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Abstract

Large language models encode impressively
broad world knowledge in their parameters.
However, the knowledge in static language
models falls out of date, limiting the model’s
effective “shelf life.” While online fine-tuning
can reduce this degradation, we find that
naively fine-tuning on a stream of documents
leads to a low level of information uptake.
We hypothesize that online fine-tuning does
not sufficiently attend to important informa-
tion. That is, the gradient signal from impor-
tant tokens representing factual information
is drowned out by the gradient from inher-
ently noisy tokens, suggesting that a dynamic,
context-aware learning rate may be beneficial.
We therefore propose learning which tokens to
upweight. We meta-train a small, autoregres-
sive model to reweight the language modeling
loss for each token during online fine-tuning,
with the objective of maximizing the out-of-
date base question-answering model’s ability
to answer questions about a document after
a single weighted gradient step. We call this
approach Context-aware Meta-learned Loss
Scaling (CaMeLS). Across three different dis-
tributions of documents, our experiments find
that CaMeLS provides substantially improved
information uptake on streams of thousands of
documents compared with standard fine-tuning
and baseline heuristics for reweighting token
losses.

1 Introduction

Large language models learn impressively broad
world knowledge through large-scale unsupervised
pre-training, which they can leverage for a wide
variety of downstream tasks (Brown et al., 2020;
Chowdhery et al., 2022; Bubeck et al., 2023). How-
ever, large language models are typically static ar-
tifacts, and as the world changes, the knowledge
encoded in their parameters becomes stale. While
retrieval-augmented models are one approach to

* Equal contribution.

Figure 1: The proposed method CaMeLS learns to rescale the
per-token online loss, sparsifying the fine-tuning gradients to
emphasize informative timesteps. The middle row shows the
weights output by CaMeLS. The top and bottom rows show
raw and weighted per-token gradient norms, respectively.

mitigating the staleness issue, even very large lan-
guage models often fail to correctly update their
memorized predictions when presented with coun-
terfactual retrieved information (Longpre et al.,
2021; Li et al., 2022; Si et al., 2023). Moreover,
purely parametric language models are uniquely
suited for edge computing due to their compact
size (relative to a large retrieval index) and simplic-
ity of inference (Gerganov, 2023). Recent work
has thus considered variants of online fine-tuning
on a stream of documents to efficiently perform
direct updates to the knowledge inside of a large
language model (Lazaridou et al., 2021; Jang et al.,
2022).

Ideally, we could simply fine-tune a language
model on an online stream of documents, and the
information contained in those documents would
be readily available for the model to use in a variety
of downstream tasks such as answering questions
about the information in the documents. Unfortu-
nately, we find that in this online adaptation setting,
fine-tuning with a well-tuned learning rate leads
to a nearly negligible improvement in a question-
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Figure 2: We study the setting of a language model being adapted unsupervised (without annotation of important tokens) on an
online stream of documents and being later evaluated on queries (e.g., questions) about those documents. Downstream inputs are
not provided during the adaptation phase, requiring the model to integrate as much information as possible about the documents.

answering model’s ability to answer questions re-
lating to the stream of documents. We hypothesize
that naive fine-tuning is not effective in the online
adaptation setting because the negative log likeli-
hood (NLL) loss does not accurately reflect the im-
portance of a token. That is, tokens containing im-
portant factual information may receive relatively
small NLL loss and therefore a small fine-tuning
gradient. For example, consider the NLL of the
word Rishi and the word Reports in the phrase The
UK Prime Minister is Rishi Sunak. Reports suggest
. . . for a slightly out-of-date language model. Be-
cause Rishi Sunak was a well-known politician be-
fore becoming Prime Minister, a model may place
reasonably high probability mass on his name (even
if other completions are higher probability). On the
other hand, ‘Reports’ will invariably receive low
probability, because the distribution over the first
word in a sentence is unavoidably high entropy.

This hypothesis suggests that we can improve
upon online adaptation by only fine tuning on a
subset of tokens which are most likely to lead to
useful updates. One natural approach to identify
such factual tokens is through salient spans (Guu
et al., 2020). Another common technique used
to weight words it via TF-IDF scores (Salton and
McGill, 1986). We find that fine-tuning while using
these heuristics does improve information uptake.
However, it is unclear if such heuristic choices are
optimal. As an alternative, we explore a method
for learning a per-token importance weights corre-
sponding to the utility of fine-tuning on that token.
However, such utility is difficult to define, and even
with a suitable definition, dense per-token annota-
tions of utility are extremely time-consuming to
collect. We thus select a definition of utility that en-
ables using distant supervision of the utility of each
token: a high utility token is one whose fine-tuning
gradient improves a question-answering model’s

ability to answer questions about the contents of
the surrounding document.

Using this notion of a token’s utility for online
learning, we propose Context-aware Meta-learned
Loss Scaling (CaMeLS), an approach to online
adaptation that meta-trains an importance weight-
ing model to identify such tokens in a document.
Given a dataset of documents and queries, we use
a meta-learning loss to train our weighting model:
first, in an ‘inner loop,’ we update a base model (a
proxy for the model we will update at test time) us-
ing the gradient of NLL of the document, weighted
by the outputs of the importance weighting model.
Next, in the ‘outer loop’, the loss is computed by
evaluating the updated base model’s performance
on the corresponding query. This outer loss is used
to updated the parameters of the importance weight-
ing model. During online fine-tuning on a stream
of documents, we simply re-weight the online loss
using the importance-weighting model’s output.

