title = "Improving Biomedical Abstractive Summarisation with Knowledge Aggregation from Citation Papers",
author = "Tang, Chen and
Wang, Shun and
Goldsack, Tomas and
Lin, Chenghua",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2023.emnlp-main.40/",
doi = "10.18653/v1/2023.emnlp-main.40",
pages = "606--618",
abstract = "Abstracts derived from biomedical literature possess distinct domain-specific characteristics, including specialised writing styles and biomedical terminologies, which necessitate a deep understanding of the related literature. As a result, existing language models struggle to generate technical summaries that are on par with those produced by biomedical experts, given the absence of domain-specific background knowledge. This paper aims to enhance the performance of language models in biomedical abstractive summarisation by aggregating knowledge from external papers cited within the source article. We propose a novel attention-based citation aggregation model that integrates domain-specific knowledge from citation papers, allowing neural networks to generate summaries by leveraging both the paper content and relevant knowledge from citation papers. Furthermore, we construct and release a large-scale biomedical summarisation dataset that serves as a foundation for our research. Extensive experiments demonstrate that our model outperforms state-of-the-art approaches and achieves substantial improvements in abstractive biomedical text summarisation."
}
Markdown (Informal)
[Improving Biomedical Abstractive Summarisation with Knowledge Aggregation from Citation Papers](https://preview.aclanthology.org/fix-sig-urls/2023.emnlp-main.40/) (Tang et al., EMNLP 2023)
ACL