@inproceedings{nguyen-etal-2023-visobert,
title = "{V}i{S}o{BERT}: A Pre-Trained Language Model for {V}ietnamese Social Media Text Processing",
author = "Nguyen, Nam and
Phan, Thang and
Nguyen, Duc-Vu and
Nguyen, Kiet",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2023.emnlp-main.315/",
doi = "10.18653/v1/2023.emnlp-main.315",
pages = "5191--5207",
abstract = "English and Chinese, known as resource-rich languages, have witnessed the strong development of transformer-based language models for natural language processing tasks. Although Vietnam has approximately 100M people speaking Vietnamese, several pre-trained models, e.g., PhoBERT, ViBERT, and vELECTRA, performed well on general Vietnamese NLP tasks, including POS tagging and named entity recognition. These pre-trained language models are still limited to Vietnamese social media tasks. In this paper, we present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT, which is pre-trained on a large-scale corpus of high-quality and diverse Vietnamese social media texts using XLM-R architecture. Moreover, we explored our pre-trained model on five important natural language downstream tasks on Vietnamese social media texts: emotion recognition, hate speech detection, sentiment analysis, spam reviews detection, and hate speech spans detection. Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks. Our ViSoBERT model is available only for research purposes. Disclaimer: This paper contains actual comments on social networks that might be construed as abusive, offensive, or obscene."
}
Markdown (Informal)
[ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing](https://preview.aclanthology.org/fix-sig-urls/2023.emnlp-main.315/) (Nguyen et al., EMNLP 2023)
ACL