Although the process used to train CaMeLS uses
a proxy model (i.e., a stand-in for the model we will
update at test time), one might hope that the impor-
tance of tokens would be independent of the model
used for inner loop updates; to a significant degree,
we intuit that the importance of a token should
be an innate trait of underlying text. Indeed, we
find that the meta-learned importance weights gen-
eralize across models; for each dataset, we meta-
train our importance weighting model once using
DistilGPT-2 (Sanh et al., 2019) as the base model
and successfully use these weighting model with-
out modification to update GPT-J 6B (Wang and
Komatsuzaki, 2021). Across three online adap-
tation benchmarks based on streams of news and
Wikipedia articles, CaMeLS substantially improves
knowledge acquisition over naive fine-tuning as
well as salient span and TF-IDF based baselines.
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2 Related Work

Adapting to new data or task distributions is typi-
cally studied in the context of continual or lifelong
learning (Thrun and Mitchell, 1995; Mitchell et al.,
2018). Continual learning in deep networks in-
volves the challenge of simultaneously avoiding
catastrophic forgetting (McCloskey and Cohen,
1989), the process under which a neural network’s
performance on old tasks or data is dramatically
degraded by the process of learning new informa-
tion, while maintaining plasticity (Dohare et al.,
2022), or the ability to adapt to the latest change
in the data distribution, even after many changes
have already been experienced. While most work
in continual learning considers sequences of super-
vised data (Kirkpatrick et al., 2016; Lopez-Paz and
Ranzato, 2017; Shin et al., 2017; Chaudhry et al.,
2019), some work also studies continual few-shot
(Ren et al., 2021) or unsupervised learning (Rao
et al., 2019; Madaan et al., 2022), which is closer
to the setting in this paper. However, these works
typically focus on streams of visual data.

Dynamic, or streaming, language models were
first considered in the context of n-gram language
models, combining a cache of recently-used words
to update the predictive probabilities of a tri-gram
model (Kuhn, 1988; Jelinek et al., 1991; Osborne
et al., 2014). Later work describes online EM-
based algorithms for efficiently updating n-gram
models (Yogatama et al., 2014). Other studies in-
vestigate the evolution of decontextualized word
embeddings over as a result of temporal shifts in
the use of language (Kulkarni et al., 2015; Hamil-
ton et al., 2016) or the use of vector memories
to store recent information when training recur-
rent neural networks online (Rei, 2015). More
recently, several studies have explored methods
for updating large neural language models, typ-
ically through online fine-tuning on a stream of
documents (Lazaridou et al., 2021) with architec-
tural constraints (Jang et al., 2022) or explicit con-
ditioning on time (Dhingra et al., 2022) used as
strategies to reduce forgetting of old information.
Clark et al. (2022) use meta-learning to reduce the
compute requirements of online fine-tuning. How-
ever, recent work suggests that while increasing
the size of language models may largely mitigate
the problem of forgetting old information (Driess
et al., 2023), improving the efficiency of acqui-
sition of new knowledge is still a challenge, and
this problem is therefore the focus of the present

work. Other methods for dynamically updating the
knowledge in parametric language models develop
specialized techniques, called model editors, de-
signed to make targeted edits to individual facts
(Sinitsin et al., 2020; Mitchell et al., 2021; Meng
et al., 2022) or behaviors (Mitchell et al., 2022).
However, model editors assume access to annota-
tions of the tokens or facts that must be updated; in
this work, we study the problem of learning which
tokens in an unlabeled sequence of documents are
important.

3 Meta-Learning Improved Online
Adaptation of Large Language Models

Given an out-of-date language model and a stream
of recent documents, we aim to update the model
such that it effectively answers typical queries
about the documents in the stream. By focusing
only on retaining knowledge relevant to the ‘typi-
cal’ queries, we avoid the need to completely mem-
orize the documents, making the problem tractable.
We study question-answering (QA) models specifi-
cally, as the question-answer format makes assess-
ing a model’s knowledge straightforward. In this
section, we formalize this problem setting and then
describe an approach to this setting, Context-aware
Meta-learned Loss Scaling.

3.1 Unsupervised Online Adaptation

We consider a setting in which an out-of-date
model fθbase is updated with an online stream2 of
recent documents Dtest = {xi}, ultimately produc-
ing an updated model fθ′ . The updated model fθ′
is then evaluated with a set of queries Qtest = {qi}
with labels Ytest = {yi}, where the the ith query
is drawn from a distribution of queries relating to
ith document: qi, yi ∼ p(qi, yi|xi). For example,
qi may be a question about some information in
document xi, and yi the answer to that question
implied by the document. Crucially, when using
Dtest to update fθbase , we do not have access to
Qtest. Thus, our methodology for updating fθbase
must be broad rather than query specific. In order
to make this problem tractable (i.e., not requiring
complete memorization of the document stream),
we assume that we have an additional corpus of
documents Dtrain and corresponding query samples
Qtrain and labels Ytrain generated by a similar gener-
ative process to Qtest, Ytest. This training set enables

2Dtest is typically an online stream of documents, but could
be an arbitrary ordering over a static collection of documents.
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Figure 3: A single step of CaMeLS meta-training. In step
1, the weighting model (red) produces a set of importance
weights over the tokens in a given document. In step 2, the
base model (blue) is updated using a single gradient step
on the weighted NLL, producing an adapted model (pink).
In step 3, the weighting model is updated to improve the
adapted base model’s ability to answer questions about the
document. During test-time adaptation, steps 1 and 2 are
applied repeatedly for each document in the test document
stream.

learning the types of queries that may be of inter-
est, informing how we should update our model to
maximize the performance on test queries while
minimizing disturbance to its prior knowledge or
behaviors. We next describe an algorithm for lever-
aging this dataset to more efficiently update our
base model on the test stream of documents Dtest.

3.2 CaMeLS: Context-aware Meta-learned
Loss Scaling

The goal of CaMeLS is to distill the information
in the training documents, queries, and labels into
a parameter vector ϕ. This vector summarizes the
optimal way to update a base model on a document
stream to maximize retention of information likely
to be relevant to test queries. CaMeLS accom-
plishes this goal by training a weighting model wϕ

(a small autoregressive language model 3) that re-
weights the online NLL loss used in typical online
fine-tuning, focusing on the tokens whose NLL gra-
dient is most useful for updating a small proxy base
model’s knowledge. In other words, the weighting
model is trained to re-weight the NLL loss such
that the proxy model is able to correctly answer
questions about a document after one gradient step
on the modified NLL of the document. The weight-
ing model is trained with an episodic bi-level opti-
mization, which we explain next in detail (also see
Figure 3).

During each episode, a training document-query-
label triple (x, q, y) is sampled from Dtrain and a

3Section 3.4 contains details on the weighting model’s
architecture.

locality example xloc from Dloc. Dloc is a dataset
of unlabeled text representing the distribution over
which we want the base model’s behavior to re-
main generally unchanged. For all experiments,
we use the OpenWebText dataset (Gokaslan et al.,
2019) as Dloc. Let θbase denote the parameters of
the proxy base model at the start of the episode.
The update to the weighting model involves three
steps: 1) computing the weights for the training
document, 2) updating the small proxy base model
on the weighted NLL on the training document,
and 3) backpropagating the ‘outer loop’ loss4 of
the updated proxy model on a query and label from
the training document. These steps are shown in
Figure 3. Let L(fθ, x,a) denote the weighted NLL
of fθ on document x using weights a. Steps 1 & 2
are described by the inner loop update rule:

θ′ = θbase − α∇θbaseL(fθbase , x, wϕ(x)) (1)

The inner loop learning rate α can be fixed, sam-
pled, or learned. For all of our experiments, we use
a fixed inner learning rate of α = 5e− 4. After the
updated proxy model is computed, we compute an
outer loop loss measuring the effectiveness of the
weighted adaptation procedure on the document x:

Louter = − log pθ′(y|q) + clocLloc(θbase, θ
′, xloc) (2)

In addition to the negative log likelihood of label
given the query and updated base model parame-
ters, the outer loss has a locality term Lloc which
prevents the updated base model parameters from
excessively changing the base model’s behavior.
cloc is set to .1 for all experiments. Lloc is the sum
of the KL divergences Li

loc between the base model
before and after adaptation conditioned on each
prefix xiloc of the locality input xloc, with

Li
loc(θbase, θ

′, xloc) = KL
(
pθbase(·|xiloc)∥pθ′(·|xiloc)

)
(3)

Finally, we perform a single update to the weight-
ing model’s parameters by computing the gradient
of the outer loop loss with respect to ϕ. We opti-
mize ϕ with the Adam optimizer, using a learning
rate of 1e-5. We accumulate outer loop gradients
over 24 examples (document-query-label triples)
split into 4 batches of 6 triples.

4Performing a single update to the proxy model is the
inner loop and updating the weighting model according to the
updated proxy model’s loss on the query is considered the
outer loop of a bi-level optimization used to train CaMeLS.
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3.3 Mitigating Train-Test Shift
The single-step training procedure described above
optimizes for effective knowledge retention for a
single document. However, in our online adapta-
tion setting, we may update for hundreds or thou-
sands of documents before we evaluate on our
downstream queries. In order to mitigate this train-
test shift, we modify CaMeLS with two strate-
gies. First, we do not use the same base model
parameters during each episode of training. This is
done to prevent the weighting model from over-
fitting to a single base model state. For most
training episodes, the starting base model param-
eters adapted in the inner loop are the final base
model parameters in the previous episode. Every
creset = 4 episodes of training, the starting base
model parameters are reset to those of the origi-
nal base model. Second, instead of performing an
inner update on a single document, we sample an
inner batch of k = 6 document-query-label triples
(x1, q1, y1), . . . , (xk, qk, yk) for each episode. A
sequence of k inner loop updates is performed:

θi = θi−1 − α∇θL(fθi−1
, xi, wϕ(xi)) (4)

where θ0 = θbase and θ′ = θk. The outer loss is
computed as before, but now averaging the query-
label loss over the inner batch. By allowing in-
ner loop updates to accumulate during adaptation,
ϕ learns an updating strategy that preserves the
knowledge of prior updates and maintains the base
model’s ability to learn from subsequent updates.

3.4 Compute & Architecture of CaMeLS
Optimizing bi-level objectives like the one used by
CaMeLS is rather memory and compute-intensive,
requiring memory and compute proportional to the
depth of the inner loop (the batch size used for mul-
tiple inner loop updates) and proportional to the
size of our base/proxy model - each inner loop step
creates an updated copy of the base model parame-
ters in the computation graph. However, CaMeLS
only requires a lightweight base model; our exper-
iments use DistilGPT-2 as the base model during
meta-training, but we find strong transfer to much
larger base models during evaluation. The weight-
ing model itself is also small; all experiments use
DistilGPT-2 as the weighting model (a MLP with
a single hidden state of size 128 is used as the head
to produce token weights). Using the base and
weighting models described, we are able to train
weighting models using 6 inner loop steps on a
single NVIDIA A40 GPU.

Method Time Per Doc Total GPU Memory

Uniform 772.72 ms 46.62 GB
CaMeLS 782.46 ms 48.18 GB

Table 1: Compared to standard uniform fine-tuning, CaMeLS
requires slightly more GPU memory to store the weight model
and is slightly slower per document. All compute measure-
ments were taken while adapting GPT-2 XL to StreamingQA
documents using an 80GB NVIDIA A100.

Dataset Avg. text length Texts per stream

StreamingQA ∼510 tokens 1665 articles
SQuAD ∼150 tokens 1170 paragraphs
ArchivalQA ∼80 tokens 3001 paragraphs

Table 2: Basic statistics of the data in our online document
streams. The sample text streams used to evaluate online
adaptation vary significantly in length. For the SQuAD and
ArchivalQA datasets, the answer to each query is a span in
its corresponding document; for StreamingQA, this is not the
case.

We next discuss the compute costs of using a
trained CaMeLS weighting model for online adap-
tation. The additional compute needed for CaMeLS
is very small compared to uniform fine-tuning —
is a single forward pass of a weight model for each
document we update on. For large models, the
weight model overhead is small compared to the
time needed to run a forward and backward pass
of the base model. Compared to standard uniform
fine-tuning, CaMeLS requires slightly more GPU
memory to store the weight model and is slightly
slower per document. Table 1 shows compute mea-
surements during online adaptation of GPT-2 XL
on StreamingQA.

4 Experiments

After outlining datasets and experimental details,
we present several experiments aimed at under-
standing CaMeLS’s behavior in unsupervised on-
line adaptation. Section 4.3 studies the extent
to which CaMeLS’s importance weights improve
knowledge retention in online adaptation. Sec-
tion 4.4 qualitatively and quantitatively explores
the weights themselves, suggesting several abla-
tions of CaMeLS that we explore in Section 4.5.
Section 4.6 evaluates the cross-dataset generaliza-
tion of CaMeLS weights, and finally we examine
the forgetting and plasticity dynamics of CaMeLS
within the document stream in Section 4.7.

4.1 Datasets

We apply CaMeLS to three question answering
datasets with corresponding source articles. We
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partition the datasets into 5 splits. Three of these
splits (train, valid, test) are used for training, hy-
perparameter tuning, and evaluating the CaMeLS
weighting model. In order to fine-tune the initial
QA base models from generic language models,
we reserve two more disjoint splits (in order to pre-
vent reusing questions during initial QA tuning and
online adaptation), labeled QA train and QA valid.
Additional details on dataset splits and samples are
in Appendix A. At evaluation time, a stream of
documents is sampled from the test split. The doc-
uments length and text stream lengths are shown in
Table 2. In the StreamingQA setting, models must
adapt to an entire article as opposed to a selected
paragraph, making it our most challenging setting.
StreamingQA (Liška et al., 2022): The Stream-
ingQA dataset contains a combination of human-
written and language model generated questions.
Questions are generated from English WMT news
articles published between 2007 and 2020.
SQuAD (Rajpurkar et al., 2016): The Stanford
Question Answering Dataset (SQuAD) contains
human generated questions from Wikipedia articles.
The answer to each question is a span contained in
a paragraph from Wikipedia.
ArchivalQA (Wang et al., 2022): The ArchivalQA
dataset contains automatically generated questions.
Questions are generated from articles in the New
York Times Annotated Corpus (Sandhaus, Evan,
2008). The answer to each question is a span con-
tained in an article.

4.2 Experimental protocol details

We conducted evaluations on two families of au-
toregressive language models, the GPT-2 (Rad-
ford et al., 2018) and GPT-Neo families (Black
et al., 2021), as well as GPT-J (Wang and Komat-
suzaki, 2021). We note that all models evaluated
use the same text tokenization. For all datasets, we
first fine-tune each pretrained model on question-
answer pairs from that dataset. These tuned models
represent the static language models we wish to
update and will be referred to as base models. For
each dataset, a single weighting model is trained.
The proxy language model used during weighting
model training is DistilGPT-2 fine-tuned on the QA
train split of the respective dataset.

At evaluation time, the base model is updated on
a stream of documents sampled from the test split
5. The final adapted base model is evaluated on

5We use an Adam Optimizer most experimental runs. Due
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Figure 4: CaMeLS’s meta-learned weights improve knowl-
edge uptake after online language model adaptation on a
stream of data. The F1 score of the base model before and after
adaptation with CaMeLS are computed on questions about the
documents used for adaptation. The relative change in F1 is
plotted. Top, lower left, and lower right show StreamingQA,
SQuAD, and ArchivalQA datasets, respectively. Error bars
are standard error over 4 sampled streams of test data.

the questions corresponding to the documents in
the sampled stream. We compare CaMeLS with 4
baselines. First is standard fine tuning or Uniform
where tokens are equally weighted. In Uniform
+ QA-tune we additionally fine tune for question
answering after adaptation. Next we consider com-
mon weighting heuristics. Salient Spans corre-
sponds to assigning a uniform weight to tokens in
salient spans and no weight to all other tokens. In
TF-IDF + 5% Cutoff, we first compute TF-IDF
scores using the both the adaptation documents
and additional in distribution documents. To ac-
count for stopwords, we remove the 5% of words
with lowest TF-IDF scores. The remaining TF-IDF
scores are used to reweight the tokens. 6 For each
combination of base model and online adaptation
strategy, the learning rate used at test time was
chosen via hyper parameter sweep on a stream of
documents sampled from the validation set.7

4.3 CaMeLS improves knowledge retention

We first compare the knowledge retained by
CaMeLS and baselines for three different data dis-
tributions in Figure 4. CaMeLS outperforms other

to compute constraints, we use an Adafactor optimizer for
adaptation of GPT-Neo 2.7B and GPT-J 6B.

6TF-IDF scores are computed using a word level tokeniza-
tion. These scores are then mapped to the BPE tokenization
of the adapted language models.

7All learning sweeps are conducted over the following
values: [1e-4, 2.5e-5, 6.25e-6, 1.625e-6]. The optimal learning
rates are in Appendix D.
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Figure 5: The importance weight distribution learned by
CaMeLS is bimodal, with proper nouns and numbers being the
parts of speech most likely to have high importance weights.
The overall importance weight distribution (left) and the dis-
tribution conditioned by part of speech (right) are shown on
the validation split of StreamingQA.

online adaptation approaches across a range of
datasets and weighting models. Despite the dif-
ference in scale between the proxy model used dur-
ing weight training and the evaluated base models,
CaMeLS’s learned importance weights generalize
well to the largest base model we evaluate, GPT-J
6B, which is over 70 times the size of the proxy
model (DistilGPT-2, 82 million parameters) used
during training. We find that standard online fine
tuning (uniform weighting) with Adam performs
very poorly on online adaptation. Even with a
tuned learning rate and further training for question
answering post adaptation, uniform weighting fails
to achieve a significant improvement for several
models tested.

4.4 Analysis of learned weights

One benefit of CaMeLS over other methods for
meta-learning model updating strategies is that
learned updating strategy, token weights, is inter-
pretable. Figure 1 shows the per-token weights on
sample text and how they combine with the un-
weighted gradient norms to produce sparsified per-
token gradient norms. In this section, we provide
additional analysis of CaMeLS’s learned weights.
We examine the distribution of weighting model
outputs on articles in the validation set of Stream-
ingQA in Figure 5. As our qualitative evaluations
show, we confirm that the distribution of weights
over the entire validation split of StreamingQA is
indeed sparse and bimodal. We thus interpret the
weighting model as acting as a context-aware bi-
nary classifier, determining if a token is informative
or uninformative. When binning weights by part of
speech, we find that numbers and proper nouns are
most frequently assigned a high weight. This result
aligns with Lazaridou et al. (2021), who found that

GPT-Neo 1.3B GPT-2 XL
Base Model

0.1

0.0

0.1

0.2

0.3

Re
la

ti
ve

 F
1 

Im
pr

ov
em

en
t

Uniform + QA-tune
Salient Spans
TF-IDF + 5% Cutoff
POS: Resample

POS: Mean
Bimodal CaMeLS
CaMeLS

Figure 6: Ablations of CaMeLS. Bimodal Ablation restricts
the weighting model from outputting intermediate values
while the POS ablations remove context dependence, con-
ditioning only on part of speech. While restricting CaMeLS
to output only one of two values only slightly reduces perfor-
mance, conditioning only on part of speech, rather than full
context, drastically reduces knowledge retention.

an outdated language model’s performance most
rapidly declines on proper nouns and numbers.

4.5 Ablations
In order to verify that context-aware weights are
truly necessary to achieving improved knowledge
retention, we now examine several ablations of
CaMeLS. In the POS: Resample ablation, the
weight of each token is generated by sampling from
the distribution of importance weights on all tokens
of the same part of speech. In the POS: Mean
ablation, each token is weighted by the mean im-
portance weight assigned to tokens of that part of
speech. We additionally consider a Bimodal ab-
lation where outputs of the weighting model are
rounded to either the largest or smallest value in
the distribution of importance weights.

Figure 6 shows the results on the StreamingQA
dataset for two different base models. We observe
that ablating the weighting model to only output
two values slightly reduces performance, while still
achieving significant F1 improvement and outper-
forming baseline approaches. The strong perfor-
mance of the binary ablation suggests that a binary
decision of whether to train on a given token is an
effective approach to online adaptation, though the
full version of CaMeLS that allows for variation in
the weight magnitude still performs best.

In contrast, neither part-of-speech ablation pro-
duces effective knowledge retention, either per-
forming worse than the uniform baseline or fail-
ing to significantly increase F1 score. This result
strongly suggests that although part of speech corre-
lates strongly with learned weights, part of speech
alone is not sufficient to determine when a token
contains important information. We conclude that
context-awareness is indeed helpful for identifying
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Figure 7: CaMeLS weight models on unseen data distribu-
tions (off-diagonals of top three rows) frequently outperforms
baseline online adaptation approaches (bottom three rows).
Each CaMeLS model was trained on a single dataset (shown
in parenthesis) and used to adapt GPT-2 XL on streams of data
from various datasets.

important tokens in online adaptation.

4.6 Cross Dataset Transfer

Beyond generalizing to new base models, we now
study CaMeLS’s ability to generalize to new data
distributions. We evaluate CaMeLS’s performance
for all nine possible combinations of train and
test dataset, using StreamingQA, SQuAD, and
ArchivalQA. Figure 7 shows the results. We find
that CaMeLS trained on a different dataset still
typically outperforms the baseline methods, provid-
ing stronger evidence that the weighting scheme
learned by CaMeLS is general-purpose. The gener-
alizability of CaMeLS’s weighting model is a key
attribute increasing its practical utility.

4.7 Forgetting and plasticity

So far, our evaluations have considered only the QA
accuracy at the end of online adaptation. In this
section, we investigate the evolution of learning
during the online adaptation process. While adapt-
ing GPT-2 XL to data from StreamingQA, we eval-
uate the intermediate models produced by CaMeLS
and baseline methods every 200 document updates.
Results are plotted for two learning rates. 6.250e-6
is the optimal learning rate for the TF-IDF baseline
while 2.500e-5 is the optimal learning rate for all
other methods shown. Figure 8 shows the perfor-
mance when intermediate models are evaluated on
the entire set of evaluation queries and additionally
evaluated on a set of unrelated queries sampled
from the QA validation spit. CaMeLS consistently
improves performance on test queries during online
adaptation, while the best performing baseline —
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Figure 8: Base model performance during StreamingQA on-
line adaptation of GPT-2 XL. Performance is evaluated every
200 article updates on the downstream answering task (top)
and on unrelated validation questions used in QA pretraining
(bottom). Results are plotted for two learning rates. 6.250e-
6 (left) is the optimal learning rate for the TF-IDF baseline
while 2.500e-5 (right) is the optimal learning rate for all other
methods shown. Shaded regions are 1 standard error over 4
runs. All adaptation methods lead to gradual degradation in
unrelated questions performance. CaMeLS results in gradual
increases in base model test performance. Using its optimal
learning rate, uniform fine-tuning with post adaptation QA
tuning are only realizes its performance increases after a post-
adaptation QA-tuning step.

uniform fine-tuning with a learning rate of 2.500e-
5 and additional QA-tuning — results in gradual
degradation in test performance with improvement
only becoming realized after the post-adaptation
QA-tuning step. Turning to performance on un-
related queries, we see that all methods result in
a gradual degradation in performance on indepen-
dent queries. At a learning rate of 6.250e-6, all
methods lead to comparable degradation in perfor-
mance on unrelated queries. At a learning rate of
2.5e-6 CaMeLS leads to the lowest drop in unre-
lated query performance. Taken together, these
results suggest that the CaMeLS is able to more ef-
fectively update the base model’s knowledge, while
still preserving the model’s pre-existing knowledge
and its representation of the task.

Finally, in Figure 9, we aim to answer the ques-
tions how long does the model remember the an-
swer to a question after observing it? We show
the average improvement in F1 score across test
queries against the number of timesteps since the
model observed the document containing the an-
swer to the query. Each adaptation method is ap-
plied using a uniquely tuned learning rate. After
the 200 document sequence containing the rele-
vant document, all methods see a clear average
improvement in F1 score, signifying learning is
happening. However, we also note that CaMeLS
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produces both a higher initial improvement as well
as a higher asymptotic improvement in F1 score.
CaMeLS not only improves the immediate plas-
ticity of the model, integrating knowledge more
readily, but also reduces forgetting, preserving the
newly-integrated knowledge for longer.

5 Discussion

While large language models are powerful, keeping
them up-to-date remains a challenge. In this pa-
per, we consider the unsupervised online language
model adaptation setting, in which a language
model’s knowledge must be updated using a stream
of documents, without annotations of key facts or
information. Finding that naive online fine-tuning
provides little retention of knowledge from the doc-
ument stream, we propose Context-aware Meta-
learned Loss Scaling (CaMeLS), a meta-learning al-
gorithm that learns an importance weighting model
to reweight the per-token loss of the online data
stream. CaMeLS leverages side information of the
form of paired documents and knowledge queries
about those documents to identify which tokens in
the documents are most likely to be informative for
answering downstream queries. Empirically, we
find that the importance weighting model learned
by CaMeLS consistently improves knowledge re-
tention across three datasets of documents and ques-
tions. Crucially, we find that CaMeLS’s importance
weighting model generalizes across outdated lan-
guage models and datasets, meaning that an impor-
tance weighting model can be trained once on a
small proxy language model (such as DistilGPT-2)
and then be immediately used to improve online
adaptation of much larger models, like GPT-J 6B.
This transferrability of CaMeLS’s weighting model
significantly increases its practical utility.

Limitations & Future Work

While our experiments suggest that learned im-
portance weights consistently improve knowledge
retention after unsupervised online adaptation, our
study has several limitations. CaMeLS assumes
access to side information in the form of training
document, query, and label triples. This require-
ment may be onerous in domains where labeling
is expensive. Future work may apply CaMeLS to
settings without access to side information queries
and labels, i.e., only a purely unlabeled stream of
training documents, using the temporal structure
of the data as the signal for learning. We study
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Figure 9: While adapting GPT-2 XL on StreamingQA, we ex-
amine the average improvement in F1 score of queries against
the time since the model observed the corresponding docu-
ment. The shaded region represents the interval in which the
source document was presented. CaMeLS leads to a larger
initial improvement and asymptotic improvement in F1 score
than other methods. Although this mid-adaptation evaluation
does not use QA-tuning, Uniform + QA-tune corresponds to
uniform fine tuning using a learning rate optimized to down-
stream performance given an additional QA-tuning step. Each
adaptation method is applied using a uniquely tuned learning
rate.

adaptation on steams of thousands of documents.
However, in order to effectively update outdated
language models in real-world scenarios, it is rea-
sonable to expect a significantly larger volume of
documents. Beyond dataset scale, our experiments
study adaptation of base models up to 6B parame-
ters, but recent work suggests the continual learn-
ing dynamics of language models changes drasti-
cally at extreme scale (100B+ parameters); future
work may increase the scale of the present study by
considering adaptation on longer streams of docu-
ments using larger base evaluation models. Finally,
we study only question-answering models and the
question-answering task, as it is the most direct
form of knowledge retention assessment. Future
work may examine knowledge retention in other
types of models through alternative downstream
tasks that leverage the knowledge in the document
stream more indirectly, as well as studying the abil-
ity to continually update general-purpose genera-
tive models of language or dialogue models.
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SQA SQuAD ArchivalQA

Split Nx/q Nx Nq Nx Nq

Train 21k 8.6k 39.9k 12.8k 21.7k
Validation 1.7k 1.2k 5.6k 3.0k 5.3k
Test 5k 2.1k 10.6k 5.0k 8.7k
QA Train 40k - 40k - 12.4k
QA Valid. 4k - 2.1k - 3k

Table 3: Number of documents Nx and questions Nq for each
dataset. Each document in StreamingQA (SQA) corresponds
to a single question, while SQuAD and ArchivalQA contain
documents corresponding to multiple questions.

A Dataset Details

The sizes of dataset splits are shown in Table 3.
Sample documents, questions, and answers are
shown in Table 4. Only documents from 2018 and
on-wards are used to the train, validation, and test
splits of StreamingQA. For SQuAD, the entirety
of the validation set of SQuAD is used at our test
split. The topics in training set of SQuAD are re-
partitioned to form the other 4 splits. We divide the
validation set of the ArchivalQA dataset to form
our 5 splits. These splits are done temporally, us-
ing documents from 1987-1990 for QA Training,
1991-1992 for QA Validation, 1993-2001 for Train-
ing, 2002-2003 for Validation, and 2004-2007 for
Testing.

B Larger Proxy Models

We conduct a preliminary investigation on the ef-
fect of using a larger proxy model during CaMeLS
meta-training. By default, we use a QA-tuned Dis-
tilGPT2 (82M) as the proxy model. We addition-
ally meta-train using a GPT-2 Small (117M) as the
proxy model. Due to compute limitations we were
not able to meta-train using any larger proxy mod-
els. Results on StreamingQA are shown in table
5. We see no significant difference in performance
in this setting. Qualitatively, the two weighting
models generate similar outputs. We hypothesize
that CaMeLS learns a weighting which reflects the
innate importance of tokens in the text to answer-
ing the meta-training questions, rather than a proxy
model specific token importance. We emphasize
that this is a hypothesis and believe a more rigor-
ous exploration of proxy model size is an exciting
direction for future work.

C Combining CaMeLS with other online
Adaptation Methods

There are various other methods for online adapta-
tion which leverage the adaptation documents. Two
such methods are in-context learning and retrieval.
This section shows preliminary experiments lever-

Dataset Document Question Answer

StreamingQA Colin Farrell goes missing in new trailer March 2 (UPI) –
Colin Farrell joins the cast of Artemis Fowl in the latest
trailer for Disney’s upcoming fantasy-adventure film.
Farrell is featured in the clip, released on Monday, as the
missing father of Ferdia Shaw’s Artemis Fowl who also
goes by the same name. Farrell’s character is a criminal
mastermind who has mysteriously disappeared. Artemis
Fowl learns that his father has protected powerful secrets
that have kept mankind safe and learns that his
disappearance is connected to a secret fairy world. Artemis
Fowl, with help from his loyal protector Butler (Nonso
Anozie), embarks on a dangerous journey into the unknown
in order to save his father. . .

What does Artemis
Fowl embark on?

a dangerous
journey into the
unknown

SQuAD Luther is honoured on 18 February with a commemoration
in the Lutheran Calendar of Saints and in the Episcopal
(United States) Calendar of Saints. In the Church of
England’s Calendar of Saints he is commemorated on 31
October.

When is Luther
commemorated in the
Lutheran Calendar of
Saints?

18 February

ArchivalQA If it feels like the Heat Miser (”Oh, some like it hot, but I
like it really hot”) has been lurking of late, it may be due to
NBC’s coming remake of the animated 1974 television
movie ”The Year Without a Santa Claus.” The four-time
Tony Award winner Harvey Fierstein (”Hairspray”) signed
on this week to replace Chris Elliott in the role of the Heat
Miser; Mr. Elliot had to bow out because of a scheduling
conflict. The new version will be seen later this year.

Who replaced Chris
Elliott as the Heat
Miser?

Harvey Fier-
stein

Table 4: Example documents, questions, and answers from the test split of each dataset.
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Proxy Model GPT-Neo 1.3B GPT-2 XL

DistilGPT2 (82M) 0.190± 0.017 0.308± 0.018
GPT-2 Small (117M) 0.176± 0.023 0.309± 0.012

Table 5: StreamingQA F1 Increase comparison for CaMeLS
meta-trained using DistilGPT2 (82M) and GPT-2 Small
(117M) proxy models. Online adaptation of GPT-Neo 1.3B
and GPT-2 XL is evaluated. In the tested setting, varying the
proxy model size does not change CaMeLS performance.

Method GPT-2 XL GPT-Neo 1.3B

5-shot ICL 0.1091 0.0533
ICL w/ CaMeLS 0.1594 0.1398

Table 6: Adapting the base models with CaMeLS consistently
improves the F1 scores in a simple in-context learning setting.

aging CaMeLS in conjunction with these methods
on the ArchivalQA dataset. We show that CaMeLS
is complementary to both in-context learning and
retrieval; for both methods, the adaptation perfor-
mance is improved by CaMeLS.

In our first set of experiments, we do five-shot
in-context learning. We assume we can prompt
the model with the oracle document containing the
answer to the question (i.e., the best-case scenario
for in-context learning). The prompt is formatted
as [ex. doc 1] [ex. q 1] [ex. ans 1]
. . . [ex. doc 5] [ex. q 5] [ex. ans
5] [oracle test doc] [test question]. We
use the base GPT-2 XL and GPT-Neo 1.3B models
(QA-tuned models performed much worse with
in-context learning). As shown in Table 6, we
find that adapting the base models with CaMeLS
consistently improves the F1 scores of in-context
learning.

In a second set of experiments, we consider a
simple retrieval setup. Results are shown in Ta-
ble 7. We fine-tune GPT-2 XL and GPT-Neo 1.3B
to answer questions with the source document in
the context. We retrieved documents using ran-
dom, oracle, and BM25 document retrieval. We use
CaMeLS to update the parameters of the document-
conditioned question-answering models. Across

models and retrievers, Using CaMeLS to adapt
document-conditioned question-answering models
consistently improves adaptation performance over
vanilla retrieval.

These results use the CaMeLS weighting model
trained using a QA-proxy model on ArchivalQA.
We expect the performance of CaMeLS to increase
if meta-trained using a proxy model and outer loss
more analogous to the evaluation setting. For ex-
ample, increase performance in the retrieval setting,
we could present the source document when com-
puting the outer loss and using a document condi-
tioned QA proxy model. We acknowledge that we
do not evaluate any baseline methods and think that
extensive comparisons of parametric updating in
conjunction with these other methods would be an
exciting direction for future work. As is, these re-
sults do show that parametric online adaptation can
be used to complement document-storage based
methods.

D Optimal Online Adaptation Learning
Rates

When evaluating loss reweighing methods in our
experiments, the learning rate used to adapt our
base models is found via a learning rate sweep. For
each combination of dataset, base model, and adap-
tation method, we test a range of learning rates to
adapt the base model on a stream of documents
from the validation split of the dataset. The best
performing learning rates are used for later exper-
iments on the test split of the dataset. We test the
following learning rates: [1e-4, 2.5e-5, 6.25e-6,
1.625e-6]. The optimal learning rates found via
these sweeps are shown in Figure 10.

GPT-2 XL GPT-Neo 1.3B

Method Random BM25 Oracle Random BM25 Oracle

Vanilla Retriever 0.0694 0.6812 0.7290 0.0624 0.6898 0.7401
Retriever w/ CaMeLS 0.1156 0.7106 0.7565 0.1045 0.7356 0.7832

Table 7: Using CaMeLS to adapt document-conditioned question-answering models consistently improves adaptation perfor-
mance over vanilla retrieval.
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(a) StreamingQA

Method Base Model Learning Rate

CaMeLS GPT-2 Large 2.500e-5
GPT-Neo 1.3B 6.250e-6
GPT-2 XL 2.500e-5
GPT-Neo 2.7B 6.250e-6
GPT-J 6B 6.250e-6

TF-IDF + 5% Cutoff GPT-2 Large 1.625e-6
GPT-Neo 1.3B 1.625e-6
GPT-2 XL 6.250e-6
GPT-Neo 2.7B 1.625e-6
GPT-J 6B 1.625e-6

Salient Spans GPT-2 Large 6.250e-6
GPT-Neo 1.3B 1.625e-6
GPT-2 XL 2.500e-5
GPT-Neo 2.7B 1.625e-6
GPT-J 6B 6.250e-6

Uniform + QA-tuning GPT-2 Large 1.625e-6
GPT-Neo 1.3B 2.500e-5
GPT-2 XL 2.500e-5
GPT-Neo 2.7B 6.250e-6
GPT-J 6B 2.500e-5

Uniform GPT-2 Large 1.625e-6
GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6
GPT-Neo 2.7B 1.625e-6
GPT-J 6B 1.625e-6

(b) SQuAD

Method Base Model Learning Rate

CaMeLS GPT-Neo 1.3B 6.250e-6
GPT-2 XL 6.250e-6

Salient Spans GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6

TF-IDF + 5% Cutoff GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6

Uniform GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6

Uniform + QA-tuning GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6

(c) ArchivalQA

Method Base Model Learning Rate

CaMeLS GPT-Neo 1.3B 1.625e-6
GPT-2 XL 6.250e-6
GPT-J 6B 6.250e-6

Salient Spans GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6
GPT-J 6B 6.250e-6

TF-IDF + 5% Cutoff GPT-Neo 1.3B 1.625e-6
GPT-2 XL 1.625e-6
GPT-J 6B 6.250e-6

Uniform GPT-Neo 1.3B 2.500e-5
GPT-2 XL 6.250e-6
GPT-J 6B 6.250e-6

Uniform + QA-tuning GPT-Neo 1.3B 2.500e-5
GPT-2 XL 6.250e-6
GPT-J 6B 6.250e-6

Figure 10: Optimal adaptation learning rates used to evaluate each combination of adaptation method and base model.
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